Network Working Group                                            M. Duke
Request for Comments: 4614                          Boeing Phantom Works
Category: Informational                                        R. Braden
                                      USC Information Sciences Institute
                                                                 W. Eddy
                                         Verizon Federal Network Systems
                                                              E. Blanton
                                      Purdue University Computer Science
                                                          September 2006
Network Working Group                                            M. Duke
Request for Comments: 4614                          Boeing Phantom Works
Category: Informational                                        R. Braden
                                      USC Information Sciences Institute
                                                                 W. Eddy
                                         Verizon Federal Network Systems
                                                              E. Blanton
                                      Purdue University Computer Science
                                                          September 2006

A Roadmap for Transmission Control Protocol (TCP) Specification Documents


Status of This Memo


This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.


Copyright Notice


Copyright (C) The Internet Society (2006).




This document contains a "roadmap" to the Requests for Comments (RFC) documents relating to the Internet's Transmission Control Protocol (TCP). This roadmap provides a brief summary of the documents defining TCP and various TCP extensions that have accumulated in the RFC series. This serves as a guide and quick reference for both TCP implementers and other parties who desire information contained in the TCP-related RFCs.


Table of Contents


   1. Introduction ....................................................2
   2. Basic Functionality .............................................4
   3. Recommended Enhancements ........................................6
      3.1. Congestion Control and Loss Recovery Extensions ............7
      3.2. SACK-Based Loss Recovery and Congestion Control ............8
      3.3. Dealing with Forged Segments ...............................9
   4. Experimental Extensions ........................................10
   5. Historic Extensions ............................................13
   6. Support Documents ..............................................14
      6.1. Foundational Works ........................................15
      6.2. Difficult Network Environments ............................16
      6.3. Implementation Advice .....................................19
      6.4. Management Information Bases ..............................20
      6.5. Tools and Tutorials .......................................22
      6.6. Case Studies ..............................................22
   7. Undocumented TCP Features ......................................23
   8. Security Considerations ........................................24
   9. Acknowledgments ................................................24
   10. Informative References ........................................25
      10.1. Basic Functionality ......................................25
      10.2. Recommended Enhancements .................................25
      10.3. Experimental Extensions ..................................26
      10.4. Historic Extensions ......................................27
      10.5. Support Documents ........................................28
      10.6. Informative References Outside the RFC Series ............31
   1. Introduction ....................................................2
   2. Basic Functionality .............................................4
   3. Recommended Enhancements ........................................6
      3.1. Congestion Control and Loss Recovery Extensions ............7
      3.2. SACK-Based Loss Recovery and Congestion Control ............8
      3.3. Dealing with Forged Segments ...............................9
   4. Experimental Extensions ........................................10
   5. Historic Extensions ............................................13
   6. Support Documents ..............................................14
      6.1. Foundational Works ........................................15
      6.2. Difficult Network Environments ............................16
      6.3. Implementation Advice .....................................19
      6.4. Management Information Bases ..............................20
      6.5. Tools and Tutorials .......................................22
      6.6. Case Studies ..............................................22
   7. Undocumented TCP Features ......................................23
   8. Security Considerations ........................................24
   9. Acknowledgments ................................................24
   10. Informative References ........................................25
      10.1. Basic Functionality ......................................25
      10.2. Recommended Enhancements .................................25
      10.3. Experimental Extensions ..................................26
      10.4. Historic Extensions ......................................27
      10.5. Support Documents ........................................28
      10.6. Informative References Outside the RFC Series ............31
1. Introduction
1. 介绍

A correct and efficient implementation of the Transmission Control Protocol (TCP) is a critical part of the software of most Internet hosts. As TCP has evolved over the years, many distinct documents have become part of the accepted standard for TCP. At the same time, a large number of more experimental modifications to TCP have also been published in the RFC series, along with informational notes, case studies, and other advice.


As an introduction to newcomers and an attempt to organize the plethora of information for old hands, this document contains a "roadmap" to the TCP-related RFCs. It provides a brief summary of the RFC documents that define TCP. This should provide guidance to implementers on the relevance and significance of the standards-track extensions, informational notes, and best current practices that relate to TCP.


This document is not an update of RFC 1122 and is not a rigorous standard for what needs to be implemented in TCP. This document is merely an informational roadmap that captures, organizes, and summarizes most of the RFC documents that a TCP implementer, experimenter, or student should be aware of. Particular comments or broad categorizations that this document makes about individual mechanisms and behaviors are not to be taken as definitive, nor should the content of this document alone influence implementation decisions.

本文档不是RFC 1122的更新,也不是TCP中需要实现的严格标准。本文档仅仅是一个信息路线图,它捕获、组织和总结了TCP实施者、实验者或学生应该知道的大多数RFC文档。本文件对个别机制和行为所作的特定评论或广泛分类不应被视为确定的,也不应仅凭本文件的内容影响实施决策。

This roadmap includes a brief description of the contents of each TCP-related RFC. In some cases, we simply supply the abstract or a key summary sentence from the text as a terse description. In addition, a letter code after an RFC number indicates its category in the RFC series (see BCP 9 [RFC2026] for explanation of these categories):

该路线图包括每个TCP相关RFC内容的简要说明。在某些情况下,我们只是简单地从文本中提供摘要或关键摘要句子作为简短的描述。此外,RFC编号后的字母代码表示其在RFC系列中的类别(有关这些类别的解释,请参见BCP 9[RFC2026]):

S - Standards Track (Proposed Standard, Draft Standard, or Standard)


E - Experimental


B - Best Current Practice


I - Informational


Note that the category of an RFC does not necessarily reflect its current relevance. For instance, RFC 2581 is nearly universally deployed although it is only a Proposed Standard. Similarly, some Informational RFCs contain significant technical proposals for changing TCP.


This roadmap is divided into four main sections. Section 2 lists the RFCs that describe absolutely required TCP behaviors for proper functioning and interoperability. Further RFCs that describe strongly encouraged, but non-essential, behaviors are listed in Section 3. Experimental extensions that are not yet standard practices, but that potentially could be in the future, are described in Section 4.


The reader will probably notice that these three sections are broadly equivalent to MUST/SHOULD/MAY specifications (per RFC 2119), and although the authors support this intuition, this document is merely descriptive; it does not represent a binding standards-track position. Individual implementers still need to examine the standards documents themselves to evaluate specific requirement levels.

读者可能会注意到,这三个部分大致等同于必须/应该/可能规范(根据RFC 2119),尽管作者支持这一直觉,但本文件仅为描述性;它不代表具有约束力的标准轨道位置。单个实现者仍然需要自己检查标准文档,以评估特定的需求级别。

A small number of older experimental extensions that have not been widely implemented, deployed, and used are noted in Section 5. Many other supporting documents that are relevant to the development, implementation, and deployment of TCP are described in Section 6. Within each section, RFCs are listed in the chronological order of their publication dates.


A small number of fairly ubiquitous important implementation practices that are not currently documented in the RFC series are listed in Section 7.


2. Basic Functionality
2. 基本功能

A small number of documents compose the core specification of TCP. These define the required basic functionalities of TCP's header parsing, state machine, congestion control, and retransmission timeout computation. These base specifications must be correctly followed for interoperability.


RFC 793 S: "Transmission Control Protocol", STD 7 (September 1981)

RFC 793 S:“传输控制协议”,标准7(1981年9月)

This is the fundamental TCP specification document [RFC0793]. Written by Jon Postel as part of the Internet protocol suite's core, it describes the TCP packet format, the TCP state machine and event processing, and TCP's semantics for data transmission, reliability, flow control, multiplexing, and acknowledgment.

这是基本的TCP规范文档[RFC0793]。由Jon Postel编写,作为Internet协议套件核心的一部分,它描述了TCP数据包格式、TCP状态机和事件处理,以及数据传输、可靠性、流量控制、多路复用和确认的TCP语义。

Section 3.6 of RFC 793, describing TCP's handling of the IP precedence and security compartment, is mostly irrelevant today. RFC 2873 changed the IP precedence handling, and the security compartment portion of the API is no longer implemented or used. In addition, RFC 793 did not describe any congestion control mechanism. Otherwise, however, the majority of this document still accurately describes modern TCPs. RFC 793 is the last of a series of developmental TCP specifications, starting in the Internet Experimental Notes (IENs) and continuing in the RFC series.

RFC 793的第3.6节描述了TCP对IP优先级和安全分区的处理,这在今天几乎是无关紧要的。RFC2873更改了IP优先级处理,API的安全分区部分不再实现或使用。此外,RFC793没有描述任何拥塞控制机制。然而,除此之外,本文件的大部分内容仍然准确地描述了现代TCP。RFC793是一系列开发TCP规范中的最后一个,从Internet实验说明(IEN)开始,在RFC系列中继续。

RFC 1122 S: "Requirements for Internet Hosts - Communication Layers" (October 1989)

RFC 1122 S:“互联网主机要求-通信层”(1989年10月)

This document [RFC1122] updates and clarifies RFC 793, fixing some specification bugs and oversights. It also explains some features such as keep-alives and Karn's and Jacobson's RTO estimation algorithms [KP87][Jac88][JK92]. ICMP interactions are mentioned, and some tips are given for efficient implementation. RFC 1122 is an Applicability Statement, listing the various features that MUST, SHOULD, MAY, SHOULD NOT, and MUST NOT be present in

本文档[RFC1122]更新并澄清了RFC 793,修复了一些规范错误和疏忽。它还解释了一些特性,如keep alives和Karn和Jacobson的RTO估计算法[KP87][Jac88][JK92]。文中提到了ICMP交互,并给出了一些有效实现的技巧。RFC1122是一个适用性声明,列出了必须、应该、可能、不应该和不应该出现在

standards-conforming TCP implementations. Unlike a purely informational "roadmap", this Applicability Statement is a standards document and gives formal rules for implementation.


RFC 2460 S: "Internet Protocol, Version 6 (IPv6) Specification (December 1998)

RFC 2460 S:“互联网协议,第6版(IPv6)规范(1998年12月)

This document [RFC2460] is of relevance to TCP because it defines how the pseudo-header for TCP's checksum computation is derived when 128-bit IPv6 addresses are used instead of 32-bit IPv4 addresses. Additionally, RFC 2675 describes TCP changes required to support IPv6 jumbograms.

本文档[RFC2460]与TCP相关,因为它定义了当使用128位IPv6地址而不是32位IPv4地址时,如何导出TCP校验和计算的伪报头。此外,RFC 2675描述了支持IPv6巨型程序所需的TCP更改。

RFC 2581 S: "TCP Congestion Control" (April 1999)

RFC 2581 S:“TCP拥塞控制”(1999年4月)

Although RFC 793 did not contain any congestion control mechanisms, today congestion control is a required component of TCP implementations. This document [RFC2581] defines the current versions of Van Jacobson's congestion avoidance and control mechanisms for TCP, based on his 1988 SIGCOMM paper [Jac88]. RFC 2001 was a conceptual precursor that was obsoleted by RFC 2581.

