Network Working Group N. Williams Request for Comments: 4401 Sun Microsystems Category: Standards Track February 2006
Network Working Group N. Williams Request for Comments: 4401 Sun Microsystems Category: Standards Track February 2006
A Pseudo-Random Function (PRF) API Extension for the Generic Security Service Application Program Interface (GSS-API)
通用安全服务应用程序接口(GSS-API)的伪随机函数(PRF)API扩展
Status of This Memo
关于下段备忘
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2006).
版权所有(C)互联网协会(2006年)。
Abstract
摘要
This document defines a Pseudo-Random Function (PRF) extension to the Generic Security Service Application Program Interface (GSS-API) for keying application protocols given an established GSS-API security context. The primary intended use of this function is to key secure session layers that do not or cannot use GSS-API per-message message integrity check (MIC) and wrap tokens for session protection.
本文档定义了通用安全服务应用程序接口(GSS-API)的伪随机函数(PRF)扩展,用于在给定GSS-API安全上下文的情况下为应用程序协议设置密钥。此功能的主要预期用途是为不使用或不能使用GSS-API每消息完整性检查(MIC)和包装令牌进行会话保护的会话层设置密钥。
Table of Contents
目录
1. Introduction ....................................................2 1.1. Conventions Used in This Document ..........................2 2. GSS_Pseudo_random() .............................................2 2.1. C-Bindings .................................................5 3. IANA Considerations .............................................5 4. Security Considerations .........................................5 5. References ......................................................7 5.1. Normative References .......................................7 5.2. Informative References .....................................7
1. Introduction ....................................................2 1.1. Conventions Used in This Document ..........................2 2. GSS_Pseudo_random() .............................................2 2.1. C-Bindings .................................................5 3. IANA Considerations .............................................5 4. Security Considerations .........................................5 5. References ......................................................7 5.1. Normative References .......................................7 5.2. Informative References .....................................7
A need has arisen for users of the GSS-API to key applications' cryptographic protocols using established GSS-API security contexts. Such applications can use the GSS-API [RFC2743] for authentication, but not for transport security (for whatever reasons), and since the GSS-API does not provide a method for obtaining keying material from established security contexts, such applications cannot make effective use of the GSS-API.
GSS-API的用户需要使用已建立的GSS-API安全上下文对应用程序的加密协议进行加密。此类应用程序可以使用GSS-API[RFC2743]进行身份验证,但不能用于传输安全(无论出于何种原因),并且由于GSS-API未提供从已建立的安全上下文中获取密钥材料的方法,因此此类应用程序无法有效使用GSS-API。
To address this need, we define a pseudo-random function (PRF) extension to the GSS-API.
为了满足这一需求,我们定义了GSS-API的伪随机函数(PRF)扩展。
Though this document specifies an abstract API as an extension to the GSS-API version 2, update 1, and though it specifies the bindings of this extension for the C programming language, it does not specify a revision of the GSS-API and so does not address the matter of how portable applications detect support for and ensure access to this extension. We defer this matter to an expected, comprehensive update to the GSS-API.
尽管本文档指定了一个抽象API作为GSS-API版本2,更新1的扩展,尽管它为C编程语言指定了此扩展的绑定,它没有指定GSS-API的修订版,因此也没有说明便携式应用程序如何检测对该扩展的支持并确保对该扩展的访问。我们将此事推迟至GSS-API的预期全面更新。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。
Inputs:
投入:
o context CONTEXT handle,
o 上下文句柄,
o prf_key INTEGER,
o prf_键整数,
o prf_in OCTET STRING,
o 八位字节字符串中的prf_,
o desired_output_len INTEGER
o 所需的\u输出\u len整数
Outputs:
产出:
o major_status INTEGER,
o 主要状态整数,
o minor_status INTEGER,
o 次_状态整数,
o prf_out OCTET STRING
o prf_输出八位字节字符串
Return major_status codes:
返回主要_状态代码:
o GSS_S_COMPLETE indicates no error.
o GSS_S_完成表示没有错误。
o GSS_S_NO_CONTEXT indicates that a null context has been provided as input.
o GSS_S_NO_CONTEXT表示已提供空上下文作为输入。
o GSS_S_CONTEXT_EXPIRED indicates that an expired context has been provided as input.
