Network Working Group                                         I. Bryskin
Request for Comments: 4397                        Independent Consultant
Category: Informational                                        A. Farrel
                                                      Old Dog Consulting
                                                           February 2006
        
Network Working Group                                         I. Bryskin
Request for Comments: 4397                        Independent Consultant
Category: Informational                                        A. Farrel
                                                      Old Dog Consulting
                                                           February 2006
        

A Lexicography for the Interpretation of Generalized Multiprotocol Label Switching (GMPLS) Terminology within the Context of the ITU-T's Automatically Switched Optical Network (ASON) Architecture

在ITU-T自动交换光网络(ASON)体系结构背景下解释通用多协议标签交换(GMPLS)术语的词典

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2006).

版权所有(C)互联网协会(2006年)。

Abstract

摘要

Generalized Multiprotocol Label Switching (GMPLS) has been developed by the IETF to facilitate the establishment of Label Switched Paths (LSPs) in a variety of data plane technologies and across several architectural models. The ITU-T has specified an architecture for the control of Automatically Switched Optical Networks (ASON).

IETF开发了通用多协议标签交换(GMPLS),以促进在各种数据平面技术和多个体系结构模型中建立标签交换路径(LSP)。ITU-T规定了自动交换光网络(ASON)控制的体系结构。

This document provides a lexicography for the interpretation of GMPLS terminology within the context of the ASON architecture.

本文档提供了在ASON架构上下文中解释GMPLS术语的词典。

It is important to note that GMPLS is applicable in a wider set of contexts than just ASON. The definitions presented in this document do not provide exclusive or complete interpretations of GMPLS concepts. This document simply allows the GMPLS terms to be applied within the ASON context.

值得注意的是,GMPLS适用于比ASON更广泛的环境。本文件中给出的定义不提供GMPLS概念的唯一或完整解释。本文档仅允许在ASON上下文中应用GMPLS术语。

Table of Contents

目录

   1. Introduction ....................................................3
   2. Terminology .....................................................3
      2.1. GMPLS Terminology Sources ..................................3
      2.2. ASON Terminology Sources ...................................4
      2.3. Common Terminology Sources .................................4
   3. Lexicography ....................................................4
      3.1. Network Presences ..........................................4
      3.2. Resources ..................................................5
      3.3. Layers .....................................................6
      3.4. Labels .....................................................7
      3.5. Data Links .................................................7
      3.6. Link Interfaces ............................................8
      3.7. Connections ................................................9
      3.8. Switching, Termination, and Adaptation Capabilities .......10
      3.9. TE Links and FAs ..........................................11
      3.10. TE Domains ...............................................13
      3.11. Component Links and Bundles ..............................13
      3.12. Regions ..................................................14
   4. Guidance on the Application of this Lexicography ...............14
   5. Management Considerations ......................................15
   6. Security Considerations ........................................15
   7. Acknowledgements ...............................................15
   8. Normative References ...........................................16
   9. Informative References .........................................16
        
   1. Introduction ....................................................3
   2. Terminology .....................................................3
      2.1. GMPLS Terminology Sources ..................................3
      2.2. ASON Terminology Sources ...................................4
      2.3. Common Terminology Sources .................................4
   3. Lexicography ....................................................4
      3.1. Network Presences ..........................................4
      3.2. Resources ..................................................5
      3.3. Layers .....................................................6
      3.4. Labels .....................................................7
      3.5. Data Links .................................................7
      3.6. Link Interfaces ............................................8
      3.7. Connections ................................................9
      3.8. Switching, Termination, and Adaptation Capabilities .......10
      3.9. TE Links and FAs ..........................................11
      3.10. TE Domains ...............................................13
      3.11. Component Links and Bundles ..............................13
      3.12. Regions ..................................................14
   4. Guidance on the Application of this Lexicography ...............14
   5. Management Considerations ......................................15
   6. Security Considerations ........................................15
   7. Acknowledgements ...............................................15
   8. Normative References ...........................................16
   9. Informative References .........................................16
        
1. Introduction
1. 介绍

Generalized Multiprotocol Label Switching (GMPLS) has been developed by the IETF to facilitate the establishment of Label Switched Paths (LSPs) in a variety of data plane technologies such as Packet Switching Capable (PSC), Layer Two Switching Capable (L2SC), Time Division Multiplexing (TDM), Lambda Switching Capable (LSC), and Fiber Switching Capable (FSC).

IETF开发了通用多协议标签交换(GMPLS),以促进在各种数据平面技术中建立标签交换路径(LSP),如支持分组交换(PSC)、支持第二层交换(L2SC)、时分复用(TDM)、支持Lambda交换(LSC),和光纤交换功能(FSC)。

The ITU-T has specified an architecture for the control of Automatically Switched Optical Networks (ASON). This architecture forms the basis of many Recommendations within the ITU-T.

ITU-T规定了自动交换光网络(ASON)控制的体系结构。该体系结构构成了ITU-T中许多建议的基础。

Because the GMPLS and ASON architectures were developed by different people in different standards bodies, and because the architectures have very different historic backgrounds (the Internet, and transport networks respectively), the terminology used is different.

由于GMPLS和ASON体系结构是由不同标准机构的不同人员开发的,并且由于这些体系结构具有非常不同的历史背景(分别是互联网和传输网络),因此使用的术语是不同的。

This document provides a lexicography for the interpretation of GMPLS terminology within the context of the ASON architecture. This allows GMPLS documents to be generally understood by those familiar with ASON Recommendations. The definitions presented in this document do not provide exclusive or complete interpretations of the GMPLS concepts.

本文档提供了在ASON架构上下文中解释GMPLS术语的词典。这使得熟悉ASON建议的人能够普遍理解GMPLS文件。本文件中给出的定义不提供GMPLS概念的唯一或完整解释。

2. Terminology
2. 术语

Throughout this document, angle brackets ("<" and ">") are used to indicate the context in which a term applies. For example, "<Data Plane>" as part of a description of a term means that the term applies within the data plane.

