Network Working Group D. Eastlake 3rd Request for Comments: 4305 Motorola Laboratories Obsoletes: 2404, 2406 December 2005 Category: Standards Track
Network Working Group D. Eastlake 3rd Request for Comments: 4305 Motorola Laboratories Obsoletes: 2404, 2406 December 2005 Category: Standards Track
Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
封装安全有效负载(ESP)和身份验证头(AH)的密码算法实现要求
Status of This Memo
关于下段备忘
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2005).
版权所有(C)互联网协会(2005年)。
Abstract
摘要
The IPsec series of protocols makes use of various cryptographic algorithms in order to provide security services. The Encapsulating Security Payload (ESP) and the Authentication Header (AH) provide two mechanisms for protecting data being sent over an IPsec Security Association (SA). To ensure interoperability between disparate implementations, it is necessary to specify a set of mandatory-to-implement algorithms to ensure that there is at least one algorithm that all implementations will have available. This document defines the current set of mandatory-to-implement algorithms for ESP and AH as well as specifying algorithms that should be implemented because they may be promoted to mandatory at some future time.
IPsec系列协议利用各种加密算法来提供安全服务。封装安全负载(ESP)和身份验证头(AH)提供了两种机制来保护通过IPsec安全关联(SA)发送的数据。为了确保不同实现之间的互操作性,有必要指定一组强制实现算法,以确保所有实现至少有一个可用的算法。本文件定义了ESP和AH算法的当前强制实施集合,并指定了应实施的算法,因为它们可能在未来某个时间升级为强制实施。
Table of Contents
目录
1. Introduction ....................................................2 2. Requirements Terminology ........................................3 3. Algorithm Selection .............................................3 3.1. Encapsulating Security Payload .............................3 3.1.1. ESP Encryption and Authentication Algorithms ........4 3.1.2. ESP Combined Mode Algorithms ........................4 3.2. Authentication Header ......................................5 4. Security Considerations .........................................5 5. Acknowledgement .................................................5 6. Changes from RFC 2402 and 2406 ..................................6 7. Normative References ............................................6 8. Informative References ..........................................7
1. Introduction ....................................................2 2. Requirements Terminology ........................................3 3. Algorithm Selection .............................................3 3.1. Encapsulating Security Payload .............................3 3.1.1. ESP Encryption and Authentication Algorithms ........4 3.1.2. ESP Combined Mode Algorithms ........................4 3.2. Authentication Header ......................................5 4. Security Considerations .........................................5 5. Acknowledgement .................................................5 6. Changes from RFC 2402 and 2406 ..................................6 7. Normative References ............................................6 8. Informative References ..........................................7
The Encapsulating Security Payload (ESP) and the Authentication Header (AH) provide two mechanisms for protecting data being sent over an IPsec Security Association (SA) [IPsec, ESP, AH]. To ensure interoperability between disparate implementations, it is necessary to specify a set of mandatory-to-implement algorithms to ensure that there is at least one algorithm that all implementations will have available. This document defines the current set of mandatory-to-implement algorithms for ESP and AH as well as specifying algorithms that should be implemented because they may be promoted to mandatory at some future time.
封装安全负载(ESP)和身份验证头(AH)提供了两种机制来保护通过IPsec安全关联(SA)发送的数据[IPsec,ESP,AH]。为了确保不同实现之间的互操作性,有必要指定一组强制实现算法,以确保所有实现至少有一个可用的算法。本文件定义了ESP和AH算法的当前强制实施集合,并指定了应实施的算法,因为它们可能在未来某个时间升级为强制实施。
The nature of cryptography is that new algorithms surface continuously and existing algorithms are continuously attacked. An algorithm believed to be strong today may be demonstrated to be weak tomorrow. Given this, the choice of mandatory-to-implement algorithm should be conservative so as to minimize the likelihood of it being compromised quickly. Thought should also be given to performance considerations as many uses of IPsec will be in environments where performance is a concern.