o GSS_S_CONTEXT_EXPIRED表示已提供过期的上下文作为输入。
o GSS_S_UNAVAILABLE indicates that the mechanism lacks support for this function or, if the security context is not fully established, that the context is not ready to compute the PRF with the given prf_key, or that the given prf_key is not available.
o GSS_S_UNAVAILABLE表示机制不支持此函数,或者,如果安全上下文未完全建立,则表示上下文未准备好使用给定的PRF_密钥计算PRF,或者表示给定的PRF_密钥不可用。
o GSS_S_FAILURE indicates general failure, possibly due to the given input data being too large or of zero length, or due to the desired_output_len being zero; the minor status code may provide additional information.
o GSS_S_故障表示一般故障,可能是由于给定的输入数据太大或长度为零,或由于所需的_输出长度为零;次要状态代码可提供附加信息。
This function applies the established context's mechanism's keyed pseudo-random function (PRF) to the input data ('prf_in'), keyed with key material associated with the given security context and identified by 'prf_key', and outputs the resulting octet string ('prf_out') of desired_output_len length.
此函数将已建立的上下文机制的键控伪随机函数(PRF)应用于输入数据(“PRF_-in”),用与给定安全上下文相关联的密钥材料键控,并由“PRF_-key”标识,并输出所需输出长度的结果八位字节字符串(“PRF_-out”)。
The minimum input data length is one octet.
最小输入数据长度为一个八位字节。
Mechanisms MUST be able to consume all the provided prf_in input data that is 2^14 or fewer octets.
机制必须能够使用输入数据中提供的所有prf_,即2^14或更少的八位字节。
If a mechanism cannot consume as much input data as provided by the caller, then GSS_Pseudo_random() MUST return GSS_S_FAILURE.
如果一个机制不能使用调用方提供的输入数据,那么GSS_Pseudo_random()必须返回GSS_S_FAILURE。
The minimum desired_output_len is one.
所需的最小输出长度为1。
Mechanisms MUST be able to output at least up to 2^14 octets.
机制必须能够输出至少2^14个八位字节。
If the implementation cannot produce the desired output due to lack of resources, then it MUST return GSS_S_FAILURE and MUST set a suitable minor status code.
如果由于缺乏资源,实现无法产生所需的输出,那么它必须返回GSS_S_FAILURE,并且必须设置适当的次要状态代码。
The prf_key can take on the following values: GSS_C_PRF_KEY_FULL, GSS_C_PRF_KEY_PARTIAL, or mechanism-specific values, if any. This parameter is intended to distinguish between the best cryptographic keys that may be available only after full security context establishment and keys that may be available prior to full security context establishment. For some mechanisms, or contexts, those two
prf_键可以具有以下值:GSS_C_prf_键满、GSS_C_prf_键部分或机构特定值(如果有)。此参数旨在区分仅在完全安全上下文建立后可用的最佳加密密钥和在完全安全上下文建立之前可用的密钥。对于某些机制或上下文,这两个
prf_key values MAY refer to the same cryptographic keys; for mechanisms like the Kerberos V GSS-API mechanism [RFC1964] where one peer may assert a key that may be considered better than the others they MAY be different keys.
prf_密钥值可指相同的加密密钥;对于Kerberos V GSS-API机制[RFC1964]这样的机制,其中一个对等方可以声明一个可能被认为比其他对等方更好的密钥,它们可能是不同的密钥。
GSS_C_PRF_KEY_PARTIAL corresponds to a key that would have been used while the security context was partially established, even if it is fully established when GSS_Pseudo_random() is actually called. Mechanism-specific prf_key values are intended to refer to any other keys that may be available.
GSS_C_PRF_KEY_PARTIAL对应于在部分建立安全上下文时会使用的密钥,即使它在实际调用GSS_Pseudo_random()时已完全建立。特定于机构的prf_键值旨在指任何其他可用键。
The GSS_C_PRF_KEY_FULL value corresponds to the best key available for fully-established security contexts.