在本文件中,尖括号(“<”和“>”)用于表示术语适用的上下文。例如,“<Data Plane>”作为术语描述的一部分,意味着该术语适用于数据平面。

2.1. GMPLS Terminology Sources
2.1. GMPLS术语来源

GMPLS terminology is principally defined in [RFC3945]. Other documents provide further key definitions including [RFC4201], [RFC4202], [RFC4204], and [RFC4206].

GMPLS术语的主要定义见[RFC3945]。其他文档提供了进一步的关键定义,包括[RFC4201]、[RFC4202]、[RFC4204]和[RFC4206]。

The reader is recommended to become familiar with these other documents before attempting to use this document to provide a more general mapping between GMPLS and ASON.

建议读者在尝试使用本文档提供GMPLS和ASON之间更一般的映射之前熟悉这些其他文档。

For details of GMPLS signaling, please refer to [RFC3471] and [RFC3473]. For details of GMPLS routing, please refer to [RFC4203] and [RFC4205].

有关GMPLS信令的详细信息,请参考[RFC3471]和[RFC3473]。有关GMPLS路由的详细信息,请参考[RFC4203]和[RFC4205]。

2.2. ASON Terminology Sources
2.2. ASON术语来源

The ASON architecture is specified in ITU-T Recommendation G.8080 [G-8080]. This is developed from generic functional architectures and requirements specified in [G-805], [G-807], and [G-872]. The ASON terminology is defined in several Recommendations in the ASON family such as [G-8080], [G-8081], [G-7713], [G-7714], and [G-7715]. The reader must be familiar with these documents before attempting to apply the lexicography set out in this document.

ITU-T建议G.8080[G-8080]中规定了ASON架构。这是根据[G-805]、[G-807]和[G-872]中规定的通用功能架构和要求开发的。ASON术语在ASON系列的若干建议中定义,如[G-8080]、[G-8081]、[G-7713]、[G-7714]和[G-7715]。读者在尝试应用本文档中规定的词典之前,必须熟悉这些文档。

2.3. Common Terminology Sources
2.3. 通用术语来源

The work in this document builds on the shared view of ASON requirements and requirements expressed in [RFC4139], [RFC4258], and [RFC4394].

本文档中的工作建立在[RFC4139]、[RFC4258]和[RFC4394]中表达的ASON需求和需求的共享视图的基础上。

3. Lexicography
3. 词典学
3.1. Network Presences
3.1. 网络存在
3.1.1. GMPLS Terms
3.1.1. GMPLS条款

Transport node <Data Plane> is a logical network device that is capable of originating and/or terminating of a data flow and/or switching it on the route to its destination.

传输节点<数据平面>是一种逻辑网络设备,能够发起和/或终止数据流和/或在路由上切换到其目的地。

Controller <Control Plane> is a logical entity that models all control plane intelligence (routing, traffic engineering (TE), and signaling protocols, path computation, etc.). A single controller can manage one or more transport nodes. Separate functions (such as routing and signaling) may be hosted at distinct sites and hence could be considered as separate logical entities referred to, for example, as the routing controller, the signaling controller, etc.

控制器<控制平面>是对所有控制平面智能(路由、流量工程(TE)、信令协议、路径计算等)建模的逻辑实体。单个控制器可以管理一个或多个传输节点。单独的功能(例如路由和信令)可以托管在不同的站点上,因此可以被视为单独的逻辑实体,例如被称为路由控制器、信令控制器等。

Label Switching Router (LSR) <Control & Data Planes> is a logical combination of a transport node and the controller that manages the transport node. Many implementations of LSRs collocate all control plane and data plane functions associated with a transport node within a single physical presence making the term LSR concrete rather than logical.

标签交换路由器(LSR)<Control&Data Planes>是传输节点和管理传输节点的控制器的逻辑组合。LSR的许多实现将与传输节点相关联的所有控制平面和数据平面功能配置在单个物理存在中,使得术语LSR具体化而非逻辑化。

In some instances, the term LSR may be applied more loosely to indicate just the transport node or just the controller function dependent on the context.

在一些实例中,术语LSR可更宽松地应用以仅指示依赖于上下文的传输节点或控制器功能。

Node <Control & Data Planes> is a synonym for an LSR.

节点<控制和数据平面>是LSR的同义词。

Control plane network <Control Plane> is an IP network used for delivery of control plane (protocol) messages exchanged by controllers.

控制平面网络<控制平面>是一个IP网络,用于传递控制器交换的控制平面(协议)消息。

3.1.2. ASON Terms
3.1.2. ASON术语

A GMPLS transport node is an ASON network element.

GMPLS传输节点是ASON网元。

A GMPLS controller is the set of ASON functional components controlling a given ASON network element (or partition of a network element). In ASON, this set of functional components may exist in one place or multiple places.

GMPLS控制器是控制给定ASON网元(或网元分区)的一组ASON功能组件。在ASON中,这组功能组件可能存在于一个位置或多个位置。

A GMPLS node is the combination of an ASON network element (or partition of a network element) and its associated control components.

GMPLS节点是ASON网元(或网元分区)及其相关控制组件的组合。

The GMPLS control plane network is the ASON Signaling Communication Network (SCN). Note that both routing and signaling exchanges are carried by the SCN.

GMPLS控制平面网络是ASON信令通信网络(SCN)。请注意,路由和信令交换均由SCN承载。

3.2. Resources
3.2. 资源
3.2.1. GMPLS Terms
3.2.1. GMPLS条款

Non-packet-based resource <Data Plane> is a channel of a certain bandwidth that could be allocated in a network data plane of a particular technology for the purpose of user traffic delivery. Examples of non-packet-based resources are timeslots, lambda channels, etc.

非基于分组的资源<Data Plane>是具有特定带宽的信道,可以在特定技术的网络数据平面中分配该信道,以用于用户业务传输。非分组资源的例子有时隙、lambda信道等。

Packet-based resource <Data Plane> is an abstraction hiding the means related to the delivery of traffic with particular parameters (most importantly, bandwidth) with particular quality of service (QoS) over PSC media. Examples of packet-based resources are forwarding queues, schedulers, etc.