尽管RFC793不包含任何拥塞控制机制,但如今,拥塞控制是TCP实现的必需组件。本文件[RFC2581]基于其1988年的SIGCOMM论文[Jac88],定义了Van Jacobson的TCP拥塞避免和控制机制的当前版本。RFC 2001是被RFC 2581淘汰的概念性先驱。

A number of behaviors that together constitute what the community refers to as "Reno TCP" are described in RFC 2581. The name "Reno" comes from the Net/2 release of the 4.3 BSD operating system. This is generally regarded as the least common denominator among TCP flavors currently found running on Internet hosts. Reno TCP includes the congestion control features of slow start, congestion avoidance, fast retransmit, and fast recovery.

RFC 2581中描述了许多共同构成社区所称“雷诺TCP”的行为。“雷诺”这个名字来自4.3 BSD操作系统的Net/2版本。这通常被认为是目前在Internet主机上运行的TCP风格中最不常见的。Reno TCP具有慢启动、避免拥塞、快速重传和快速恢复的拥塞控制功能。

RFC 1122 mandates the implementation of a congestion control mechanism, and RFC 2581 details the currently accepted mechanism. RFC 2581 differs slightly from the other documents listed in this section, as it does not affect the ability of two TCP endpoints to communicate; however, congestion control remains a critical component of any widely deployed TCP implementation and is required for the avoidance of congestion collapse and to ensure fairness among competing flows.

RFC 1122要求实现拥塞控制机制,RFC 2581详细说明了当前接受的机制。RFC 2581与本节中列出的其他文档略有不同,因为它不影响两个TCP端点的通信能力;然而,拥塞控制仍然是任何广泛部署的TCP实现的关键组成部分,是避免拥塞崩溃和确保竞争流之间公平性所必需的。

RFC 2873 S: "TCP Processing of the IPv4 Precedence Field" (June 2000)

RFC 2873 S:“IPv4优先字段的TCP处理”(2000年6月)

This document [RFC2873] removes from the TCP specification all processing of the precedence bits of the TOS byte of the IP header. This resolves a conflict over the use of these bits between RFC 793 and Differentiated Services [RFC2474].

本文件[RFC2873]从TCP规范中删除了对IP报头TOS字节优先位的所有处理。这解决了RFC 793和差异化服务[RFC2474]之间使用这些位的冲突。

RFC 2988 S: "Computing TCP's Retransmission Timer" (November 2000)

RFC 2988 S:“计算TCP的重传计时器”(2000年11月)

Abstract: "This document defines the standard algorithm that Transmission Control Protocol (TCP) senders are required to use to compute and manage their retransmission timer. It expands on the discussion in section of RFC 1122 and upgrades the requirement of supporting the algorithm from a SHOULD to a MUST." [RFC2988]

摘要:“本文件定义了传输控制协议(TCP)发送方计算和管理其重传计时器所需使用的标准算法。它扩展了RFC 1122第4.2.3.1节中的讨论,并将支持算法的要求从“应该”升级为“必须”。[RFC2988]

3. Recommended Enhancements
3. 建议的增强功能

This section describes recommended TCP modifications that improve performance and security. RFCs 1323 and 3168 represent fundamental changes to the protocol. RFC 1323, based on RFCs 1072 and 1185, allows better utilization of high bandwidth-delay product paths by providing some needed mechanisms for high-rate transfers. RFC 3168 describes a change to the Internet's architecture, whereby routers signal end-hosts of growing congestion levels and can do so before packet losses are forced. Section 3.1 lists improvements in the congestion control and loss recovery mechanisms specified in RFC 2581. Section 3.2 describes further refinements that make use of selective acknowledgments. Section 3.3 deals with the problem of preventing forged segments.

本节介绍改进性能和安全性的建议TCP修改。RFC 1323和3168代表了协议的根本性变化。基于RFC 1072和1185的RFC 1323通过为高速传输提供一些必要的机制,允许更好地利用高带宽延迟乘积路径。RFC3168描述了互联网体系结构的一个变化,路由器向终端主机发送拥塞水平不断上升的信号,并且可以在数据包丢失之前发送信号。第3.1节列出了RFC 2581中规定的拥塞控制和丢失恢复机制的改进。第3.2节描述了利用选择性确认的进一步改进。第3.3节涉及防止锻造节段的问题。

RFC 1323 S: "TCP Extensions for High Performance" (May 1992)

RFC 1323 S:“高性能TCP扩展”(1992年5月)

This document [RFC1323] defines TCP extensions for window scaling, timestamps, and protection against wrapped sequence numbers, for efficient and safe operation over paths with large bandwidth-delay products. These extensions are commonly found in currently used systems; however, they may require manual tuning and configuration. One issue in this specification that is still under discussion concerns a modification to the algorithm for estimating the mean RTT when timestamps are used.


RFC 2675 S: "IPv6 Jumbograms" (August 1999)

RFC 2675 S:“IPv6巨型程序”(1999年8月)

IPv6 supports longer datagrams than were allowed in IPv4. These are known as Jumbograms, and use with TCP has necessitated changes to the handling of TCP's MSS and Urgent fields (both 16 bits). This document [RFC2675] explains those changes. Although it describes changes to basic header semantics, these changes should only affect the use of very large segments, such as IPv6 jumbograms, which are currently rarely used in the general Internet. Supporting the behavior described in this document does not affect interoperability with other TCP implementations when IPv4 or non-jumbogram IPv6 is used. This document states that jumbograms are to only be used when it can be guaranteed that all


receiving nodes, including each router in the end-to-end path, will support jumbograms. If even a single node that does not support jumbograms is attached to a local network, then no host on that network may use jumbograms. This explains why jumbogram use has been rare, and why this document is considered a performance optimization and not part of TCP over IPv6's basic functionality.

接收节点,包括端到端路径中的每个路由器,将支持巨型程序。如果连不支持巨型程序的单个节点都连接到本地网络,则该网络上的任何主机都不能使用巨型程序。这解释了为什么很少使用巨型程序,以及为什么本文档被视为性能优化,而不是TCP over IPv6的基本功能的一部分。

RFC 3168 S: "The Addition of Explicit Congestion Notification (ECN) to IP" (September 2001)

RFC 3168 S:“向IP添加显式拥塞通知(ECN)”(2001年9月)

This document [RFC3168] defines a means for end hosts to detect congestion before congested routers are forced to discard packets. Although congestion notification takes place at the IP level, ECN requires support at the transport level (e.g., in TCP) to echo the bits and adapt the sending rate. This document updates RFC 793 to define two previously unused flag bits in the TCP header for ECN support. RFC 3540 provides a supplementary (experimental) means for more secure use of ECN, and RFC 2884 provides some sample results from using ECN.

本文档[RFC3168]定义了终端主机在拥塞路由器被迫丢弃数据包之前检测拥塞的方法。虽然拥塞通知发生在IP级别,但ECN需要在传输级别(例如TCP)上提供支持,以回送位并调整发送速率。本文档更新RFC 793,在TCP头中定义两个以前未使用的标志位,以支持ECN。RFC3540提供了一种更安全地使用ECN的补充(实验)方法,RFC2884提供了使用ECN的一些示例结果。

3.1. Congestion Control and Loss Recovery Extensions
3.1. 拥塞控制和丢失恢复扩展

Two of the most important aspects of TCP are its congestion control and loss recovery features. TCP traditionally treats lost packets as indicating congestion-related loss, and cannot distinguish between congestion-related loss and loss due to transmission errors. Even when ECN is in use, there is a rather intimate coupling between congestion control and loss recovery mechanisms. There are several extensions to both features, and more often than not, a particular extension applies to both. In this sub-section, we group enhancements to either congestion control, loss recovery, or both, which can be performed unilaterally; that is, without negotiating support between endpoints. In the next sub-section, we group the extensions that specify or rely on the SACK option, which must be negotiated bilaterally. TCP implementations should include the enhancements from both sub-sections so that TCP senders can perform well without regard to the feature sets of other hosts they connect to. For example, if SACK use is not successfully negotiated, a host should use the NewReno behavior as a fall back.


RFC 3042 S: "Enhancing TCP's Loss Recovery Using Limited Transmit" (January 2001)

RFC 3042 S:“使用有限传输增强TCP的丢失恢复”(2001年1月)

Abstract: "This document proposes Limited Transmit, a new Transmission Control Protocol (TCP) mechanism that can be used to more effectively recover lost segments when a connection's congestion window is small, or when a large number of segments are lost in a single transmission window." [RFC3042] Tests from 2004 showed that Limited Transmit was deployed in roughly one third of the web servers tested [MAF04].


RFC 3390 S: "Increasing TCP's Initial Window" (October 2002)

RFC 3390 S:“增加TCP的初始窗口”(2002年10月)

This document [RFC3390] updates RFC 2581 to permit an initial TCP window of three or four segments during the slow-start phase, depending on the segment size.

本文档[RFC3390]更新了RFC 2581,以允许在慢启动阶段根据段大小设置三个或四个段的初始TCP窗口。

RFC 3782 S: "The NewReno Modification to TCP's Fast Recovery Algorithm" (April 2004)

RFC 3782 S:“NewReno对TCP快速恢复算法的修改”(2004年4月)

This document [RFC3782] specifies a modification to the standard Reno fast recovery algorithm, whereby a TCP sender can use partial acknowledgments to make inferences determining the next segment to send in situations where SACK would be helpful but isn't available. Although it is only a slight modification, the NewReno behavior can make a significant difference in performance when multiple segments are lost from a single window of data.


3.2. SACK-Based Loss Recovery and Congestion Control
3.2. 基于SACK的丢包恢复与拥塞控制

The base TCP specification in RFC 793 provided only a simple cumulative acknowledgment mechanism. However, a selective acknowledgment (SACK) mechanism provides performance improvement in the presence of multiple packet losses from the same flight, more than outweighing the modest increase in complexity. A TCP should be expected to implement SACK; however, SACK is a negotiated option and is only used if support is advertised by both sides of a connection.


RFC 2018 S: "TCP Selective Acknowledgment Options" (October 1996)

RFC 2018 S:“TCP选择性确认选项”(1996年10月)

This document [RFC2018] defines the basic selective acknowledgment (SACK) mechanism for TCP.


RFC 2883 S: "An Extension to the Selective Acknowledgement (SACK) Option for TCP" (July 2000)

RFC 2883 S:“TCP选择性确认(SACK)选项的扩展”(2000年7月)

This document [RFC2883] extends RFC 2018 to cover the case of acknowledging duplicate segments.