密码学的本质是新算法不断出现,现有算法不断受到攻击。今天被认为很强大的算法明天可能会被证明很弱。考虑到这一点,实现算法的强制选择应该是保守的,以便最大限度地降低其快速受损的可能性。还应考虑性能方面的考虑,因为IPsec的许多用途都是在关注性能的环境中使用的。
Finally, we need to recognize that the mandatory-to-implement algorithm(s) may need to change over time to adapt to the changing world. For this reason, the selection of mandatory-to-implement algorithms is not included the main IPsec, ESP, or AH specifications. It is instead placed in this document. As the choice of algorithm changes, only this document should need to be updated.
最后,我们需要认识到,强制实现算法可能需要随着时间的推移而改变,以适应不断变化的世界。因此,主要IPsec、ESP或AH规范中不包括实现算法的强制选项。而是放在本文档中。随着算法选择的变化,只需更新本文档。
Ideally, the mandatory-to-implement algorithm of tomorrow should already be available in most implementations of IPsec by the time it is made mandatory. To facilitate this, we will attempt to identify such algorithms (as they are known today) in this document. There is
理想情况下,明天的强制实现算法在强制执行时应该已经在大多数IPsec实现中可用。为了促进这一点,我们将在本文档中尝试识别此类算法(如今天所知)。有
no guarantee that the algorithms we believe today may be mandatory in the future will in fact become so. All algorithms known today are subject to cryptographic attack and may be broken in the future.
我们认为今天的算法在未来可能是强制性的,但这并不能保证算法事实上会成为强制性的。目前已知的所有算法都会受到加密攻击,将来可能会被破坏。
Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and "MAY" that appear in this document are to be interpreted as described in [RFC2119].
本文件中出现的关键词“必须”、“不得”、“必需”、“应该”、“不应该”和“可能”应按照[RFC2119]中所述进行解释。
We define some additional terms here:
我们在此定义了一些附加术语:
SHOULD+ This term means the same as SHOULD. However, it is likely that an algorithm marked as SHOULD+ will be promoted at some future time to be a MUST. SHOULD- This term means the same as SHOULD. However, it is likely that an algorithm marked as SHOULD- will be deprecated to a MAY or worse in a future version of this document. MUST- This term means the same as MUST. However, we expect that at some point in the future this algorithm will no longer be a MUST.
SHOULD+这个词的意思与SHOULD相同。然而,标记为SHOULD+的算法很可能会在将来某个时候被提升为必须的。应-该术语的含义与应相同。但是,在本文档的未来版本中,标记为“应该”的算法很可能会被弃用为“可能”或“更糟”。必须-该术语的含义与必须相同。然而,我们预计在将来的某个时候,这种算法将不再是必须的。
For IPsec implementations to interoperate, they must support one or more security algorithms in common. This section specifies the security algorithm implementation requirements for standards-conformant ESP and AH implementations. The security algorithms actually used for any particular ESP or AH security association are determined by a negotiation mechanism, such as the Internet Key Exchange (IKE [RFC2409, IKEv2]) or pre-establishment.
为了使IPsec实现能够互操作,它们必须共同支持一个或多个安全算法。本节规定了符合标准的ESP和AH实施的安全算法实施要求。实际用于任何特定ESP或AH安全关联的安全算法由协商机制确定,如互联网密钥交换(IKE[RFC2409,IKEv2])或预建立。
Of course, additional standard and proprietary algorithms beyond those listed below can be implemented.
当然,除了下面列出的以外,还可以实现其他标准和专有算法。
The implementation conformance requirements for security algorithms for ESP are given in the tables below. See Section 2 for definitions of the values in the "Requirement" column.
下表给出了ESP安全算法的实现一致性要求。有关“要求”列中的值定义,请参见第2节。
These tables list encryption and authentication algorithms for the IPsec Encapsulating Security Payload protocol.