基于分组的资源<数据平面>是一种抽象,它隐藏了与通过PSC媒体以特定服务质量(QoS)交付具有特定参数(最重要的是带宽)的流量相关的手段。基于包的资源的例子有转发队列、调度器等。

Layer Resource (Resource) <Data Plane>. A non-packet-based data plane technology may yield resources in different network layers (see section 3.3). For example, some TDM devices can operate with VC-12 timeslots, some with VC-4 timeslots, and some with VC4-4c timeslots. There are also multiple layers of packet-based resources (i.e., one per label in the label stack). Therefore, we define layer resource (or simply resource) irrespective of the underlying data plane technology as a basic data plane construct. It is defined by a combination of a particular data encoding type

图层资源(资源)<Data Plane>。非基于分组的数据平面技术可以在不同的网络层中产生资源(参见第3.3节)。例如,一些TDM设备可以使用VC-12时隙,一些使用VC-4时隙,一些使用VC4-4c时隙。还有多层基于数据包的资源(即,标签堆栈中的每个标签一层)。因此,我们将层资源(或简单的资源)定义为基本数据平面构造,而不考虑底层数据平面技术。它由特定数据编码类型的组合定义

and a switching/terminating bandwidth granularity. Examples of layer resources are: PSC1, PSC4, ATM VP, ATM VC, Ethernet, VC-12, VC-4, Lambda 10G, and Lambda 40G.

以及交换/终止带宽粒度。层资源的示例有:PSC1、PSC4、ATM VP、ATM VC、以太网、VC-12、VC-4、Lambda 10G和Lambda 40G。

These three definitions give rise to the concept of Resource Type. Although not a formal term, this is useful shorthand to identify how and where a resource can be used dependent on the switching type, data encoding type, and switching/terminating bandwidth granularity (see section 3.8).

这三个定义产生了资源类型的概念。虽然不是一个正式术语,但这对于根据交换类型、数据编码类型和交换/终止带宽粒度确定资源的使用方式和位置非常有用(参见第3.8节)。

All other descriptions provided in this memo are tightly bound to the resource.

此备忘录中提供的所有其他描述都与资源紧密绑定。

3.2.2. ASON Terms
3.2.2. ASON术语

ASON terms for resource:

ASON资源条款:

- In the context of link discovery and resource management (allocation, binding into cross-connects, etc.), a GMPLS resource is one end of a link connection.

- 在链路发现和资源管理(分配、绑定到交叉连接等)的上下文中,GMPLS资源是链路连接的一端。

- In the context of routing, path computation, and signaling, a GMPLS resource is a link connection or trail termination.

- 在路由、路径计算和信令的上下文中,GMPLS资源是链路连接或路径终止。

Resource type is identified by a client CI (Characteristics Information) that could be carried by the resource.

资源类型由资源可能携带的客户端CI(特征信息)标识。

3.3. Layers
3.3. 层
3.3.1. GMPLS Terms
3.3.1. GMPLS条款

Layer <Data Plane> is a set of resources of the same type that could be used for establishing a connection or used for connectionless data delivery.

层<数据平面>是一组相同类型的资源,可用于建立连接或用于无连接数据传输。

Note. In GMPLS, the existence of non-blocking switching function in a transport node in a particular layer is modeled explicitly as one of the functions of the link interfaces connecting the transport node to its data links.

笔记在GMPLS中,特定层中传输节点中非阻塞交换函数的存在被明确建模为连接传输节点与其数据链路的链路接口的函数之一。

A GMPLS layer is not the same as a GMPLS region. See section 3.12.

GMPLS层与GMPLS区域不同。见第3.12节。

3.3.2. ASON Terms
3.3.2. ASON术语

A GMPLS layer is an ASON layer network.

GMPLS层是ASON层网络。

3.4. Labels
3.4. 标签
3.4.1. GMPLS Terms
3.4.1. GMPLS条款

Label <Control Plane> is an abstraction that provides an identifier for use in the control plane in order to identify a transport plane resource.

标签<Control Plane>是一种抽象,它提供了一个标识符,用于控制平面中,以标识传输平面资源。

3.4.2. ASON Terms
3.4.2. ASON术语

A GMPLS label is the portion of an ASON SNP name that follows the SNPP name.

GMPLS标签是SNPP名称后面的ASON SNP名称部分。

3.5. Data Links
3.5. 数据链
3.5.1. GMPLS Terms
3.5.1. GMPLS条款

Unidirectional data link end <Data Plane> is a set of resources that belong to the same layer and that could be allocated for the transfer of traffic in that layer from a particular transport node to the same neighboring transport node in the same direction. A unidirectional data link end is connected to a transport node by one or more link interfaces (see section 3.6).

单向数据链路端<数据平面>是属于同一层的一组资源,可分配用于将该层中的流量从特定传输节点传输到同一方向的同一相邻传输节点。单向数据链路端通过一个或多个链路接口连接到传输节点(见第3.6节)。

Bidirectional data link end <Data Plane> is an association of two unidirectional data link ends that exist in the same layer and that could be used for the transfer of traffic in that layer between a particular transport node and the same neighbor in both directions. A bidirectional data link end is connected to a transport node by one or more link interfaces (see section 3.6).

双向数据链路端<数据平面>是存在于同一层中的两个单向数据链路端的关联,可用于在特定传输节点和两个方向上的同一邻居之间传输该层中的流量。双向数据链路端通过一个或多个链路接口连接到传输节点(见第3.6节)。

Unidirectional data link <Data Plane> is an association of two unidirectional data link ends that exist in the same layer, that are connected to two transport nodes adjacent in that layer, and that could be used for the transfer of traffic between the two transport nodes in one direction.

单向数据链路<数据平面>是存在于同一层中的两个单向数据链路端的关联,它们连接到该层中相邻的两个传输节点,并且可用于在两个传输节点之间沿一个方向传输流量。

Bidirectional data link <Data Plane> is an association of two bidirectional data link ends that exist in the same layer, that are connected to two transport nodes adjacent in that layer, and that could be used for the transfer of traffic between the two transport nodes in both directions.

双向数据链路<数据平面>是存在于同一层中的两个双向数据链路端的关联,它们连接到该层中相邻的两个传输节点,并可用于两个传输节点之间双向的流量传输。

3.5.2. ASON Terms
3.5.2. ASON术语

A GMPLS unidirectional data link end is a collection of connection points from the same client layer that are supported by a single trail termination (access point).