GSS_C_PRF_KEY_FULL值对应于完全建立的安全上下文可用的最佳密钥。
GSS_Pseudo_random() has the following properties:
GSS_Pseudo_random()具有以下属性:
o its output string MUST be a pseudo-random function [GGM1] [GGM2] of the input keyed with key material from the given security context -- the chances of getting the same output given different input parameters should be exponentially small.
o 它的输出字符串必须是一个伪随机函数[GGM1][GGM2],该函数使用给定安全上下文中的密钥材料对输入进行了键控——在给定不同输入参数的情况下,获得相同输出的几率应该是指数级的。
o when successfully applied to the same inputs by an initiator and acceptor using the same security context, it MUST produce the _same results_ for both, the initiator and acceptor, even if called multiple times (as long as the security context is not expired).
o 当启动器和接受程序使用相同的安全上下文成功应用于相同的输入时,它必须为启动器和接受程序生成相同的结果,即使调用多次(只要安全上下文未过期)。
o upon full establishment of a security context, all cryptographic keys and/or negotiations used for computing the PRF with any prf_key MUST be authenticated (mutually, if mutual authentication is in effect for the given security context).
o 在完全建立安全上下文后,用于计算具有任何PRF_密钥的PRF的所有加密密钥和/或协商必须进行身份验证(如果在给定安全上下文中相互验证有效,则相互验证)。
o the outputs of the mechanism's GSS_Pseudo_random() (for different inputs) and its per-message tokens for the given security context MUST be "cryptographically separate"; in other words, it must not be feasible to recover key material for one mechanism operation or transform its tokens and PRF outputs from one to the other given only said tokens and PRF outputs. (This is a fancy way of saying that key derivation and strong cryptographic operations and constructions must be used.)
o 机制的GSS_Pseudo_random()的输出(对于不同的输入)及其给定安全上下文的每消息令牌必须是“加密分离的”;换言之,在仅给出所述令牌和PRF输出的情况下,恢复一个机制操作的关键材料或将其令牌和PRF输出从一个转换为另一个是不可行的。(这是一种奇特的说法,表示必须使用密钥派生和强加密操作和构造。)
o as implied by the above requirement, it MUST NOT be possible to access any raw keys of a security context through GSS_Pseudo_random(), no matter what inputs are given.
o 正如上述要求所暗示的那样,无论给定什么输入,都不能通过GSS_Pseudo_random()访问安全上下文的任何原始密钥。
#define GSS_C_PRF_KEY_FULL 0 #define GSS_C_PRF_KEY_PARTIAL 1
#定义GSS_C_PRF_键完整0#定义GSS_C_PRF_键部分1
OM_uint32 gss_pseudo_random( OM_uint32 *minor_status, gss_ctx_id_t context, int prf_key, const gss_buffer_t prf_in, ssize_t desired_output_len, gss_buffer_t prf_out );
OM_uint32 gss_伪_随机(OM_uint32*次要_状态、gss_ctx_id_t上下文、int prf_密钥、常量gss_缓冲区prf_in、ssize_所需的输出长度、gss_缓冲区prf_out);
Additional major status codes for the C-bindings:
C绑定的其他主要状态代码:
o GSS_S_CALL_INACCESSIBLE_READ
o GSS\U S\U呼叫\U无法访问\U读取
o GSS_S_CALL_INACCESSIBLE_WRITE
o GSS\U S\U呼叫\U无法访问\U写入
See [RFC2744].
见[RFC2744]。
This document has no IANA considerations currently. If and when a relevant IANA registry of GSS-API symbols is created, then the generic and language-specific function names, constant names, and constant values described above should be added to such a registry.
本文件目前没有IANA考虑事项。如果创建了GSS-API符号的相关IANA注册表,则应将上述通用和语言特定的函数名、常量名和常量值添加到该注册表中。
Care should be taken in properly designing a mechanism's PRF function.
在正确设计机构的PRF功能时应小心。
GSS mechanisms' PRF functions should use a key derived from contexts' authenticated session keys and should preserve the forward security properties of the mechanisms' key exchanges.
GSS机制的PRF函数应使用从上下文的已验证会话密钥派生的密钥,并应保留机制密钥交换的前向安全属性。
Some mechanisms may support the GSS PRF function with security contexts that are not fully established, but applications MUST assume that authentication, mutual or otherwise, has not completed until the security context is fully established.