这些表列出了IPsec封装安全有效负载协议的加密和身份验证算法。
Requirement Encryption Algorithm (notes) ----------- -------------------- MUST NULL (1) MUST- TripleDES-CBC [RFC2451] SHOULD+ AES-CBC with 128-bit keys [RFC3602] SHOULD AES-CTR [RFC3686] SHOULD NOT DES-CBC [RFC2405] (3)
Requirement Encryption Algorithm (notes) ----------- -------------------- MUST NULL (1) MUST- TripleDES-CBC [RFC2451] SHOULD+ AES-CBC with 128-bit keys [RFC3602] SHOULD AES-CTR [RFC3686] SHOULD NOT DES-CBC [RFC2405] (3)
Requirement Authentication Algorithm (notes) ----------- ------------------------ MUST HMAC-SHA1-96 [RFC2404] MUST NULL (1) SHOULD+ AES-XCBC-MAC-96 [RFC3566] MAY HMAC-MD5-96 [RFC2403] (2)
Requirement Authentication Algorithm (notes) ----------- ------------------------ MUST HMAC-SHA1-96 [RFC2404] MUST NULL (1) SHOULD+ AES-XCBC-MAC-96 [RFC3566] MAY HMAC-MD5-96 [RFC2403] (2)
Notes:
笔记:
(1) Since ESP encryption and authentication are optional, support for the two "NULL" algorithms is required to maintain consistency with the way these services are negotiated. Note that while authentication and encryption can each be "NULL", they MUST NOT both be "NULL". (2) Weaknesses have become apparent in MD5; however, these should not affect the use of MD5 with HMAC. (3) DES, with its small key size and publicly demonstrated and open-design special-purpose cracking hardware, is of questionable security for general use.
(1) 由于ESP加密和身份验证是可选的,因此需要支持两个“NULL”算法,以保持与这些服务协商方式的一致性。请注意,虽然身份验证和加密都可以为“NULL”,但它们不能同时为“NULL”。(2) MD5中的弱点已变得明显;但是,这些不应影响MD5与HMAC的配合使用。(3) DES具有较小的密钥大小和公开展示的开放式设计专用破解硬件,对于一般用途而言,其安全性值得怀疑。
As specified in [ESP], combined mode algorithms are supported that provide both confidentiality and authentication services. Support of such algorithms will require proper structuring of ESP implementations. Under many circumstances, combined mode algorithms provide significant efficiency and throughput advantages. Although there are no suggested or required combined algorithms at this time, AES-CCM [CCM], which has been adopted as the preferred mode for security in IEEE 802.11 [802.11i], is expected to be of interest in the near future.
如[ESP]中所述,支持同时提供保密和身份验证服务的组合模式算法。支持这些算法需要ESP实现的适当结构。在许多情况下,组合模式算法提供了显著的效率和吞吐量优势。虽然目前没有建议或要求的组合算法,但AES-CCM[CCM]已被作为IEEE 802.11[802.11i]中的首选安全模式,预计在不久的将来会引起人们的兴趣。
The implementation conformance requirements for security algorithms for AH are given below. See Section 2 for definitions of the values in the "Requirement" column. As you would suspect, all of these algorithms are authentication algorithms.
下面给出了AH安全算法的实现一致性要求。有关“要求”列中的值定义,请参见第2节。正如您所怀疑的,所有这些算法都是身份验证算法。
Requirement Algorithm (notes) ----------- --------- MUST HMAC-SHA1-96 [RFC2404] SHOULD+ AES-XCBC-MAC-96 [RFC3566] MAY HMAC-MD5-96 [RFC2403] (1)
Requirement Algorithm (notes) ----------- --------- MUST HMAC-SHA1-96 [RFC2404] SHOULD+ AES-XCBC-MAC-96 [RFC3566] MAY HMAC-MD5-96 [RFC2403] (1)
Note:
注:
(1) Weaknesses have become apparent in MD5; however, these should not affect the use of MD5 with HMAC.
(1) MD5中的弱点已变得明显;但是,这些不应影响MD5与HMAC的配合使用。
The security of cryptographic-based systems depends on both the strength of the cryptographic algorithms chosen and the strength of the keys used with those algorithms. The security also depends on the engineering and administration of the protocol used by the system to ensure that there are no non-cryptographic ways to bypass the security of the overall system.