GMPLS单向数据链路端是来自同一客户端层的连接点的集合,这些连接点由单个跟踪终端(接入点)支持。

A GMPLS data link is an ASON link supported by a single server trail.

GMPLS数据链路是由单个服务器路径支持的ASON链路。

3.6. Link Interfaces
3.6. 链接接口
3.6.1. GMPLS Terms
3.6.1. GMPLS条款

Unidirectional link interface <Data Plane> is an abstraction that connects a transport node to a unidirectional data link end and represents (hides) the data plane intelligence like switching, termination, and adaptation in one direction. In GMPLS, link interfaces are often referred to as "GMPLS interfaces" and it should be understood that these are data plane interfaces and the term does not refer to the ability of a control plane interface to handle GMPLS protocols.

单向链路接口<数据平面>是一种抽象,它将传输节点连接到单向数据链路端,并表示(隐藏)数据平面智能,如单向切换、终止和自适应。在GMPLS中,链路接口通常被称为“GMPLS接口”,应该理解,这些接口是数据平面接口,术语不指控制平面接口处理GMPLS协议的能力。

A single unidirectional data link end could be connected to a transport node by multiple link interfaces with one of them, for example, realizing switching function, while others realize the function of termination/adaptation.

单个单向数据链路端可以通过多个链路接口连接到传输节点,其中一个链路接口实现交换功能,而其他链路接口实现终止/适配功能。

Bidirectional link interface <Data Plane> is an association of two or more unidirectional link interfaces that connects a transport node to a bidirectional data link end and represents the data plane intelligence like switching, termination, and adaptation in both directions.

双向链路接口<数据平面>是将传输节点连接到双向数据链路端的两个或多个单向链路接口的关联,表示数据平面智能,如双向切换、终止和自适应。

Link interface type <Data Plane> is identified by the function the interface provides. There are three distinct functions -- switching, termination, and adaptation; hence, there are three types of link interface. Thus, when a Wavelength Division Multiplexing (WDM) link can do switching for some lambda channels, and termination and TDM OC48 adaptation for some other lambda channels, we say that the link is connected to the transport node by three interfaces each of a separate type: switching, termination, and adaptation.

链接接口类型<数据平面>由接口提供的功能标识。有三种不同的功能——切换、终止和适应;因此,有三种类型的链接接口。因此,当波分复用(WDM)链路可以对一些λ信道进行切换,并对一些其他λ信道进行终止和TDM OC48适配时,我们说链路通过三个接口连接到传输节点,每个接口都是单独的类型:交换、终止和适配。

3.6.2. ASON Terms
3.6.2. ASON术语

A GMPLS interface is the set of trail termination and adaptation functions between one or more server layer trails and a specific client layer subnetwork (which commonly is a matrix in a network element).

GMPLS接口是一个或多个服务器层路径与特定客户端层子网络(通常是网元中的矩阵)之间的路径终止和自适应功能集。

The GMPLS interface type may be identified by the ASON adapted client layer, or by the terminated server layer, or a combination of the two, depending on the context. In some cases, a GMPLS interface comprises a set of ASON trail termination/adaptation functions, for which some connection points are bound to trail terminations and others to matrices.

GMPLS接口类型可以由ASON适配的客户端层、或由终止的服务器层、或二者的组合来标识,具体取决于上下文。在某些情况下,GMPLS接口包括一组ASON跟踪终止/适配功能,其中一些连接点绑定到跟踪终止,另一些连接点绑定到矩阵。

3.7. Connections
3.7. 连接
3.7.1. GMPLS Terms
3.7.1. GMPLS条款

In GMPLS a connection is known as a Label Switched Path (LSP).

在GMPLS中,连接称为标签交换路径(LSP)。

Unidirectional LSP (connection) <Data Plane> is a single resource or a set of cross-connected resources of a particular layer that could deliver traffic in that layer between a pair of transport nodes in one direction.

单向LSP(连接)<Data Plane>是特定层的单个资源或一组交叉连接的资源,可以在一个方向的一对传输节点之间传递该层中的流量。

Unidirectional LSP (connection) <Control Plane> is the signaling state necessary to maintain a unidirectional data plane LSP.

单向LSP(连接)<控制平面>是维持单向数据平面LSP所需的信令状态。

Bidirectional LSP (connection) <Data Plane> is an association of two unidirectional LSPs (connections) that could simultaneously deliver traffic in a particular layer between a pair of transport nodes in opposite directions.

双向LSP(连接)<Data Plane>是两个单向LSP(连接)的关联,它们可以在一对传输节点之间以相反方向同时传递特定层中的流量。

In the context of GMPLS, both unidirectional constituents of a bidirectional LSP (connection) take identical paths in terms of data links, are provisioned concurrently, and require a single (shared) control state.

在GMPLS的上下文中,双向LSP(连接)的两个单向组成部分在数据链路方面采用相同的路径,同时提供,并且需要单个(共享)控制状态。

Bidirectional LSP (connection) <Control Plane> is the signaling state necessary to maintain a bidirectional data plane LSP.

双向LSP(连接)<控制平面>是维持双向数据平面LSP所需的信令状态。

LSP (connection) segment <Data Plane> is a single resource or a set of cross-connected resources that constitutes a segment of an LSP (connection).

LSP(连接)段<数据平面>是构成LSP(连接)段的单个资源或一组交叉连接的资源。

3.7.2. ASON Terms
3.7.2. ASON术语

A GMPLS LSP (connection) is an ASON network connection.

GMPLS LSP(连接)是ASON网络连接。

A GMPLS LSP segment is an ASON serial compound link connection.

GMPLS LSP段是ASON串行复合链路连接。

3.8. Switching, Termination, and Adaptation Capabilities
3.8. 交换、终止和自适应能力
3.8.1. GMPLS Terms
3.8.1. GMPLS条款

Switching capability <Data Plane> is a property (and defines a type) of a link interface that connects a particular data link to a transport node. This property/type characterizes the interface's ability to cooperate with other link interfaces connecting data links within the same layer to the same transport node for the purpose of binding resources into cross-connects. Switching capability is advertised as an attribute of the TE link local end associated with the link interface.