本文件[RFC2883]扩展了RFC 2018,以涵盖确认重复段的情况。

RFC 3517 S: "A Conservative Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP" (April 2003)

RFC 3517 S:“基于保守选择确认(SACK)的TCP丢失恢复算法”(2003年4月)

This document [RFC3517] describes a relatively sophisticated algorithm that a TCP sender can use for loss recovery when SACK reports more than one segment lost from a single flight of data. Although support for the exchange of SACK information is widely implemented, not all implementations use an algorithm as sophisticated as that described in RFC 3517.


3.3. Dealing with Forged Segments
3.3. 处理伪造的分部

By default, TCP lacks any cryptographic structures to differentiate legitimate segments and those spoofed from malicious hosts. Spoofing valid segments requires correctly guessing a number of fields. The documents in this sub-section describe ways to make that guessing harder, or to prevent it from being able to affect a connection negatively.


The TCPM working group is currently in progress towards fully understanding and defining mechanisms for preventing spoofing attacks (including both spoofed TCP segments and ICMP datagrams). Some of the solutions being considered rely on TCP modifications, whereas others rely on security at lower layers (like IPsec) for protection.


RFC 1948 I: "Defending Against Sequence Number Attacks" (May 1996)

RFC 1948 I:“防御序列号攻击”(1996年5月)

This document [RFC1948] describes the TCP vulnerability that allows an attacker to send forged TCP packets, by guessing the initial sequence number in the three-way handshake. Simple defenses against exploitation are then described. Some variation is implemented in most currently used operating systems.


RFC 2385 S: "Protection of BGP Sessions via the TCP MD5 Signature Option" (August 1998)

RFC 2385 S:“通过TCP MD5签名选项保护BGP会话”(1998年8月)

From document: "This document describes current existing practice for securing BGP against certain simple attacks. It is understood to have security weaknesses against concerted attacks.


This memo describes a TCP extension to enhance security for BGP. It defines a new TCP option for carrying an MD5 digest in a TCP segment. This digest acts like a signature for that segment, incorporating information known only to the connection end points. Since BGP uses TCP as its transport, using this option in the way described in this paper significantly reduces the danger from certain security attacks on BGP." [RFC2385]


TCP MD5 options are currently only used in very limited contexts, primarily for defending BGP exchanges between routers. Some deployment notes for those using TCP MD5 are found in the later RFC 3562, "Key Management Considerations for the TCP MD5 Signature Option" [RFC3562]. RFC 4278 deprecates the use of TCP MD5 outside BGP [RFC4278].

TCP MD5选项目前仅在非常有限的环境中使用,主要用于保护路由器之间的BGP交换。在稍后的RFC 3562“TCP MD5签名选项的密钥管理注意事项”[RFC3562]中可以找到使用TCP MD5的用户的一些部署说明。RFC 4278反对在BGP之外使用TCP MD5[RFC4278]。

4. Experimental Extensions
4. 实验扩展

The RFCs in this section are still experimental, but they may become proposed standards in the future. At least part of the reason that they are still experimental is to gain more wide-scale experience with them before a standards track decision is made. By their publication as experimental RFCs, it is hoped that the community of TCP researchers will analyze and test the contents of these RFCs. Although experimentation is encouraged, there is not yet formal consensus that these are fully logical and safe behaviors. Wide-scale deployment of implementations that use these features should be well thought-out in terms of consequences.


RFC 2140 I: "TCP Control Block Interdependence" (April 1997)

RFC 2140 I:“TCP控制块相互依赖”(1997年4月)

This document [RFC2140] suggests how TCP connections between the same endpoints might share information, such as their congestion control state. To some degree, this is done in practice by a few operating systems; for example, Linux currently has a destination cache. Although this RFC is technically informational, the concepts it describes are in experimental use, so we include it in this section.


A related proposal, the Congestion Manager, is specified in RFC 3124 [RFC3124]. The idea behind the Congestion Manager, moving congestion control outside of individual TCP connections, represents a modification to the core of TCP, which supports sharing information among TCP connections as well. Although a Proposed Standard, some pieces of the Congestion Manager support architecture have not been specified yet, and it has not achieved use or implementation beyond experimental stacks, so it is not listed among the standard TCP enhancements in this roadmap.

RFC 3124[RFC3124]中规定了一个相关的方案,即拥塞管理器。拥塞管理器背后的思想,将拥塞控制移到单个TCP连接之外,代表了对TCP核心的修改,它也支持在TCP连接之间共享信息。虽然是一个提议的标准,但拥塞管理器支持体系结构的某些部分尚未指定,并且它还没有实现实验堆栈之外的使用或实现,因此它没有在本路线图的标准TCP增强中列出。

RFC 2861 E: "TCP Congestion Window Validation" (June 2000)

RFC 2861 E:“TCP拥塞窗口验证”(2000年6月)

This document [RFC2861] suggests reducing the congestion window over time when no packets are flowing. This behavior is more aggressive than that specified in RFC 2581, which says that a TCP sender SHOULD set its congestion window to the initial window after an idle period of an RTO or greater.

本文档[RFC2861]建议在没有数据包流动的情况下,随着时间的推移减少拥塞窗口。此行为比RFC 2581中指定的行为更具攻击性,RFC 2581中规定TCP发送方应在RTO空闲时间或更长时间后将其拥塞窗口设置为初始窗口。

RFC 3465 E: "TCP Congestion Control with Appropriate Byte Counting (ABC)" (February 2003)

RFC 3465 E:“具有适当字节计数(ABC)的TCP拥塞控制”(2003年2月)

This document [RFC3465] suggests that congestion control use the number of bytes acknowledged instead of the number of acknowledgments received. This has been implemented in Linux. The ABC mechanism behaves differently from the standard method when there is not a one-to-one relationship between data segments and acknowledgments. ABC still operates within the accepted guidelines, but is more robust to delayed ACKs and ACK-division [SCWA99][RFC3449].


RFC 3522 E: "The Eifel Detection Algorithm for TCP" (April 2003)

RFC 3522 E:“TCP的Eifel检测算法”(2003年4月)

The Eifel detection algorithm [RFC3522] allows a TCP sender to detect a posteriori whether it has entered loss recovery unnecessarily.


RFC 3540 E: "Robust Explicit Congestion Notification (ECN) signaling with Nonces" (June 2003)

RFC 3540 E:“带有nonce的鲁棒显式拥塞通知(ECN)信令”(2003年6月)

This document [RFC3540] suggests a modified ECN to address security concerns and updates RFC 3168.

本文件[RFC3540]建议修改ECN以解决安全问题,并更新RFC 3168。

RFC 3649 E: "HighSpeed TCP for Large Congestion Windows" (December 2003)

RFC 3649 E:“用于大拥塞窗口的高速TCP”(2003年12月)

This document [RFC3649] suggests a modification to TCP's steady-state behavior to use very large windows efficiently.


RFC 3708 E: "Using TCP Duplicate Selective Acknowledgement (DSACKs) and Stream Control Transmission Protocol (SCTP) Duplicate Transmission Sequence Numbers (TSNs) to Detect Spurious Retransmissions" (February 2004)

RFC 3708 E:“使用TCP重复选择性确认(DSACKs)和流控制传输协议(SCTP)重复传输序列号(TSN)来检测虚假重传”(2004年2月)

Abstract: "TCP and Stream Control Transmission Protocol (SCTP) provide notification of duplicate segment receipt through Duplicate Selective Acknowledgement (DSACKs) and Duplicate Transmission Sequence Number (TSN) notification, respectively. This document presents conservative methods of using this information to identify unnecessary retransmissions for various applications." [RFC3708]


RFC 3742 E: "Limited Slow-Start for TCP with Large Congestion Windows" (March 2004)

RFC 3742 E:“具有大拥塞窗口的TCP有限慢启动”(2004年3月)

This document [RFC3742] describes a more conservative slow-start behavior to prevent massive packet losses when a connection uses a very large window.


RFC 4015 S: "The Eifel Response Algorithm for TCP" (February 2005)

RFC 4015 S:“TCP的Eifel响应算法”(2005年2月)

This document [RFC4015] describes the response portion of the Eifel algorithm, which can be used in conjunction with one of several methods of detecting when loss recovery has been spuriously entered, such as the Eifel detection algorithm in RFC 3522, the algorithm in RFC 3708, or F-RTO in RFC 4138.

本文件[RFC4015]描述了Eifel算法的响应部分,该部分可与错误输入损失恢复时的几种检测方法之一结合使用,如RFC 3522中的Eifel检测算法、RFC 3708中的算法或RFC 4138中的F-RTO。

Abstract: "Based on an appropriate detection algorithm, the Eifel response algorithm provides a way for a TCP sender to respond to a detected spurious timeout. It adapts the retransmission timer to avoid further spurious timeouts, and can avoid - depending on the detection algorithm - the often unnecessary go-back-N retransmits that would otherwise be sent. In addition, the Eifel response algorithm restores the congestion control state in such a way that packet bursts are avoided."


RFC 4015 is itself a Proposed Standard. The consensus of the TCPM working group was to place it in this section of the roadmap document due to three factors.

RFC 4015本身就是一个提议的标准。TCPM工作组的共识是,由于三个因素,将其放在路线图文件的本节中。

1. RFC 4015 operates on the output of a detection algorithm, for which there is currently no available mechanism on the standards track.

1. RFC 4015对检测算法的输出进行操作,目前在标准轨道上没有可用的机制。

2. The working group was not aware of any wide deployment and use of RFC 4015.

2. 工作组不知道RFC4015有任何广泛的部署和使用。

3. The consensus of the working group, after a discussion of the known Intellectual Property Rights claims on the techniques described in RFC 4015, identified this section of the roadmap as an appropriate location.

3. 在对RFC 4015中所述技术的已知知识产权要求进行讨论后,工作组达成共识,确定路线图的这一部分为适当位置。

RFC 4138 E: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP and the Stream Control Transmission Protocol" (August 2005)

RFC 4138 E:“前向RTO恢复(F-RTO):使用TCP和流控制传输协议检测虚假重传超时的算法”(2005年8月)

The F-RTO detection algorithm [RFC4138] provides another option for inferring spurious retransmission timeouts. Unlike some similar detection methods, F-RTO does not rely on the use of any TCP options.


5. Historic Extensions
5. 历史扩展

The RFCs listed here define extensions that have thus far failed to arouse substantial interest from implementers, or that were found to be defective for general use.