一些机制可能在未完全建立安全上下文的情况下支持GSS PRF功能,但应用程序必须假定在安全上下文完全建立之前,身份验证(相互验证或其他验证)尚未完成。
Callers of GSS_Pseudo_random() should avoid accidentally calling it with the same inputs. One useful technique is to prepend to the prf_in input string, by convention, a string indicating the intended purpose of the PRF output in such a way that unique contexts in which the function is called yield unique inputs to it.
GSS_Pseudo_random()的调用者应该避免意外地使用相同的输入调用它。一种有用的技术是按照惯例,在输入字符串中预加prf_,该字符串指示prf输出的预期用途,其方式是调用函数的唯一上下文为其生成唯一的输入。
Pseudo-random functions are, by their nature, capable of producing only limited amounts of cryptographically secure output. The exact amount of output that one can safely use, unfortunately, varies from one PRF to another (which prevents us from recommending specific numbers). Because of this, we recommend that unless you really know what you are doing (i.e., you are a cryptographer and are qualified to pass judgement on cryptographic functions in areas of period, presence of short cycles, etc.), you limit the amount of the PRF output used to the necessary minimum. See [RFC4086] for more information about "Randomness Requirements for Security".
伪随机函数本质上只能产生有限数量的加密安全输出。不幸的是,不同的PRF可以安全地使用不同的确切数量。因此,我们建议,除非您真的知道自己在做什么(即,您是一名密码学家,并且有资格在周期、短周期等方面对密码功能进行判断),否则应将PRF输出量限制在必要的最小值。有关“安全性的随机性要求”的更多信息,请参见[RFC4086]。
For some mechanisms, the computational cost of computing GSS_Pseudo_random() may increase significantly as the length of the prf_in data and/or the desired_output_length increase. This means that if an application can be tricked into providing very large input octet strings and requesting very long output octet strings, then that may constitute a denial of service attack on the application; therefore, applications SHOULD place appropriate limits on the size of any input octet strings received from their peers without integrity protection.
对于某些机制,计算GSS_Pseudo_random()的计算成本可能会随着数据中prf_的长度和/或期望的_输出_长度的增加而显著增加。这意味着,如果一个应用程序被诱骗提供非常大的输入八位字节字符串并请求非常长的输出八位字节字符串,那么这可能构成对该应用程序的拒绝服务攻击;因此,应用程序应在没有完整性保护的情况下,对从对等方接收的任何输入八位字节字符串的大小进行适当限制。
[GGM1] Goldreich, O., Goldwasser, S., and S. Micali, "How to Construct Random Functions", Journal of the ACM, October 1986.
[GGM1]Goldreich,O.,Goldwasser,S.,和S.Michali,“如何构造随机函数”,ACM杂志,1986年10月。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC 2743, January 2000.
[RFC2743]Linn,J.,“通用安全服务应用程序接口版本2,更新1”,RFC 2743,2000年1月。
[RFC2744] Wray, J., "Generic Security Service API Version 2 : C-bindings", RFC 2744, January 2000.
[RFC2744]Wray,J.,“通用安全服务API第2版:C-绑定”,RFC 2744,2000年1月。
[GGM2] Goldreich, O., Goldwasser, S., and S. Micali, "On the Cryptographic Applications of Random Functions", Proceedings of CRYPTO 84 on Advances in cryptology, 1985.
[GGM2]Goldreich,O.,Goldwasser,S.,和S.Micali,“关于随机函数的密码应用”,密码学进展84号论文集,1985年。
[RFC4086] Eastlake, D., 3rd, Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, June 2005.
[RFC4086]伊斯特莱克,D.,3,席勒,J.和S.克罗克,“安全的随机性要求”,BCP 106,RFC 4086,2005年6月。
[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996.
[RFC1964]Linn,J.,“Kerberos版本5 GSS-API机制”,RFC19641996年6月。
Author's Address
作者地址
Nicolas Williams Sun Microsystems 5300 Riata Trace Ct Austin, TX 78727 US
Nicolas Williams Sun Microsystems 5300 Riata Trace Ct德克萨斯州奥斯汀78727美国
EMail: Nicolas.Williams@sun.com
EMail: Nicolas.Williams@sun.com
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (2006).
版权所有(C)互联网协会(2006年)。
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.
Acknowledgement
确认
Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).
RFC编辑器功能的资金由IETF行政支持活动(IASA)提供。