交换能力<数据平面>是将特定数据链路连接到传输节点的链路接口的属性(并定义了类型)。此属性/类型表示接口能够与将同一层内的数据链路连接到同一传输节点的其他链路接口协作,以便将资源绑定到交叉连接中。交换能力作为与链路接口相关联的TE链路本地端的属性进行公布。

Termination capability <Data Plane> is a property of a link interface that connects a particular data link to a transport node. This property characterizes the interface's ability to terminate connections within the layer that the data link belongs to.

终端能力<数据平面>是连接特定数据链路到传输节点的链路接口的属性。此属性表示接口在数据链路所属层内终止连接的能力。

Adaptation capability <Data Plane> is a property of a link interface that connects a particular data link to a transport node. This property characterizes the interface's ability to perform a nesting function -- to use a locally terminated connection that belongs to one layer as a data link for some other layer.

适配能力<数据平面>是将特定数据链路连接到传输节点的链路接口的属性。此属性描述接口执行嵌套功能的能力,即使用属于某一层的本地终止连接作为另一层的数据链路。

The need for advertisement of adaptation and termination capabilities within GMPLS has been recognized, and work is in progress to determine how these will be advertised. It is likely that they will be advertised as a single combined attribute, or as separate attributes of the TE link local end associated with the link interface.

已经认识到在GMPLS中宣传适应和终止能力的必要性,目前正在努力确定如何宣传这些能力。很可能它们将作为单个组合属性,或作为与链接接口关联的TE链接本地端的单独属性发布。

3.8.2. ASON Terms
3.8.2. ASON术语

In ASON applications:

在ASON应用程序中:

The GMPLS switching capability is a property of an ASON link end representing its association with a matrix.

GMPLS交换能力是表示其与矩阵关联的ASON链路端的属性。

The GMPLS termination capability is a property of an ASON link end representing potential binding to a termination point.

GMPLS终止能力是ASON链路端的一个属性,表示与终止点的潜在绑定。

The GMPLS adaptation capability is a property of an ASON link end representing potential adaptation to/from a client layer network.

GMPLS适配能力是ASON链路端的一个属性,表示到/来自客户端层网络的潜在适配。

3.9. TE Links and FAs
3.9. TE链接和FAs
3.9.1. GMPLS Terms
3.9.1. GMPLS条款

TE link end <Control Plane> is a grouping for the purpose of advertising and routing of resources of a particular layer.

TE link end<Control Plane>是一个分组,用于特定层的资源的广告和路由。

Such a grouping allows for decoupling of path selection from resource assignment. Specifically, a path could be selected in a centralized way in terms of TE link ends, while the resource assignment (resource reservation and label allocation) could be performed in a distributed way during the connection setup. A TE link end may reflect zero, one or more data link ends in the data plane. A TE link end is associated with exactly one layer.

这样的分组允许将路径选择与资源分配分离。具体地说,可以根据TE链路端以集中方式选择路径,而在连接设置期间可以以分布式方式执行资源分配(资源保留和标签分配)。TE链路端可以在数据平面中反映零个、一个或多个数据链路端。TE链接端仅与一个层关联。

TE link <Control Plane> is a grouping of two TE link ends associated with two neighboring transport nodes in a particular layer.

TE链路<控制平面>是与特定层中的两个相邻传输节点相关联的两个TE链路端的分组。

In contrast to a data link, which provides network flexibility in a particular layer and, therefore, is a "real" topological element, a TE link is a logical routing element. For example, an LSP path is computed in terms of TE links (or more precisely, in terms of TE link ends), while the LSP is provisioned over (that is, resources are allocated from) data links.

数据链路在特定层提供网络灵活性,因此是“真实”拓扑元素,而TE链路则是逻辑路由元素。例如,LSP路径是根据TE链路(或者更准确地说,是根据TE链路端)计算的,而LSP是在(即,资源是从)数据链路上配置的。

Virtual TE link is a TE link associated with zero data links.

虚拟TE链路是与零数据链路关联的TE链路。

TE link end advertising <Control Plane>. A controller managing a particular transport node advertises local TE link ends. Any controller in the TE domain makes a TE link available for its local path computation if it receives consistent advertisements of both TE link ends. Strictly speaking, there is no such thing as TE link advertising -- only TE link end advertising. TE link end advertising may contain information about multiple switching capabilities. This, however, should not be interpreted as advertising of a multi-layer TE link end, but rather as joint advertisement of ends of multiple parallel TE links, each representing resources in a separate layer. The advertisement may contain attributes shared by all TE links in the group (for example, protection capabilities, Shared Risk Link Groups (SRLGs), etc.), separate information related to each TE link (for example, switching capability, data encoding, unreserved bandwidth, etc.) as well as information related to inter-layer relationships of the advertised resources (for example, termination and adaptation capabilities) should the control plane decide to use them as the termination points of higher-layer data links. These higher-layer data links, however, are not real yet -- they are abstract until the underlying connections are established in the lower layers.

TE链接端广告<控制平面>。管理特定传输节点的控制器播发本地TE链路端。TE域中的任何控制器如果接收到TE链路两端的一致广告,则使TE链路可用于其本地路径计算。严格地说,没有TE链接广告——只有TE链接终端广告。TE链路端广告可能包含关于多个交换能力的信息。然而,这不应解释为多层TE链路端的广告,而应解释为多个并行TE链路端的联合广告,每个并行TE链路端代表单独层中的资源。广告可以包含组中所有TE链路共享的属性(例如,保护能力、共享风险链路组(srlg)等)、与每个TE链路相关的单独信息(例如,交换能力、数据编码、无保留带宽等)以及与广告资源的层间关系(例如,终端和适配能力)相关的信息,如果控制平面决定将它们用作更高层数据链路的终端点。然而,这些高层数据链接还不是真实的——在底层连接建立之前,它们是抽象的。

LSPs created in lower layers for the purpose of providing data links (extra network flexibility) in higher layers are called hierarchical connections or LSPs (H-LSPs), or simply hierarchies. LSPs created for the purpose of providing data links in the same layer are called stitching segments. H-LSPs and stitching segments could, but do not have to, be advertised as TE links. Naturally, if they are advertised as TE links (LSPs advertised as TE links are often referred to as TE-LSPs), they are made available for path computations performed on any controller within the TE domain into which they are advertised. H-LSPs and stitching segments could be advertised either individually or in TE bundles. An H-LSP or a stitching segment could be advertised as a TE link either into the same or a separate TE domain compared to the one within which it was provisioned.