RFC 1106 "TCP Big Window and NAK Options" (June 1989): found defective

RFC 1106“TCP大窗口和NAK选项”(1989年6月):发现有缺陷

This RFC [RFC1106] defined an alternative to the Window Scale option for using large windows and described the "negative acknowledgement" or NAK option. There is a comparison of NAK and SACK methods, and early discussion of TCP over satellite issues. RFC 1110 explains some problems with the approaches described in RFC 1106. The options described in this document have not been adopted by the larger community, although NAKs are used in the SCPS-TP adaptation of TCP for satellite and spacecraft use, developed by the Consultative Committee for Space Data Systems (CCSDS).

该RFC[RFC1106]定义了使用大窗口的窗口缩放选项的替代方案,并描述了“否定确认”或NAK选项。对NAK和SACK方法进行了比较,并对TCP over satellite问题进行了早期讨论。RFC 1110解释了RFC 1106中描述的方法的一些问题。本文件中描述的选项尚未被较大的社区采用,尽管NAK用于空间数据系统协商委员会(CCSDS)开发的卫星和航天器使用TCP的SCPS-TP适配。

RFC 1110 "A Problem with the TCP Big Window Option" (August 1989): deprecates RFC 1106


Abstract: "The TCP Big Window option discussed in RFC 1106 will not work properly in an Internet environment which has both a high bandwidth * delay product and the possibility of disordering and duplicating packets. In such networks, the window size must not be increased without a similar increase in the sequence number space. Therefore, a different approach to big windows should be taken in the Internet." [RFC1110]

摘要:“RFC 1106中讨论的TCP大窗口选项在既有高带宽*延迟产品又有扰乱和复制数据包的可能性的互联网环境中无法正常工作。在这种网络中,如果序列号空间没有类似的增加,则窗口大小不得增加。因此,在互联网上应该采取不同的方法来打开大窗口。”[RFC1110]

RFC 1146 E "TCP Alternate Checksum Options" (March 1990): lack of interest

RFC 1146 E“TCP备用校验和选项”(1990年3月):缺乏兴趣

This document [RFC1146] defined more robust TCP checksums than the 16-bit ones-complement in use today. A typographical error in RFC 1145 is fixed in RFC 1146; otherwise, the documents are the same.

本文档[RFC1146]定义了比目前使用的16位校验和更健壮的TCP校验和。RFC 1146修复了RFC 1145中的印刷错误;否则,文件是相同的。

RFC 1263 "TCP Extensions Considered Harmful" (October 1991) - lack of interest

RFC 1263“TCP扩展被认为有害”(1991年10月)-缺乏兴趣

This document [RFC1263] argues against "backwards compatible" TCP extensions. Specifically mentioned are several TCP enhancements that have been successful, including timestamps, window scaling, PAWS, and SACK. RFC 1263 presents an alternative approach called "protocol evolution", whereby several evolutionary versions of TCP would exist on hosts. These distinct TCP versions would represent upgrades to each other and could be header-incompatible.


Interoperability would be provided by having a virtualization layer select the right TCP version for a particular connection. This idea did not catch on with the community, although the type of extensions RFC 1263 specifically targeted as harmful did become popular.


RFC 1379 I "Extending TCP for Transactions -- Concepts" (November 1992): found defective

RFC 1379 I“扩展事务的TCP——概念”(1992年11月):发现有缺陷

See RFC 1644.


RFC 1644 E "T/TCP -- TCP Extensions for Transactions Functional Specification" (July 1994): found defective

RFC 1644 E“T/TCP——用于事务的TCP扩展功能规范”(1994年7月):发现有缺陷

The inventors of TCP believed that cached connection state could have been used to eliminate TCP's 3-way handshake, to support two-packet request/response exchanges. RFCs 1379 [RFC1379] and 1644 [RFC1644] show that this is far from simple. Furthermore, T/TCP floundered on the ease of denial-of-service attacks that can result. One idea pioneered by T/TCP lives on in RFC 2140, in the sharing of state across connections.

TCP的发明者相信缓存连接状态可以用来消除TCP的三方握手,以支持两个数据包请求/响应交换。RFC 1379[RFC1379]和1644[RFC1644]表明,这远不是简单的。此外,T/TCP在可能导致的拒绝服务攻击的易受性上苦苦挣扎。T/TCP开创的一个想法存在于RFC2140中,即跨连接共享状态。

RFC 1693 E "An Extension to TCP: Partial Order Service" (November 1994): lack of interest

RFC 1693 E“TCP的扩展:部分订购服务”(1994年11月):缺乏兴趣

This document [RFC1693] defines a TCP extension for applications that do not care about the order in which application-layer objects are received. Examples are multimedia and database applications. In practice, these applications either accept the possible performance loss because of TCP's strict ordering or use more specialized transport protocols.


6. Support Documents
6. 支持文件

This section contains several classes of documents that do not necessarily define current protocol behaviors, but that are nevertheless of interest to TCP implementers. Section 6.1 describes several foundational RFCs that give modern readers a better understanding of the principles underlying TCP's behaviors and development over the years. The documents listed in Section 6.2 provide advice on using TCP in various types of network situations that pose challenges above those of typical wired links. Some implementation notes can be found in Section 6.3. The TCP Management Information Bases are described in Section 6.4. RFCs that describe tools for testing and debugging TCP implementations or that contain high-level tutorials on the protocol are listed Section 6.5, and Section 6.6 lists a number of case studies that have explored TCP performance.


6.1. Foundational Works
6.1. 基础工作

The documents listed in this section contain information that is largely duplicated by the standards documents previously discussed. However, some of them contain a greater depth of problem statement explanation or other context. Particularly, RFCs 813 - 817 (known as the "Dave Clark Five") describe some early problems and solutions (RFC 815 only describes the reassembly of IP fragments and is not included in this TCP roadmap).


RFC 813: "Window and Acknowledgement Strategy in TCP" (July 1982)

RFC 813:“TCP中的窗口和确认策略”(1982年7月)

This document [RFC0813] contains an early discussion of Silly Window Syndrome and its avoidance and motivates and describes the use of delayed acknowledgments.


RFC 814: "Name, Addresses, Ports, and Routes" (July 1982)

RFC 814:“名称、地址、港口和航线”(1982年7月)

Suggestions and guidance for the design of tables and algorithms to keep track of various identifiers within a TCP/IP implementation are provided by this document [RFC0814].


RFC 816: "Fault Isolation and Recovery" (July 1982)

RFC 816:“故障隔离和恢复”(1982年7月)

In this document [RFC0816], TCP's response to indications of network error conditions such as timeouts or received ICMP messages is discussed.


RFC 817: "Modularity and Efficiency in Protocol Implementation" (July 1982)

RFC 817:“协议实施中的模块化和效率”(1982年7月)

This document [RFC0817] contains implementation suggestions that are general and not TCP specific. However, they have been used to develop TCP implementations and to describe some performance implications of the interactions between various layers in the Internet stack.


RFC 872: "TCP-ON-A-LAN" (September 1982)

RFC 872:“TCP-ON-A-LAN”(1982年9月)

Conclusion: "The sometimes-expressed fear that using TCP on a local net is a bad idea is unfounded." [RFC0872]


RFC 896: "Congestion Control in IP/TCP Internetworks" (January 1984)

RFC 896:“IP/TCP互联网中的拥塞控制”(1984年1月)

This document [RFC0896] contains some early experiences with congestion collapse and some initial thoughts on how to avoid it using congestion control in TCP.


RFC 964: "Some Problems with the Specification of the Military Standard Transmission Control Protocol" (November 1985)

RFC 964:“军用标准传输控制协议规范的一些问题”(1985年11月)

This document [RFC0964] points out several specification bugs in the US Military's MIL-STD-1778 document, which was intended as a successor to RFC 793. This serves to remind us of the difficulty in specification writing (even when we work from existing documents!).

该文件[RFC0964]指出了美军MIL-STD-1778文件中的几个规范缺陷,该文件旨在作为RFC 793的后续文件。这提醒了我们编写规范的困难(即使我们是从现有文档开始工作的!)。

RFC 1072: "TCP Extensions for Long-Delay Paths" (October 1988)

RFC 1072:“长延迟路径的TCP扩展”(1988年10月)

This document [RFC1072] contains early explanations of the mechanisms that were later described by RFCs 1323 and 2018, which obsolete it.

本文件[RFC1072]包含RFCs 1323和2018后来描述的机制的早期解释,这些解释使其过时。

RFC 1185: "TCP Extension for High-Speed Paths" (October 1990)

RFC 1185:“高速路径的TCP扩展”(1990年10月)

This document [RFC1185] builds on RFC 1072 to describe more advanced strategies for dealing with sequence number wrapping and detecting duplicates from earlier connections. This document was obsoleted by RFC 1323.

本文档[RFC1185]以RFC1072为基础,描述了处理序列号包装和检测早期连接重复项的更高级策略。本文件已被RFC 1323作废。

RFC 2914 B: "Congestion Control Principles" (September 2000)

RFC 2914 B:“拥塞控制原则”(2000年9月)

This document [RFC2914] motivates the use of end-to-end congestion control for preventing congestion collapse and providing fairness to TCP.


6.2. Difficult Network Environments
6.2. 困难的网络环境

As the internetworking field has explored wireless, satellite, cellular telephone, and other kinds of link-layer technologies, a large body of work has built up on enhancing TCP performance for such links. The RFCs listed in this section describe some of these more challenging network environments and how TCP interacts with them.


RFC 2488 B: "Enhancing TCP Over Satellite Channels using Standard Mechanisms" (January 1999)

RFC 2488 B: "Enhancing TCP Over Satellite Channels using Standard Mechanisms" (January 1999)translate error, please retry

From abstract: "While TCP works over satellite channels there are several IETF standardized mechanisms that enable TCP to more effectively utilize the available capacity of the network path. This document outlines some of these TCP mitigations. At this time, all mitigations discussed in this document are IETF standards track mechanisms (or are compliant with IETF standards)." [RFC2488]


RFC 2757 I: "Long Thin Networks" (January 2000)

RFC 2757 I:“长瘦网络”(2000年1月)

Several methods of improving TCP performance over long thin networks, such as geosynchronous satellite links, are discussed in this document [RFC2757]. A particular set of TCP options is developed that should work well in such environments and be safe to use in the global Internet. The implications of such environments have been further discussed in RFC 3150 and RFC 3155, and these documents should be preferred where there is overlap between them and RFC 2757.