基于密码的系统的安全性取决于所选密码算法的强度以及与这些算法一起使用的密钥的强度。安全性还取决于系统使用的协议的工程和管理,以确保没有非加密方式绕过整个系统的安全性。
This document concerns itself with the selection of cryptographic algorithms for the use of ESP and AH, specifically with the selection of mandatory-to-implement algorithms. The algorithms identified in this document as "MUST implement" or "SHOULD implement" are not known to be broken at the current time, and cryptographic research so far leads us to believe that they will likely remain secure into the foreseeable future. However, this is not necessarily forever. We would therefore expect that new revisions of this document will be issued from time to time that reflect the current best practice in this area.
本文件涉及ESP和AH使用的加密算法的选择,特别是强制算法的选择。本文件中确定为“必须实现”或“应该实现”的算法目前尚不存在漏洞,迄今为止的密码研究使我们相信,在可预见的未来,它们可能仍然是安全的。然而,这不一定是永远的。因此,我们期望本文件的新修订将不时发布,以反映这一领域的当前最佳做法。
Much of the wording herein was adapted from RFC 4307, "Cryptographic Algorithms for Use in the Internet Key Exchange Version 2", by Jeffrey I. Schiller.
本文中的大部分措辞是根据Jeffrey I.Schiller的RFC 4307“互联网密钥交换版本2中使用的加密算法”改编的。
[RFC2402] and [RFC2406] defined the IPsec Authentication Header and IPsec Encapsulating Security Payload. Each specified the implementation requirements for cryptographic algorithms for their respective protocols. They have now been replaced with [AH] and [ESP], which do not specify cryptographic algorithm implementation requirements, and this document, which specifies such requirements for both [AH] and [ESP].
[RFC2402]和[RFC2406]定义了IPsec身份验证头和IPsec封装安全负载。每个协议都规定了各自协议的加密算法的实现要求。它们现在已被[AH]和[ESP]所取代,后者未规定加密算法的实现要求,而本文件规定了[AH]和[ESP]的此类要求。
The implementation requirements are compared below:
实施要求比较如下:
Old Old New Req. RFC(s) Requirement Algorithm (notes) --- ------ ----------- --------- MUST 2406 SHOULD NOT DES-CBC [RFC2405] (1) MUST 2402 2406 MAY HMAC-MD5-96 [RFC2403] MUST 2402 2406 MUST HMAC-SHA1-96 [RFC2404]
Old Old New Req. RFC(s) Requirement Algorithm (notes) --- ------ ----------- --------- MUST 2406 SHOULD NOT DES-CBC [RFC2405] (1) MUST 2402 2406 MAY HMAC-MD5-96 [RFC2403] MUST 2402 2406 MUST HMAC-SHA1-96 [RFC2404]
Note:
注:
(1) The IETF deprecated the use of single DES years ago and has not included it in any new standard for some time (see IESG note on the first page of [RFC2407]). But this document represents the first standards-track recognition of that deprecation by specifying that implementations SHOULD NOT provide single DES. The US Government National Institute of Standards and Technology (NIST) has formally recognized the weakness of single DES by a notice published in the 26 July 2004 US Government Federal Register (Docket No. 040602169-4169-01) proposing to withdraw it as a US Government Standard. Triple DES remains approved by both the IETF and NIST.
(1) IETF在几年前就不赞成使用单一DES,并且有一段时间没有将其纳入任何新标准(参见[RFC2407]第一页的IESG注释)。但本文档通过指定实现不应提供单一DES,代表了第一个标准跟踪对这种不推荐的认可。美国政府国家标准与技术研究所(NIST)通过2004年7月26日《美国政府联邦公报》(卷宗号040602169-4169-01)中发布的通知正式承认了单一DES的弱点,该通知建议将其作为美国政府标准撤销。三重DES仍然得到IETF和NIST的批准。
[AH] Kent, S., "IP Authentication Header", RFC 4302, December 2005.