在较低层中创建的用于在较高层中提供数据链路(额外网络灵活性)的LSP称为层次连接或LSP(H-LSP),或简称为层次结构。为在同一层中提供数据链路而创建的LSP称为缝合段。H-LSP和缝合段可以但不必作为TE链接进行广告。自然地,如果它们作为TE链路进行广告(作为TE链路进行广告的lsp通常被称为TE lsp),则它们可用于在其广告进入的TE域内的任何控制器上执行的路径计算。H-LSP和缝合段可以单独发布,也可以捆绑发布。H-LSP或缝合段可以作为TE链路播发到相同或单独的TE域中,与在其中提供它的域相比。

A set of H-LSPs that is created (or could be created) in a particular layer to provide network flexibility (data links) in other layers is called a Virtual Network Topology (VNT). A single H-LSP could provide several (more than one) data links (each in a different layer).

在特定层中创建(或可以创建)以在其他层中提供网络灵活性(数据链路)的一组H-LSP称为虚拟网络拓扑(VNT)。单个H-LSP可以提供多个(多个)数据链路(每个链路位于不同的层)。

Forwarding Adjacency (FA) <Control Plane> is a TE link that does not require a direct routing adjacency (peering) between the controllers managing its ends in order to guarantee control plane connectivity (a control channel) between the controllers. An example of an FA is an H-LSP or stitching segment advertised as a TE link into the same TE domain within which it was dynamically provisioned. In such cases, the control plane connectivity between the controllers at the ends of the H-LSP/stitching segment is guaranteed by the concatenation of control channels interconnecting the ends of each of its constituents. In contrast, an H-LSP or stitching segment advertised as a TE link into a TE domain (different than one where it was provisioned) generally requires a direct routing adjacency to be established within the TE domain where the TE link is advertised in order to guarantee control plane connectivity between the TE link ends. Therefore, is not an FA.

转发邻接(FA)<控制平面>是一种TE链路,它不需要管理其端部的控制器之间的直接路由邻接(对等),以保证控制器之间的控制平面连接(控制通道)。FA的一个示例是H-LSP或缝合段,其作为TE链路被广告到动态供应它的同一TE域中。在这种情况下,H-LSP/缝合段末端的控制器之间的控制平面连接通过连接其每个组成部分末端的控制通道的串联来保证。相反,作为TE链路播发到TE域的H-LSP或缝合段(不同于提供它的部分)通常需要在TE链路播发的TE域内建立直接路由邻接,以便保证TE链路端部之间的控制平面连接。因此,它不是FA。

3.9.2. ASON Terms
3.9.2. ASON术语

The ITU term for a TE link end is Subnetwork Point (SNP) pool (SNPP).

ITU对TE链路端的术语是子网点(SNP)池(SNPP)。

The ITU term for a TE link is SNPP link.

ITU对TE链路的术语是SNPP链路。

The ITU term for an H-LSP is trail.

ITU对H-LSP的术语是trail。

3.10. TE Domains
3.10. TE域
3.10.1 GMPLS Terms
3.10.1 GMPLS条款

TE link attribute is a parameter of the set of resources associated with a TE link end that is significant in the context of path computation.

TE link属性是与TE link end关联的资源集的参数,在路径计算的上下文中非常重要。

Full TE visibility is a situation when a controller receives all unmodified TE advertisements from every other controller in a particular set of controllers.

完全TE可见性是当控制器从特定控制器集中的每个其他控制器接收到所有未修改的TE播发时的一种情况。

Limited TE visibility is a situation when a controller receives summarized TE information, or does not receive TE advertisements from at least one of a particular set of controllers.

TE可见性受限是指当控制器接收到汇总的TE信息,或不从至少一组特定控制器接收TE播发时的情况。

TE domain is a set of controllers each of which has full TE visibility within the set.

TE域是一组控制器,每个控制器在该集中都具有完全的TE可见性。

TE database (TED) is a memory structure within a controller that contains all TE advertisements generated by all controllers within a particular TE domain.

TE数据库(TED)是控制器内的内存结构,包含特定TE域内所有控制器生成的所有TE播发。

Vertical network integration is a set of control plane mechanisms and coordinated data plane mechanisms that span multiple layers. The control plane mechanisms exist on one or more controllers and operate either within a single control plane instance or between control plane instances. The data plane mechanisms consist of collaboration and adaptation between layers within a single transport node.

垂直网络集成是一组跨多个层的控制平面机制和协调数据平面机制。控制平面机构存在于一个或多个控制器上,在单个控制平面实例内或控制平面实例之间运行。数据平面机制包括单个传输节点内各层之间的协作和自适应。

Horizontal network integration is a set of control plane mechanisms and coordinated data plane mechanisms that span multiple TE domains within the same layer. The control plane mechanisms exist on one or more controllers and operate either within a single control plane instance or between control plane instances. The data plane mechanisms consist of collaboration between TE domains.

水平网络集成是一组控制平面机制和协调数据平面机制,它们跨越同一层中的多个TE域。控制平面机构存在于一个或多个控制器上,在单个控制平面实例内或控制平面实例之间运行。数据平面机制包括TE域之间的协作。

3.11. Component Links and Bundles
3.11. 组件链接和捆绑包
3.11.1. GMPLS Terms
3.11.1. GMPLS条款

Component link end <Control Plane> is a grouping of resources of a particular layer that is not advertised as an individual TE link end. A component link end could represent one or more data link ends or any subset of resources that belong to one or more data link ends.