本文[RFC2757]讨论了在长瘦网络(如地球同步卫星链路)上提高TCP性能的几种方法。开发了一组特定的TCP选项,这些选项应能在此类环境中正常工作,并可在全球互联网中安全使用。RFC 3150和RFC 3155中进一步讨论了此类环境的影响,如果这些文件与RFC 2757之间存在重叠,则应首选这些文件。

RFC 2760 I: "Ongoing TCP Research Related to Satellites" (February 2000)

RFC 2760 I:“正在进行的与卫星有关的TCP研究”(2000年2月)

This document [RFC2760] discusses the advantages and disadvantages of several different experimental means of improving TCP performance over long-delay or error-prone paths. These include T/TCP, larger initial windows, byte counting, delayed acknowledgments, slow start thresholds, NewReno and SACK-based loss recovery, FACK [MM96], ECN, various corruption-detection mechanisms, congestion avoidance changes for fairness, use of multiple parallel flows, pacing, header compression, state sharing, and ACK congestion control, filtering, and reconstruction. Although RFC 2488 looks at standard extensions, this document focuses on more experimental means of performance enhancement.


RFC 3135 I: "Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations" (June 2001)

RFC 3135 I:“旨在缓解链路相关降级的性能增强代理”(2001年6月)

From abstract: "This document is a survey of Performance Enhancing Proxies (PEPs) often employed to improve degraded TCP performance caused by characteristics of specific link environments, for example, in satellite, wireless WAN, and wireless LAN environments. Different types of Performance Enhancing Proxies are described as well as the mechanisms used to improve performance." [RFC3135]


RFC 3150 B: "End-to-end Performance Implications of Slow Links" (July 2001)

RFC 3150 B:“慢链路的端到端性能影响”(2001年7月)

      From abstract: "This document makes performance-related
      recommendations for users of network paths that traverse "very low
      bit-rate" links....This recommendation may be useful in any
      network where hosts can saturate available bandwidth, but the
      design space for this recommendation explicitly includes
      connections that traverse 56 Kb/second modem links or 4.8 Kb/
      second wireless access links - both of which are widely deployed."
      From abstract: "This document makes performance-related
      recommendations for users of network paths that traverse "very low
      bit-rate" links....This recommendation may be useful in any
      network where hosts can saturate available bandwidth, but the
      design space for this recommendation explicitly includes
      connections that traverse 56 Kb/second modem links or 4.8 Kb/
      second wireless access links - both of which are widely deployed."

RFC 3155 B: "End-to-end Performance Implications of Links with Errors" (August 2001)

RFC 3155 B:“有错误链接的端到端性能影响”(2001年8月)

From abstract: "This document discusses the specific TCP mechanisms that are problematic in environments with high uncorrected error rates, and discusses what can be done to mitigate the problems without introducing intermediate devices into the connection." [RFC3155]


RFC 3366 "Advice to link designers on link Automatic Repeat reQuest (ARQ)" (August 2002)

RFC 3366“关于链路自动重复请求(ARQ)的链路设计者建议”(2002年8月)

From abstract: "This document provides advice to the designers of digital communication equipment and link-layer protocols employing link-layer Automatic Repeat reQuest (ARQ) techniques. This document presumes that the designers wish to support Internet protocols, but may be unfamiliar with the architecture of the Internet and with the implications of their design choices for the performance and efficiency of Internet traffic carried over their links." [RFC3366]


RFC 3449 B: "TCP Performance Implications of Network Path Asymmetry" (December 2002)

RFC 3449 B:“网络路径不对称对TCP性能的影响”(2002年12月)

From abstract: "This document describes TCP performance problems that arise because of asymmetric effects. These problems arise in several access networks, including bandwidth-asymmetric networks and packet radio subnetworks, for different underlying reasons. However, the end result on TCP performance is the same in both cases: performance often degrades significantly because of imperfection and variability in the ACK feedback from the receiver to the sender.


The document details several mitigations to these effects, which have either been proposed or evaluated in the literature, or are currently deployed in networks." [RFC3449]


RFC 3481 B: "TCP over Second (2.5G) and Third (3G) Generation Wireless Networks" (February 2003)

RFC 3481 B:“第二代(2.5G)和第三代(3G)无线网络上的TCP”(2003年2月)

From abstract: "This document describes a profile for optimizing TCP to adapt so that it handles paths including second (2.5G) and third (3G) generation wireless networks." [RFC3481]


RFC 3819 B: "Advice for Internet Subnetwork Designers" (July 2004)

RFC 3819 B:“互联网子网设计者的建议”(2004年7月)

This document [RFC3819] describes how TCP performance can be negatively affected by some particular lower-layer behaviors and provides guidance in designing lower-layer networks and protocols to be amicable to TCP.


6.3. Implementation Advice
6.3. 实施建议

RFC 879: "The TCP Maximum Segment Size and Related Topics" (November 1983)

RFC 879:“TCP最大段大小和相关主题”(1983年11月)

Abstract: "This memo discusses the TCP Maximum Segment Size Option and related topics. The purposes is to clarify some aspects of TCP and its interaction with IP. This memo is a clarification to the TCP specification, and contains information that may be considered as 'advice to implementers'." [RFC0879]


RFC 1071: "Computing the Internet Checksum" (September 1988)

RFC 1071:“计算互联网校验和”(1988年9月)

This document [RFC1071] lists a number of implementation techniques for efficiently computing the Internet checksum (used by TCP).


RFC 1624 I: "Computation of the Internet Checksum via Incremental Update" (May 1994)

RFC 1624 I:“通过增量更新计算互联网校验和”(1994年5月)

Incrementally updating the Internet checksum is useful to routers in updating IP checksums. Some middleboxes that alter TCP headers may also be able to update the TCP checksum incrementally. This document [RFC1624] expands upon the explanation of the incremental update procedure in RFC 1071.

增量更新Internet校验和对路由器更新IP校验和很有用。一些改变TCP报头的中间盒也可以增量更新TCP校验和。本文件[RFC1624]对RFC 1071中增量更新过程的解释进行了扩展。

RFC 1936 I: "Implementing the Internet Checksum in Hardware" (April 1996)

RFC 1936 I:“在硬件中实现互联网校验和”(1996年4月)

This document [RFC1936] describes the motivation for implementing the Internet checksum in hardware, rather than in software, and provides an implementation example.


RFC 2525 I: "Known TCP Implementation Problems" (March 1999)

RFC 2525 I:“已知TCP实施问题”(1999年3月)

From abstract: "This memo catalogs a number of known TCP implementation problems. The goal in doing so is to improve conditions in the existing Internet by enhancing the quality of current TCP/IP implementations." [RFC2525]


RFC 2923 I: "TCP Problems with Path MTU Discovery" (September 2000)

RFC 2923 I:“路径MTU发现的TCP问题”(2000年9月)

From abstract: "This memo catalogs several known Transmission Control Protocol (TCP) implementation problems dealing with Path Maximum Transmission Unit Discovery (PMTUD), including the long-standing black hole problem, stretch acknowlegements (ACKs) due to confusion between Maximum Segment Size (MSS) and segment size, and MSS advertisement based on PMTU." [RFC2923]


RFC 3360 B: "Inappropriate TCP Resets Considered Harmful" (August 2002)

RFC 3360 B:“不适当的TCP重置被认为是有害的”(2002年8月)

This document [RFC3360] is a plea that firewall vendors not send gratuitous TCP RST (Reset) packets when unassigned TCP header bits are used. This practice prevents desirable extension and evolution of the protocol and thus is potentially harmful to the future of the Internet.

本文件[RFC3360]呼吁防火墙供应商在使用未分配的TCP头位时不要发送免费的TCP RST(重置)数据包。这种做法妨碍了协议的理想扩展和演变,因此可能对互联网的未来有害。

RFC 3493 I: "Basic Socket Interface Extensions for IPv6" (February 2003)

RFC 3493 I:“IPv6的基本套接字接口扩展”(2003年2月)

This document [RFC3493] describes the de facto standard sockets API for programming with TCP. This API is implemented nearly ubiquitously in modern operating systems and programming languages.


6.4. Management Information Bases
6.4. 管理信息库

The first MIB module defined for use with Simple Network Management Protocol (SNMP) (in RFC 1066 and its update, RFC 1156) was a single monolithic MIB module, called MIB-I. This evolved over time to be MIB-II (RFC 1213). It then became apparent that having a single monolithic MIB module was not scalable, given the number and breadth of MIB data definitions that needed to be included. Thus, additional MIB modules were defined, and those parts of MIB-II that needed to evolve were split off. Eventually, the remaining parts of MIB-II were also split off, the TCP-specific part being documented in RFC 2012.

第一个定义用于简单网络管理协议(SNMP)的MIB模块(在RFC 1066及其更新版RFC 1156中)是一个单一的单片MIB模块,称为MIB-I。随着时间的推移,该模块演变为MIB-II(RFC 1213)。考虑到需要包含的MIB数据定义的数量和广度,很明显,拥有单个单片MIB模块是不可伸缩的。因此,定义了额外的MIB模块,并分离了MIB-II中需要进化的部分。最终,MIB-II的其余部分也被拆分,TCP特定部分记录在RFC 2012中。

RFC 2012 was obsoleted by RFC 4022, which is the primary TCP MIB document today. MIB-I, defined in RFC 1156, has been obsoleted by the MIB-II specification in RFC 1213. For current TCP implementers, RFC 4022 should be supported.

RFC 2012被RFC 4022淘汰,RFC 4022是当今主要的TCP MIB文档。RFC 1156中定义的MIB-I已被RFC 1213中的MIB-II规范淘汰。对于当前的TCP实现者,应该支持RFC4022。

RFC 1066: "Management Information Base for Network Management of TCP/IP-based Internets" (August 1988)

RFC 1066:“基于TCP/IP的互联网网络管理的管理信息库”(1988年8月)

This document [RFC1066] was the description of the TCP MIB. It was obsoleted by RFC 1156.

本文档[RFC1066]是对TCP MIB的描述。它被RFC 1156淘汰。

RFC 1156 S: "Management Information Base for Network Management of TCP/IP-based Internets" (May 1990)

RFC 1156 S:“基于TCP/IP的互联网网络管理的管理信息库”(1990年5月)

This document [RFC1156] describes the required MIB fields for TCP implementations, with minor corrections and no technical changes from RFC 1066, which it obsoletes. This is the standards track document for MIB-I.


RFC 1213 S: "Management Information Base for Network Management of TCP/IP-based Internets: MIB-II" (March 1991)

RFC 1213 S:“基于TCP/IP的互联网网络管理的管理信息库:MIB-II”(1991年3月)

This document [RFC1213] describes the second version of the MIB in a monolithic form. RFC 2012 updates this document by splitting out the TCP-specific portions.

本文档[RFC1213]以单片形式描述了MIB的第二个版本。RFC 2012通过拆分TCP特定部分来更新此文档。

RFC 2012 S: "SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2" (November 1996)

RFC 2012 S:“使用SMIv2的传输控制协议的SNMPv2管理信息库”(1996年11月)

This document [RFC2012] defined the TCP MIB, in an update to RFC 1213. It is now obsoleted by RFC 4022.