[AH]Kent,S.,“IP认证头”,RFC 4302,2005年12月。
[ESP] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[ESP]Kent,S.,“IP封装安全有效负载(ESP)”,RFC 4303,2005年12月。
[IPsec] Kent, S., "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
[IPsec]Kent,S.,“互联网协议的安全架构”,RFC 43012005年12月。
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC2403] Madson, C. and R. Glenn, "The Use of HMAC-MD5-96 within ESP and AH", RFC 2403, November 1998.
[RFC2403]Madson,C.和R.Glenn,“HMAC-MD5-96在ESP和AH中的使用”,RFC 2403,1998年11月。
[RFC2404] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998.
[RFC2404]Madson,C.和R.Glenn,“在ESP和AH中使用HMAC-SHA-1-96”,RFC 2404,1998年11月。
[RFC2405] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher Algorithm With Explicit IV", RFC 2405, November 1998.
[RFC2405]Madson,C.和N.Doraswamy,“带显式IV的ESP DES-CBC密码算法”,RFC 2405,1998年11月。
[RFC3566] Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec", RFC 3566, September 2003.
[RFC3566]Frankel,S.和H.Herbert,“AES-XCBC-MAC-96算法及其在IPsec中的使用”,RFC 3566,2003年9月。
[RFC3602] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher Algorithm and Its Use with IPsec", RFC 3602, September 2003.
[RFC3602]Frankel,S.,Glenn,R.,和S.Kelly,“AES-CBC密码算法及其在IPsec中的使用”,RFC 3602,2003年9月。
[RFC3686] Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)", RFC 3686, January 2004.
[RFC3686]Housley,R.,“使用高级加密标准(AES)计数器模式和IPsec封装安全有效负载(ESP)”,RFC 3686,2004年1月。
[802.11i] LAN/MAN Specific Requirements Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: Medium Access Control (MAC) Security Enhancements, IEEE Std 802.11i, June 2004.
[802.11i]局域网/城域网特定要求第11部分:无线介质访问控制(MAC)和物理层(PHY)规范:介质访问控制(MAC)安全增强,IEEE标准802.11i,2004年6月。
[JIS] Schiller, J., "Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)", RFC 4307, December 2005.
[JIS]Schiller,J.“互联网密钥交换版本2(IKEv2)中使用的加密算法”,RFC 4307,2005年12月。
[CCM] Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)", RFC 3686, January 2004.
[CCM]Housley,R.“使用高级加密标准(AES)计数器模式和IPsec封装安全有效载荷(ESP)”,RFC 3686,2004年1月。
[IKEv2] Kaufman, C., Ed., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005.
[IKEv2]考夫曼,C.,编辑,“因特网密钥交换(IKEv2)协议”,RFC4306,2005年12月。
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.
[RFC791]Postel,J.,“互联网协议”,标准5,RFC7911981年9月。
[RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.
[RFC2402]Kent,S.和R.Atkinson,“IP认证头”,RFC 2402,1998年11月。
[RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[RFC2406]Kent,S.和R.Atkinson,“IP封装安全有效载荷(ESP)”,RFC 2406,1998年11月。
[RFC2407] Piper, D., "The Internet IP Security Domain of Interpretation for ISAKMP", RFC 2407, November 1998.
[RFC2407]Piper,D.,“ISAKMP解释的互联网IP安全域”,RFC 2407,1998年11月。
[RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409, November 1998.
[RFC2409]Harkins,D.和D.Carrel,“互联网密钥交换(IKE)”,RFC 2409,1998年11月。
Author's Address
作者地址
Donald E. Eastlake 3rd Motorola Laboratories 155 Beaver Street Milford, MA 01757 USA
Donald E.Eastlake 3rd Motorola Laboratories美国马萨诸塞州米尔福德市海狸街155号,邮编01757
Phone: +1-508-786-7554 (w) +1-508-634-2066 (h) EMail: Donald.Eastlake@Motorola.com
Phone: +1-508-786-7554 (w) +1-508-634-2066 (h) EMail: Donald.Eastlake@Motorola.com
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (2005).
版权所有(C)互联网协会(2005年)。
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。