组件链接端<控制平面>是特定层的一组资源,不作为单独的TE链接端发布。组件链路端可以表示一个或多个数据链路端或属于一个或多个数据链路端的资源的任何子集。

Component link <Control Plane> is a grouping of two or more component link ends associated with neighboring transport nodes (that is, directly interconnected by one or more data links) in a particular layer. Component links are equivalent to TE links except that the component link ends are not advertised separately.

组件链路<控制平面>是特定层中与相邻传输节点(即,通过一个或多个数据链路直接互连)关联的两个或多个组件链路端的分组。组件链接等同于TE链接,只是组件链接端没有单独公布。

TE bundle <Control Plane> is an association of several parallel (that is, connecting the same pair of transport nodes) component links whose attributes are identical or whose differences are sufficiently negligible that the TE domain can view the entire association as a single TE link. A TE bundle is advertised in the same way as a TE link, that is, by representing the associated component link ends as a single TE link end (TE bundle end) which is advertised.

TE bundle<Control Plane>是多个并行(即连接同一对传输节点)组件链路的关联,这些组件链路的属性相同或差异可以忽略不计,以便TE域可以将整个关联视为单个TE链路。TE束以与TE链路相同的方式播发,即,通过将关联的组件链路端表示为播发的单个TE链路端(TE束端)。

3.12. Regions
3.12. 区域
3.12.1. GMPLS Terms
3.12.1. GMPLS条款

TE region <Control Plane> is a set of one or more layers that are associated with the same type of data plane technology. A TE region is sometimes called an LSP region or just a region. Examples of regions are: IP, ATM, TDM, photonic, fiber switching, etc. Regions and region boundaries are significant for the signaling sub-system of the control plane because LSPs are signaled substantially differently (i.e., use different signaling object formats and semantics) in different regions. Furthermore, advertising, routing, and path computation could be performed differently in different regions. For example, computation of paths across photonic regions requires a wider set of constraints (e.g., optical impairments, wavelength continuity, etc) and needs to be performed in different terms (e.g., in terms of individual resources -- lambda channels, rather than in terms of TE links) compared to path computation in other regions like IP or TDM.

TE区域<控制平面>是一组与相同类型的数据平面技术相关联的一个或多个层。TE区域有时称为LSP区域或仅称为区域。区域的示例包括:IP、ATM、TDM、光子、光纤交换等。区域和区域边界对于控制平面的信令子系统来说是重要的,因为lsp在不同区域中的信令方式基本不同(即,使用不同的信令对象格式和语义)。此外,广告、路由和路径计算可以在不同区域中不同地执行。例如,跨光子区域的路径计算需要一组更广泛的约束条件(例如,光学损伤、波长连续性等),并且需要以不同的条件执行(例如,根据单个资源——λ信道,而不是TE链路)与IP或TDM等其他区域的路径计算相比。

4. Guidance on the Application of this Lexicography
4. 本词典的应用指南

As discussed in the introduction to this document, this lexicography is intended to bring the concepts and terms associated with GMPLS into the context of the ITU-T's ASON architecture. Thus, it should help those familiar with ASON to see how they may use the features and functions of GMPLS in order to meet the requirements of an ASON. For example, service providers wishing to establish a protected end-to-end service might read [SEG-PROT] and [E2E-PROT] and wish to understand how the GMPLS terms used relate to the ASON architecture so that they can confirm that they will satisfy their requirements.

如本文件导言所述,本词典旨在将与GMPLS相关的概念和术语纳入ITU-T的ASON架构中。因此,它应该帮助那些熟悉ASON的人了解如何使用GMPLS的特性和功能,以满足ASON的要求。例如,希望建立受保护的端到端服务的服务提供商可能阅读[SEG-PROT]和[E2E-PROT],并希望了解所使用的GMPLS术语与ASON架构的关系,以便他们能够确认他们将满足自己的要求。

This lexicography should not be used in order to obtain or derive definitive definitions of GMPLS terms. To obtain definitions of GMPLS terms that are applicable across all GMPLS architectural models, the reader should refer to the RFCs listed in the references sections of this document. [RFC3945] provides an overview of the GMPLS architecture and should be read first.

本词典不应用于获取或推导GMPLS术语的最终定义。为了获得适用于所有GMPLS体系结构模型的GMPLS术语定义,读者应参考本文件参考章节中列出的RFC。[RFC3945]概述了GMPLS体系结构,应首先阅读。

5. Management Considerations
5. 管理考虑

Both GMPLS and ASON networks require management. Both GMPLS and ASON specifications include considerable efforts to provide operator control and monitoring, as well as Operations and Management (OAM) functionality.

GMPLS和ASON网络都需要管理。GMPLS和ASON规范都致力于提供运营商控制和监控以及运营和管理(OAM)功能。

These concepts are, however, out of scope of this document.

然而,这些概念超出了本文件的范围。

6. Security Considerations
6. 安全考虑

Security is also a significant requirement of both GMPLS and ASON architectures.

安全性也是GMPLS和ASON体系结构的重要要求。

Again, however, this informational document is intended only to provide a lexicography, and the security concerns are, therefore, out of scope.

然而,此信息性文档也只是为了提供词典编纂,因此安全问题超出了范围。

7. Acknowledgements
7. 致谢

The authors would like to thank participants in the IETF's CCAMP working group and the ITU-T's Study Group 15 for their help in producing this document. In particular, all those who attended the Study Group 15 Question 14 Interim Meeting in Holmdel, New Jersey during January 2005. Further thanks to all participants of Study Group 15 Questions 12 and 14 who have provided valuable discussion, feedback and suggested text.

作者要感谢IETF的CCAMP工作组和ITU-T的第15研究组的参与者,感谢他们帮助编写本文件。特别是,2005年1月在新泽西州霍姆代尔参加研究组第15个问题14临时会议的所有人。进一步感谢研究组15问题12和14的所有参与者,他们提供了宝贵的讨论、反馈和建议文本。

Many thanks to Ichiro Inoue for his useful review and input, and to Scott Brim and Dimitri Papadimitriou for lengthy and constructive discussions. Ben Mack-Crane and Jonathan Sadler provided very helpful reviews and discussions of ASON terms. Thanks to Deborah Brungard and Kohei Shiomoto for additional review comments.