本文档[RFC2012]在对RFC 1213的更新中定义了TCP MIB。它现在已被RFC4022淘汰。

RFC 2452 S: "IP Version 6 Management Information Base for the Transmission Control Protocol" (December 1998)

RFC 2452 S:“传输控制协议的IP版本6管理信息库”(1998年12月)

This document [RFC2452] augments RFC 2012 by adding an IPv6- specific connection table. The rest of 2012 holds for any IP version. RFC 2012 is now obsoleted by RFC 4022.

本文档[RFC2452]通过添加特定于IPv6的连接表来扩充RFC 2012。2012年剩余时间适用于任何IP版本。RFC 2012现已被RFC 4022淘汰。

Although it is a standards track document, RFC 2452 is considered a historic mistake by the MIB community, as it is based on the idea of parallel IPv4 and IPv6 structures. Although IPv6 requires new structures, the community has decided to define a single generic structure for both IPv4 and IPv6. This will aid in definition, implementation, and transition between IPv4 and IPv6.

尽管RFC 2452是一份标准跟踪文档,但MIB社区认为它是一个历史性错误,因为它基于并行IPv4和IPv6结构的思想。尽管IPv6需要新的结构,但社区已决定为IPv4和IPv6定义一个通用结构。这将有助于IPv4和IPv6之间的定义、实现和转换。

RFC 4022 S: "Management Information Base for the Transmission Control Protocol (TCP)" (March 2005)

RFC 4022 S:“传输控制协议(TCP)的管理信息库”(2005年3月)

This document [RFC4022] obsoletes RFC 2012 and RFC 2452 and specifies the current standard for the TCP MIB that should be deployed.

本文档[RFC4022]废除了RFC 2012和RFC 2452,并指定了应部署的TCP MIB的当前标准。

6.5. Tools and Tutorials
6.5. 工具和教程

RFC 1180 I: "TCP/IP Tutorial" (January 1991)


This document [RFC1180] is an extremely brief overview of the TCP/IP protocol suite as a whole. It gives some explanation as to how and where TCP fits in.


RFC 1470 I: "FYI on a Network Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and Interconnected Devices" (June 1993)

RFC 1470 I:“网络管理工具目录上的FYI:监控和调试TCP/IP互联网和互连设备的工具”(1993年6月)

A few of the tools that this document [RFC1470] describes are still maintained and in use today; for example, ttcp and tcpdump. However, many of the tools described do not relate specifically to TCP and are no longer used or easily available.


RFC 2398 I: "Some Testing Tools for TCP Implementors" (August 1998)

RFC 2398 I:“TCP实现者的一些测试工具”(1998年8月)

This document [RFC2398] describes a number of TCP packet generation and analysis tools. Although some of these tools are no longer readily available or widely used, for the most part they are still relevant and usable.


6.6. Case Studies
6.6. 案例研究

RFC 1337 I: "TIME-WAIT Assassination Hazards in TCP" (May 1992)

RFC 1337 I:“TCP中的等待时间暗杀危险”(1992年5月)

This document [RFC1337] points out a problem with acting on received reset segments while one is in the TIME-WAIT state. The main recommendation is that hosts in TIME-WAIT ignore resets. This recommendation might not currently be widely implemented.


RFC 2415 I: "Simulation Studies of Increased Initial TCP Window Size" (September 1998)

RFC 2415 I:“增加初始TCP窗口大小的模拟研究”(1998年9月)

This document [RFC2415] presents results of some simulations using TCP initial windows greater than 1 segment. The analysis indicates that user-perceived performance can be improved by increasing the initial window to 3 segments.


RFC 2416 I: "When TCP Starts Up With Four Packets Into Only Three Buffers" (September 1998)

RFC 2416 I:“当TCP启动时,只有四个数据包进入三个缓冲区”(1998年9月)

This document [RFC2416] uses simulation results to clear up some concerns about using an initial window of 4 segments when the network path has less provisioning.


RFC 2884 I: "Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks" (July 2000)

RFC 2884 I:“IP网络中显式拥塞通知(ECN)的性能评估”(2000年7月)

This document [RFC2884] describes experimental results that show some improvements to the performance of both short- and long-lived connections due to ECN.


7. Undocumented TCP Features
7. 未记录的TCP功能

There are a few important implementation tactics for the TCP that have not yet been described in any RFC. Although this roadmap is primarily concerned with mapping the TCP RFCs, this section is included because an implementer needs to be aware of these important issues.

有一些重要的TCP实现策略尚未在任何RFC中描述。尽管本路线图主要关注TCP RFC的映射,但之所以包含本节,是因为实施者需要了解这些重要问题。

SYN Cookies


A mechanism known as "SYN cookies" is widely used to thwart TCP SYN flooding attacks, in which an attacker sends a flood of SYNs to a victim but fails to complete the 3-way handshake. The result is exhaustion of resources at the server. The SYN cookie mechanism allows the server to return a cleverly chosen initial sequence number that has all the required state for the secure completion of the handshake. Then the server can avoid saving connection state during the 3-way handshake and thus survive a SYN flooding attack.

一种称为“SYN Cookie”的机制被广泛用于阻止TCP SYN洪泛攻击,在这种攻击中,攻击者向受害者发送大量SYN,但无法完成三方握手。结果是服务器上的资源耗尽。syncookie机制允许服务器返回一个精心选择的初始序列号,该序列号具有安全完成握手所需的所有状态。这样,服务器就可以避免在三方握手期间保存连接状态,从而在SYN洪泛攻击中幸存下来。

A web search for "SYN cookies" will reveal a number of useful descriptions of this mechanism, although there is currently no RFC on the matter.

对“SYN cookies”的网络搜索将揭示许多关于这种机制的有用描述,尽管目前还没有关于这个问题的RFC。

Header Prediction


Header prediction is a trick to speed up the processing of segments. Van Jacobson and Mike Karels developed the technique in the late 1980s. The basic idea is that some processing time can be saved when most of a segment's fields can be predicted from previous segments. A good description of this was sent to the TCP-IP mailing list by Van Jacobson on March 9, 1988:

报头预测是一种加快段处理速度的技巧。Van Jacobson和Mike Karels在20世纪80年代末开发了这项技术。其基本思想是,当可以从以前的段预测段的大部分字段时,可以节省一些处理时间。1988年3月9日,Van Jacobson向TCP-IP邮件列表发送了关于这一点的详细说明:

Quite a bit of the speedup comes from an algorithm that we ('we' refers to collaborator Mike Karels and myself) are calling "header prediction". The idea is that if you're in the middle of a bulk data transfer and have just seen a packet, you know what the next packet is going to look like: It will look just like the current packet with either the sequence number or ack number updated (depending on whether you're the sender or receiver). Combining this with the "Use hints" epigram from Butler Lampson's classic "Epigrams for System Designers", you start to think of the tcp state (rcv.nxt, snd.una, etc.) as "hints" about what the next packet should look like.

相当多的加速来自一种我们称之为“头预测”的算法(“我们”指的是合作者迈克·卡勒斯和我自己)。这个想法是,如果你正处于批量数据传输的中间,并且刚刚看到一个数据包,你就知道下一个数据包会是什么样子:它看起来就像当前的数据包,它有序列号或ACK号的更新(取决于你是发送者还是接收者)。结合巴特勒·兰普森(Butler Lampson)的经典“系统设计师的警句”中的“使用提示”警句,您开始将tcp状态(rcv.nxt、snd.una等)视为下一个数据包应该是什么样子的“提示”。

If you arrange those "hints" so they match the layout of a tcp packet header, it takes a single 14-byte compare to see if your prediction is correct (3 longword compares to pick up the send & ack sequence numbers, header length, flags and window, plus a short compare on the length). If the prediction is correct, there's a single test on the length to see if you're the sender or receiver followed by the appropriate processing. E.g., if the length is non-zero (you're the receiver), checksum and append the data to the socket buffer then wake any process that's sleeping on the buffer. Update rcv.nxt by the length of this packet (this updates your "prediction" of the next packet). Check if you can handle another packet the same size as the current one. If not, set one of the unused flag bits in your header prediction to guarantee that the prediction will fail on the next packet and force you to go through full protocol processing. Otherwise, you're done with this packet. So, the *total* tcp protocol processing, exclusive of checksumming, is on the order of 6 compares and an add.


8. Security Considerations
8. 安全考虑

This document introduces no new security considerations. Each RFC listed in this document attempts to address the security considerations of the specification it contains.


9. Acknowledgments
9. 致谢

This document grew out of a discussion on the end2end-interest mailing list, the public list of the End-to-End Research Group of the IRTF, and continued development under the IETF's TCP Maintenance and Minor Extensions (TCPM) working group. We thank Joe Touch, Reiner Ludwig, Pekka Savola, Gorry Fairhurst, and Sally Floyd for their contributions, in particular. The chairs of the TCPM working group, Mark Allman and Ted Faber, have been instrumental in the development of this document. Keith McCloghrie provided some useful notes and clarification on the various MIB-related RFCs.

本文件源于对End2 End interest邮件列表、IRTF端到端研究组的公开列表以及IETF的TCP维护和小型扩展(TCPM)工作组下的持续开发的讨论。我们特别感谢乔·图奇、雷纳·路德维希、佩卡·萨沃拉、戈里·费尔赫斯特和萨利·弗洛伊德的贡献。TCPM工作组主席Mark Allman和Ted Faber在本文件的编写过程中发挥了重要作用。Keith McCloghrie就各种MIB相关RFC提供了一些有用的注释和说明。

10. Informative References
10. 资料性引用
10.1. Basic Functionality
10.1. 基本功能

[RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981.

[RFC0793]Postel,J.,“传输控制协议”,标准7,RFC 793,1981年9月。

[RFC1122] Braden, R., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989.

[RFC1122]Braden,R.,“互联网主机的要求-通信层”,标准3,RFC 1122,1989年10月。

[RFC2026] Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, October 1996.

[RFC2026]Bradner,S.,“互联网标准过程——第3版”,BCP 9,RFC 2026,1996年10月。

[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.

[RFC2460]Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,RFC 2460,1998年12月。

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998.

[RFC2474]Nichols,K.,Blake,S.,Baker,F.,和D.Black,“IPv4和IPv6头中区分服务字段(DS字段)的定义”,RFC 2474,1998年12月。

[RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion Control", RFC 2581, April 1999.

[RFC2581]Allman,M.,Paxson,V.和W.Stevens,“TCP拥塞控制”,RFC 25811999年4月。

[RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms", RFC 2675, August 1999.

[RFC2675]Borman,D.,Deering,S.,和R.Hinden,“IPv6巨型程序”,RFC 26751999年8月。

[RFC2873] Xiao, X., Hannan, A., Paxson, V., and E. Crabbe, "TCP Processing of the IPv4 Precedence Field", RFC 2873, June 2000.

[RFC2873]Xiao,X.,Hannan,A.,Paxson,V.,和E.Crabbe,“IPv4优先字段的TCP处理”,RFC 28732000年6月。

[RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission Timer", RFC 2988, November 2000.

[RFC2988]Paxson,V.和M.Allman,“计算TCP的重传计时器”,RFC 2988,2000年11月。

10.2. Recommended Enhancements
10.2. 建议的增强功能

[RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions for High Performance", RFC 1323, May 1992.

[RFC1323]Jacobson,V.,Braden,R.,和D.Borman,“高性能TCP扩展”,RFC 1323,1992年5月。

[RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks", RFC 1948, May 1996.

[RFC1948]Bellovin,S.,“防御序列号攻击”,RFC 1948,1996年5月。

[RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP Selective Acknowledgment Options", RFC 2018, October 1996.

[RFC2018]Mathis,M.,Mahdavi,J.,Floyd,S.,和A.Romanow,“TCP选择性确认选项”,RFC 2018,1996年10月。

[RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, August 1998.

[RFC2385]Heffernan,A.,“通过TCP MD5签名选项保护BGP会话”,RFC 2385,1998年8月。

[RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An Extension to the Selective Acknowledgement (SACK) Option for TCP", RFC 2883, July 2000.

[RFC2883]Floyd,S.,Mahdavi,J.,Mathis,M.,和M.Podolsky,“TCP选择性确认(SACK)选项的扩展”,RFC 28832000年7月。

[RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing TCP's Loss Recovery Using Limited Transmit", RFC 3042, January 2001.

[RFC3042]Allman,M.,Balakrishnan,H.,和S.Floyd,“使用有限传输增强TCP的丢失恢复”,RFC 3042,2001年1月。

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", RFC 3168, September 2001.

[RFC3168]Ramakrishnan,K.,Floyd,S.,和D.Black,“向IP添加显式拥塞通知(ECN)”,RFC 3168,2001年9月。

[RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP's Initial Window", RFC 3390, October 2002.


[RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A Conservative Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP", RFC 3517, April 2003.

[RFC3517]Blanton,E.,Allman,M.,Fall,K.,和L.Wang,“基于保守选择确认(SACK)的TCP丢失恢复算法”,RFC 3517,2003年4月。

[RFC3562] Leech, M., "Key Management Considerations for the TCP MD5 Signature Option", RFC 3562, July 2003.

[RFC3562]Leech,M.,“TCP MD5签名选项的密钥管理注意事项”,RFC 3562,2003年7月。

[RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno Modification to TCP's Fast Recovery Algorithm", RFC 3782, April 2004.

[RFC3782]Floyd,S.,Henderson,T.,和A.Gurtov,“TCP快速恢复算法的NewReno修改”,RFC 3782,2004年4月。

[RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm for TCP", RFC 4015, February 2005.

[RFC4015]Ludwig,R.和A.Gurtov,“TCP的Eifel响应算法”,RFC 4015,2005年2月。

[RFC4278] Bellovin, S. and A. Zinin, "Standards Maturity Variance Regarding the TCP MD5 Signature Option (RFC 2385) and the BGP-4 Specification", RFC 4278, January 2006.

[RFC4278]Bellovin,S.和A.Zinin,“关于TCP MD5签名选项(RFC 2385)和BGP-4规范的标准成熟度差异”,RFC 4278,2006年1月。

10.3. Experimental Extensions
10.3. 实验扩展

[RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140, April 1997.

[RFC2140]Touch,J.,“TCP控制块相互依赖”,RFC 2140,1997年4月。

[RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion Window Validation", RFC 2861, June 2000.

[RFC2861]Handley,M.,Padhye,J.,和S.Floyd,“TCP拥塞窗口验证”,RFC 28612000年6月。

[RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion Manager", RFC 3124, June 2001.


[RFC3465] Allman, M., "TCP Congestion Control with Appropriate Byte Counting (ABC)", RFC 3465, February 2003.

[RFC3465]Allman,M.,“具有适当字节计数的TCP拥塞控制(ABC)”,RFC 3465,2003年2月。

[RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm for TCP", RFC 3522, April 2003.

[RFC3522]Ludwig,R.和M.Meyer,“TCP的Eifel检测算法”,RFC 3522,2003年4月。

[RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit Congestion Notification (ECN) Signaling with Nonces", RFC 3540, June 2003.

[RFC3540]Spring,N.,Weterral,D.,和D.Ely,“带有nonce的鲁棒显式拥塞通知(ECN)信令”,RFC 35402003年6月。

[RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows", RFC 3649, December 2003.

[RFC3649]Floyd,S.,“用于大拥塞窗口的高速TCP”,RFC 3649,2003年12月。

[RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective Acknowledgement (DSACKs) and Stream Control Transmission Protocol (SCTP) Duplicate Transmission Sequence Numbers (TSNs) to Detect Spurious Retransmissions", RFC 3708, February 2004.

[RFC3708]Blanton,E.和M.Allman,“使用TCP重复选择确认(DSACKs)和流控制传输协议(SCTP)重复传输序列号(TSN)来检测虚假重传”,RFC 3708,2004年2月。

[RFC3742] Floyd, S., "Limited Slow-Start for TCP with Large Congestion Windows", RFC 3742, March 2004.

[RFC3742]Floyd,S.,“具有大拥塞窗口的TCP有限慢启动”,RFC 3742,2004年3月。

[RFC4138] Sarolahti, P. and M. Kojo, "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP and the Stream Control Transmission Protocol (SCTP)", RFC 4138, August 2005.

[RFC4138]Sarolahti,P.和M.Kojo,“前向RTO恢复(F-RTO):使用TCP和流控制传输协议(SCTP)检测虚假重传超时的算法”,RFC 4138,2005年8月。

10.4. Historic Extensions
10.4. 历史扩展

[RFC1106] Fox, R., "TCP big window and NAK options", RFC 1106, June 1989.


[RFC1110] McKenzie, A., "Problem with the TCP big window option", RFC 1110, August 1989.


[RFC1146] Zweig, J. and C. Partridge, "TCP alternate checksum options", RFC 1146, March 1990.

[RFC1146]Zweig,J.和C.Partridge,“TCP备用校验和选项”,RFC 11461990年3月。

[RFC1263] O'Malley, S. and L. Peterson, "TCP Extensions Considered Harmful", RFC 1263, October 1991.


[RFC1379] Braden, R., "Extending TCP for Transactions -- Concepts", RFC 1379, November 1992.

[RFC1379]Braden,R.,“为事务扩展TCP——概念”,RFC 1379,1992年11月。

[RFC1644] Braden, R., "T/TCP -- TCP Extensions for Transactions Functional Specification", RFC 1644, July 1994.


[RFC1693] Connolly, T., Amer, P., and P. Conrad, "An Extension to TCP : Partial Order Service", RFC 1693, November 1994.

[RFC1693]Connolly,T.,Amer,P.,和P.Conrad,“TCP的扩展:部分订单服务”,RFC 1693,1994年11月。

10.5. Support Documents
10.5. 支持文件

[RFC0813] Clark, D., "Window and Acknowledgement Strategy in TCP", RFC 813, July 1982.

[RFC0813]Clark,D.,“TCP中的窗口和确认策略”,RFC 813,1982年7月。

[RFC0814] Clark, D., "Name, addresses, ports, and routes", RFC 814, July 1982.

[RFC0814]Clark,D.,“名称、地址、港口和路线”,RFC 814,1982年7月。

[RFC0816] Clark, D., "Fault isolation and recovery", RFC 816, July 1982.

[RFC0816]Clark,D.,“故障隔离和恢复”,RFC 816,1982年7月。

[RFC0817] Clark, D., "Modularity and efficiency in protocol implementation", RFC 817, July 1982.

[RFC0817]Clark,D.,“协议实现中的模块化和效率”,RFC 817,1982年7月。

[RFC0872] Padlipsky, M., "TCP-on-a-LAN", RFC 872, September 1982.

[RFC0872]Padlipsky,M.,“局域网上的TCP”,RFC 872,1982年9月。

[RFC0879] Postel, J., "TCP maximum segment size and related topics", RFC 879, November 1983.

[RFC0879]Postel,J.,“TCP最大段大小和相关主题”,RFC 879,1983年11月。

[RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks", RFC 896, January 1984.

[RFC0896]Nagle,J.,“IP/TCP网络中的拥塞控制”,RFC 896,1984年1月。

[RFC0964] Sidhu, D. and T. Blumer, "Some problems with the specification of the Military Standard Transmission Control Protocol", RFC 964, November 1985.

[RFC0964]Sidhu,D.和T.Blumer,“军用标准传输控制协议规范的一些问题”,RFC 964,1985年11月。

[RFC1066] McCloghrie, K. and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets", RFC 1066, August 1988.

[RFC1066]McCloghrie,K.和M.Rose,“基于TCP/IP的互联网网络管理的管理信息库”,RFC 1066,1988年8月。

[RFC1071] Braden, R., Borman, D., and C. Partridge, "Computing the Internet checksum", RFC 1071, September 1988.

[RFC1071]Braden,R.,Borman,D.,和C.Partridge,“计算互联网校验和”,RFC 10711988年9月。

[RFC1072] Jacobson, V. and R. Braden, "TCP extensions for long-delay paths", RFC 1072, October 1988.

[RFC1072]Jacobson,V.和R.Braden,“长延迟路径的TCP扩展”,RFC 1072,1988年10月。

[RFC1156] McCloghrie, K. and M. Rose, "Management Information Base for network management of TCP/IP-based internets", RFC 1156, May 1990.

[RFC1156]McCloghrie,K.和M.Rose,“基于TCP/IP的互联网网络管理的管理信息库”,RFC 1156,1990年5月。

[RFC1180] Socolofsky, T. and C. Kale, "TCP/IP tutorial", RFC 1180, January 1991.


[RFC1185] Jacobson, V., Braden, B., and L. Zhang, "TCP Extension for High-Speed Paths", RFC 1185, October 1990.

[RFC1185]Jacobson,V.,Braden,B.,和L.Zhang,“高速路径的TCP扩展”,RFC 11851990年10月。

[RFC1213] McCloghrie, K. and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213, March 1991.

[RFC1213]McCloghrie,K.和M.Rose,“基于TCP/IP的互联网网络管理的管理信息库:MIB-II”,STD 17,RFC 1213,1991年3月。

[RFC1337] Braden, R., "TIME-WAIT Assassination Hazards in TCP", RFC 1337, May 1992.