非常感谢井上一郎的有益评论和投入,感谢斯科特·布里姆和迪米特里·帕帕迪米特里欧的长期和建设性的讨论。Ben Mack Crane和Jonathan Sadler对ASON条款进行了非常有益的评论和讨论。感谢Deborah Brungard和Kohei Shiomoto提供更多审查意见。

8. Normative References
8. 规范性引用文件

[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

[RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.

[RFC4201]Kompella,K.,Rekhter,Y.,和L.Berger,“MPLS流量工程(TE)中的链路捆绑”,RFC 42012005年10月。

[RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005.

[RFC4202]Kompella,K.和Y.Rekhter,“支持通用多协议标签交换(GMPLS)的路由扩展”,RFC 4202,2005年10月。

[RFC4204] Lang, J., Ed., "Link Management Protocol (LMP)", RFC 4204, October 2005.

[RFC4204]Lang,J.,Ed.,“链路管理协议(LMP)”,RFC4204,2005年10月。

[RFC4206] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005.

[RFC4206]Kompella,K.和Y.Rekhter,“具有通用多协议标签交换(GMPLS)流量工程(TE)的标签交换路径(LSP)层次结构”,RFC 4206,2005年10月。

9. Informative References
9. 资料性引用

[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[RFC4139] Papadimitriou, D., Drake, J., Ash, J., Farrel, A., and L. Ong, "Requirements for Generalized MPLS (GMPLS) Signaling Usage and Extensions for Automatically Switched Optical Network (ASON)", RFC 4139, July 2005.

[RFC4139]Papadimitriou,D.,Drake,J.,Ash,J.,Farrel,A.,和L.Ong,“自动交换光网络(ASON)的通用MPLS(GMPLS)信令使用和扩展要求”,RFC 4139,2005年7月。

[RFC4203] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005.

[RFC4203]Kompella,K.,Ed.和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,2005年10月。

[RFC4205] Kompella, K., Ed. and Y. Rekhter, Ed., "Intermediate System to Intermediate System (IS-IS) Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4205, October 2005.

[RFC4205]Kompella,K.,Ed.和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的中间系统到中间系统(IS-IS)扩展”,RFC 4205,2005年10月。

[RFC4258] Brungard, D., Ed., "Requirements for Generalized Multi-Protocol Label Switching (GMPLS) Routing for the Automatically Switched Optical Network (ASON)", RFC 4258, November 2005.

[RFC4258]Brungard,D.,Ed.“自动交换光网络(ASON)的通用多协议标签交换(GMPLS)路由要求”,RFC 4258,2005年11月。

[RFC4394] Fedyk, D., Aboul-Magd, O., Brungard, D., Lang, J., and D. Papadimitriou, "A Transport Network View of the Link Management Protocol (LMP)", RFC 4394, February 2006.

[RFC4394]Fedyk,D.,Aboul Magd,O.,Brungard,D.,Lang,J.,和D.Papadimitriou,“链路管理协议(LMP)的传输网络视图”,RFC 4394,2006年2月。

[E2E-PROT] Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou, D., Ed., "RSVP-TE Extensions in support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS)-based Recovery", Work in Progress, April 2005.

[E2E-PROT]Lang,J.,Ed.,Rekhter,Y.,Ed.,和D.Papadimitriou,D.,Ed.,“支持端到端通用多协议标签交换(GMPLS)恢复的RSVP-TE扩展”,正在进行的工作,2005年4月。

[SEG-PROT] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel, "GMPLS Based Segment Recovery", Work in Progress, May 2005.

[SEG-PROT]Berger,L.,Bryskin,I.,Papadimitriou,D.,和A.Farrel,“基于GMPLS的段恢复”,正在进行的工作,2005年5月。

For information on the availability of the following documents, please see http://www.itu.int.

有关下列文件的可用性信息,请参见http://www.itu.int.

[G-8080] ITU-T Recommendation G.8080/Y.1304, Architecture for the automatically switched optical network (ASON).

[G-8080]ITU-T建议G.8080/Y.1304,自动交换光网络(ASON)架构。

[G-805] ITU-T Recommendation G.805 (2000), Generic functional architecture of transport networks.

[G-805]ITU-T建议G.805(2000),传输网络的通用功能架构。

[G-807] ITU-T Recommendation G.807/Y.1302 (2001), Requirements for the automatic switched transport network (ASTN).

[G-807]ITU-T建议G.807/Y.1302(2001),自动交换传输网络(ASTN)的要求。

[G-872] ITU-T Recommendation G.872 (2001), Architecture of optical transport networks.

[G-872]ITU-T建议G.872(2001),光传输网络体系结构。

[G-8081] ITU-T Recommendation G.8081 (2004), Terms and definitions for Automatically Switched Optical Networks (ASON).

[G-8081]ITU-T建议G.8081(2004),自动交换光网络(ASON)的术语和定义。

[G-7713] ITU-T Recommendation G.7713 (2001), Distributed Call and Connection Management.

[G-7713]ITU-T建议G.7713(2001),分布式呼叫和连接管理。

[G-7714] ITU-T Recommendation G.7714 Revision (2005), Generalized automatic discovery techniques.

[G-7714]ITU-T建议G.7714修订版(2005),通用自动发现技术。

[G-7715] ITU-T Recommendation G.7715 (2002), Architecture and Requirements for the Automatically Switched Optical Network (ASON).

[G-7715]ITU-T建议G.7715(2002),自动交换光网络(ASON)的体系结构和要求。

Authors' Addresses

作者地址

Igor Bryskin Independent Consultant

伊戈尔·布莱斯金独立顾问

   EMail:  i_bryskin@yahoo.com
        
   EMail:  i_bryskin@yahoo.com
        

Adrian Farrel Old Dog Consulting

阿德里安·法雷尔老狗咨询公司

   Phone:  +44 (0) 1978 860944
   EMail:  adrian@olddog.co.uk
        
   Phone:  +44 (0) 1978 860944
   EMail:  adrian@olddog.co.uk
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (2006).

版权所有(C)互联网协会(2006年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).

RFC编辑器功能的资金由IETF行政支持活动(IASA)提供。