[RFC1337]Braden,R.,“TCP中的等待时间暗杀危险”,RFC 1337,1992年5月。

[RFC1470] Enger, R. and J. Reynolds, "FYI on a Network Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and Interconnected Devices", FYI 2, RFC 1470, June 1993.

[RFC1470]Enger,R.和J.Reynolds,“网络管理工具目录的FYI:监控和调试TCP/IP互联网和互连设备的工具”,FYI 2,RFC 1470,1993年6月。

[RFC1624] Rijsinghani, A., "Computation of the Internet Checksum via Incremental Update", RFC 1624, May 1994.


[RFC1936] Touch, J. and B. Parham, "Implementing the Internet Checksum in Hardware", RFC 1936, April 1996.

[RFC1936]Touch,J.和B.Parham,“在硬件中实现互联网校验和”,RFC 1936,1996年4月。

[RFC2012] McCloghrie, K., "SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2", RFC 2012, November 1996.

[RFC2012]McCloghrie,K.,“使用SMIv2的传输控制协议的SNMPv2管理信息库”,RFC 2012,1996年11月。

[RFC2398] Parker, S. and C. Schmechel, "Some Testing Tools for TCP Implementors", RFC 2398, August 1998.


[RFC2415] Poduri, K. and K. Nichols, "Simulation Studies of Increased Initial TCP Window Size", RFC 2415, September 1998.

[RFC2415]Poduri,K.和K.Nichols,“增加初始TCP窗口大小的模拟研究”,RFC 2415,1998年9月。

[RFC2416] Shepard, T. and C. Partridge, "When TCP Starts Up With Four Packets Into Only Three Buffers", RFC 2416, September 1998.

[RFC2416]Shepard,T.和C.Partridge,“当TCP启动时,只有四个数据包进入三个缓冲区”,RFC 2416,1998年9月。

[RFC2452] Daniele, M., "IP Version 6 Management Information Base for the Transmission Control Protocol", RFC 2452, December 1998.

[RFC2452]Daniele,M.,“传输控制协议的IP版本6管理信息库”,RFC 2452,1998年12月。

[RFC2488] Allman, M., Glover, D., and L. Sanchez, "Enhancing TCP Over Satellite Channels using Standard Mechanisms", BCP 28, RFC 2488, January 1999.

[RFC2488]Allman,M.,Glover,D.,和L.Sanchez,“使用标准机制增强卫星信道上的TCP”,BCP 28,RFC 2488,1999年1月。

[RFC2525] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner, J., Heavens, I., Lahey, K., Semke, J., and B. Volz, "Known TCP Implementation Problems", RFC 2525, March 1999.

[RFC2525]Paxson,V.,Allman,M.,Dawson,S.,Fenner,W.,Griner,J.,Skys,I.,Lahey,K.,Semke,J.,和B.Volz,“已知的TCP实施问题”,RFC 25251999年3月。

[RFC2757] Montenegro, G., Dawkins, S., Kojo, M., Magret, V., and N. Vaidya, "Long Thin Networks", RFC 2757, January 2000.

[RFC2757]黑山,G.,道金斯,S.,科乔,M.,马格里特,V.,和N.瓦迪亚,“长瘦网络”,RFC 2757,2000年1月。

[RFC2760] Allman, M., Dawkins, S., Glover, D., Griner, J., Tran, D., Henderson, T., Heidemann, J., Touch, J., Kruse, H., Ostermann, S., Scott, K., and J. Semke, "Ongoing TCP Research Related to Satellites", RFC 2760, February 2000.

[RFC2760]Allman,M.,Dawkins,S.,Glover,D.,Griner,J.,Tran,D.,Henderson,T.,Heidemann,J.,Touch,J.,Kruse,H.,Ostermann,S.,Scott,K.,和J.Semke,“正在进行的与卫星相关的TCP研究”,RFC 27602000年2月。

[RFC2884] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks", RFC 2884, July 2000.

[RFC2884]Hadi Salim,J.和U.Ahmed,“IP网络中显式拥塞通知(ECN)的性能评估”,RFC 2884,2000年7月。

[RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC 2914, September 2000.

[RFC2914]Floyd,S.,“拥塞控制原则”,BCP 41,RFC 2914,2000年9月。

[RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery", RFC 2923, September 2000.

[RFC2923]Lahey,K.,“路径MTU发现的TCP问题”,RFC 29232000年9月。

[RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G., and Z. Shelby, "Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations", RFC 3135, June 2001.

[RFC3135]Border,J.,Kojo,M.,Griner,J.,黑山,G.,和Z.Shelby,“旨在缓解链路相关降级的性能增强代理”,RFC 31352001年6月。

[RFC3150] Dawkins, S., Montenegro, G., Kojo, M., and V. Magret, "End-to-end Performance Implications of Slow Links", BCP 48, RFC 3150, July 2001.

[RFC3150]Dawkins,S.,黑山,G.,Kojo,M.,和V.Magret,“慢链路的端到端性能影响”,BCP 48,RFC 3150,2001年7月。

[RFC3155] Dawkins, S., Montenegro, G., Kojo, M., Magret, V., and N. Vaidya, "End-to-end Performance Implications of Links with Errors", BCP 50, RFC 3155, August 2001.

[RFC3155]Dawkins,S.,黑山,G.,Kojo,M.,Magret,V.,和N.Vaidya,“带错误链接的端到端性能影响”,BCP 50,RFC 3155,2001年8月。

[RFC3360] Floyd, S., "Inappropriate TCP Resets Considered Harmful", BCP 60, RFC 3360, August 2002.

[RFC3360]Floyd,S.,“不适当的TCP重置被认为是有害的”,BCP 60,RFC 3360,2002年8月。

[RFC3366] Fairhurst, G. and L. Wood, "Advice to link designers on link Automatic Repeat reQuest (ARQ)", BCP 62, RFC 3366, August 2002.

[RFC3366]Fairhurst,G.和L.Wood,“链接自动重复请求(ARQ)对链接设计者的建议”,BCP 62,RFC 3366,2002年8月。

[RFC3449] Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M. Sooriyabandara, "TCP Performance Implications of Network Path Asymmetry", BCP 69, RFC 3449, December 2002.

[RFC3449]Balakrishnan,H.,Padmanabhan,V.,Fairhurst,G.,和M.Sooriyabandara,“网络路径不对称的TCP性能影响”,BCP 69,RFC 3449,2002年12月。

[RFC3481] Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., and F. Khafizov, "TCP over Second (2.5G) and Third (3G) Generation Wireless Networks", BCP 71, RFC 3481, February 2003.

[RFC3481]Inamura,H.,黑山,G.,路德维希,R.,Gurtov,A.,和F.Khafizov,“第二代(2.5G)和第三代(3G)无线网络上的TCP”,BCP 71,RFC 3481,2003年2月。

[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W. Stevens, "Basic Socket Interface Extensions for IPv6", RFC 3493, February 2003.

[RFC3493]Gilligan,R.,Thomson,S.,Bound,J.,McCann,J.,和W.Stevens,“IPv6的基本套接字接口扩展”,RFC 3493,2003年2月。

[RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D., Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L. Wood, "Advice for Internet Subnetwork Designers", BCP 89, RFC 3819, July 2004.

[RFC3819]Karn,P.,Bormann,C.,Fairhurst,G.,Grossman,D.,路德维希,R.,Mahdavi,J.,黑山,G.,Touch,J.,和L.Wood,“互联网子网络设计师的建议”,BCP 89,RFC 3819,2004年7月。

[RFC4022] Raghunarayan, R., "Management Information Base for the Transmission Control Protocol (TCP)", RFC 4022, March 2005.

[RFC4022]Raghunarayan,R.,“传输控制协议(TCP)的管理信息库”,RFC 40222,2005年3月。

10.6. Informative References Outside the RFC Series
10.6. RFC系列之外的参考资料

[JK92] Jacobson, V. and M. Karels, "Congestion Avoidance and Control", This paper is a revised version of [Jac88], that includes an additional appendix. This paper has not been traditionally published, but is currently available at 1992.

[JK92]Jacobson,V.和M.Karels,“拥塞避免和控制”,本文是[Jac88]的修订版,包括附加附录。本论文传统上未发表,但目前可在 1992

[Jac88] Jacobson, V., "Congestion Avoidance and Control", ACM SIGCOMM 1988 Proceedings, in ACM Computer Communication Review, 18 (4), pp. 314-329, August 1988.

[Jac88]Jacobson,V.,“拥塞避免和控制”,ACM SIGCOMM 1988年会议记录,载于《ACM计算机通信评论》,第18(4)页,第314-329页,1988年8月。

[KP87] Karn, P. and C. Partridge, "Round Trip Time Estimation", ACM SIGCOMM 1987 Proceedings, in ACM Computer Communication Review, 17 (5), pp. 2-7, August 1987

[KP87]Karn,P.和C.Partridge,“往返时间估算”,ACM SIGCOMM 1987年会议记录,载于《ACM计算机通信评论》,第17(5)页,第2-7页,1987年8月

[MAF04] Medina, A., Allman, M., and S. Floyd, "Measuring the Evolution of Transport Protocols in the Internet", ACM Computer Communication Review, 35 (2), April 2005.


[MM96] Mathis, M. and J. Mahdavi, "Forward Acknowledgement: Refining TCP Congestion Control", ACM SIGCOMM 1996 Proceedings, in ACM Computer Communication Review 26 (4), pp. 281-292, October 1996.

[MM96]Mathis,M.和J.Mahdavi,“转发确认:改进TCP拥塞控制”,ACM SIGCOMM 1996年会议记录,载于《ACM计算机通信评论》26(4),第281-292页,1996年10月。

[SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson, "TCP Congestion Control with a Misbehaving Receiver", ACM Computer Communication Review, 29 (5), pp. 71-78, October 1999.


Authors' Addresses


Martin H. Duke The Boeing Company PO Box 3707, MC 7L-49 Seattle, WA 98124-2207

马丁·H·杜克波音公司华盛顿州西雅图市MC 7L-49 3707号邮政信箱98124-2207

Phone: 425-373-2852 EMail:


Robert Braden USC Information Sciences Institute Marina del Rey, CA 90292-6695


Phone: 310-448-9173 EMail:


Wesley M. Eddy Verizon Federal Network Systems 21000 Brookpark Rd, MS 54-5 Cleveland, OH 44135


Phone: 216-433-6682 EMail:


Ethan Blanton Purdue University Computer Science 250 N. University St. West Lafayette, IN 47907

伊桑·布兰顿·普渡大学计算机科学250 N.大学圣西拉斐特分校,47907年


Full Copyright Statement


Copyright (C) The Internet Society (2006).


This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。



Intellectual Property


The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at


The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at




Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).