Network Working Group                                   D. Brungard, Ed.
Request for Comments: 4258                                           ATT
Category: Informational                                    November 2005
        
Network Working Group                                   D. Brungard, Ed.
Request for Comments: 4258                                           ATT
Category: Informational                                    November 2005
        

Requirements for Generalized Multi-Protocol Label Switching (GMPLS) Routing for the Automatically Switched Optical Network (ASON)

自动交换光网络(ASON)的通用多协议标签交换(GMPLS)路由要求

Status of This Memo

关于下段备忘

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

Abstract

摘要

The Generalized Multi-Protocol Label Switching (GMPLS) suite of protocols has been defined to control different switching technologies as well as different applications. These include support for requesting Time Division Multiplexing (TDM) connections including Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH) and Optical Transport Networks (OTNs).

广义多协议标签交换(GMPLS)协议套件已被定义为控制不同的交换技术以及不同的应用。其中包括支持请求时分复用(TDM)连接,包括同步光网络(SONET)/同步数字体系(SDH)和光传输网络(OTN)。

This document concentrates on the routing requirements placed on the GMPLS suite of protocols in order to support the capabilities and functionalities of an Automatically Switched Optical Network (ASON) as defined by the ITU-T.

本文件集中于GMPLS协议套件的路由要求,以支持ITU-T定义的自动交换光网络(ASON)的能力和功能。

Table of Contents

目录

   1. Introduction ....................................................2
   2. Conventions Used in This Document ...............................4
   3. ASON Routing Architecture and Requirements ......................4
      3.1. Multiple Hierarchical Levels of ASON Routing Areas (RAs) ...5
      3.2. Hierarchical Routing Information Dissemination .............6
      3.3. Configuration ..............................................8
           3.3.1. Configuring the Multi-Level Hierarchy ...............8
           3.3.2. Configuring RC Adjacencies ..........................8
      3.4. Evolution ..................................................8
      3.5. Routing Attributes .........................................8
           3.5.1. Taxonomy of Routing Attributes ......................9
           3.5.2. Commonly Advertised Information .....................9
           3.5.3. Node Attributes ....................................10
           3.5.4. Link Attributes ....................................11
   4. Security Considerations ........................................12
   5. Conclusions ....................................................12
   6. Contributors ...................................................15
   7. Acknowledgements ...............................................15
   8. References .....................................................16
      8.1. Normative References ......................................16
      8.2. Informative References ....................................16
        
   1. Introduction ....................................................2
   2. Conventions Used in This Document ...............................4
   3. ASON Routing Architecture and Requirements ......................4
      3.1. Multiple Hierarchical Levels of ASON Routing Areas (RAs) ...5
      3.2. Hierarchical Routing Information Dissemination .............6
      3.3. Configuration ..............................................8
           3.3.1. Configuring the Multi-Level Hierarchy ...............8
           3.3.2. Configuring RC Adjacencies ..........................8
      3.4. Evolution ..................................................8
      3.5. Routing Attributes .........................................8
           3.5.1. Taxonomy of Routing Attributes ......................9
           3.5.2. Commonly Advertised Information .....................9
           3.5.3. Node Attributes ....................................10
           3.5.4. Link Attributes ....................................11
   4. Security Considerations ........................................12
   5. Conclusions ....................................................12
   6. Contributors ...................................................15
   7. Acknowledgements ...............................................15
   8. References .....................................................16
      8.1. Normative References ......................................16
      8.2. Informative References ....................................16
        
1. Introduction
1. 介绍
   The Generalized Multi-Protocol Label Switching (GMPLS) suite of
   protocols provides, among other capabilities, support for controlling
   different switching technologies.  These include support for
   requesting TDM connections utilizing SONET/SDH (see [T1.105] and
   [G.707], respectively) as well as Optical Transport Networks (OTNs,
   see [G.709]).  However, there are certain capabilities that are
   needed to support the ITU-T G.8080 control plane architecture for an
   Automatically Switched Optical Network (ASON).  Therefore, it is
   desirable to understand the corresponding requirements for the GMPLS
   protocol suite.  The ASON control plane architecture is defined in
   [G.8080]; ASON routing requirements are identified in [G.7715] and in
   [G.7715.1] for ASON link state protocols.  These Recommendations
   apply to all [G.805] layer networks (e.g., SDH and OTN), and provide
   protocol-neutral functional requirements and architecture.
        
   The Generalized Multi-Protocol Label Switching (GMPLS) suite of
   protocols provides, among other capabilities, support for controlling
   different switching technologies.  These include support for
   requesting TDM connections utilizing SONET/SDH (see [T1.105] and
   [G.707], respectively) as well as Optical Transport Networks (OTNs,
   see [G.709]).  However, there are certain capabilities that are
   needed to support the ITU-T G.8080 control plane architecture for an
   Automatically Switched Optical Network (ASON).  Therefore, it is
   desirable to understand the corresponding requirements for the GMPLS
   protocol suite.  The ASON control plane architecture is defined in
   [G.8080]; ASON routing requirements are identified in [G.7715] and in
   [G.7715.1] for ASON link state protocols.  These Recommendations
   apply to all [G.805] layer networks (e.g., SDH and OTN), and provide
   protocol-neutral functional requirements and architecture.
        

This document focuses on the routing requirements for the GMPLS suite of protocols to support the capabilities and functionality of ASON control planes. This document summarizes the ASON requirements using ASON terminology. This document does not address GMPLS applicability or GMPLS capabilities. Any protocol (in particular, routing)

本文档重点介绍GMPLS协议套件的路由要求,以支持ASON控制平面的能力和功能。本文档使用ASON术语总结了ASON需求。本文件不涉及GMPLS适用性或GMPLS能力。任何协议(特别是路由协议)

applicability, design, or suggested extensions are strictly outside the scope of this document. ASON (Routing) terminology sections are provided in Appendixes 1 and 2.

适用性、设计或建议的扩展严格超出本文件的范围。ASON(路由)术语部分见附录1和附录2。

The ASON routing architecture is based on the following assumptions:

ASON路由架构基于以下假设:

- A network is subdivided based on operator decision and criteria (e.g., geography, administration, and/or technology); the network subdivisions are defined in ASON as Routing Areas (RAs).

- 根据运营商的决策和标准(如地理、管理和/或技术)对网络进行细分;网络分区在ASON中定义为路由区域(RAs)。

- The routing architecture and protocols applied after the network is subdivided are an operator's choice. A multi-level hierarchy of RAs, as defined in ITU-T [G.7715] and [G.7715.1], provides for a hierarchical relationship of RAs based on containment; i.e., child RAs are always contained within a parent RA. The hierarchical containment relationship of RAs provides for routing information abstraction, thereby enabling scalable routing information representation. The maximum number of hierarchical RA levels to be supported is not specified (outside the scope of this document).

- 网络细分后应用的路由架构和协议由运营商选择。ITU-T[G.7715]和[G.7715.1]中定义的RAs多级层次结构提供了基于包容的RAs层次关系;i、 例如,子RA始终包含在父RA中。RAs的层次包含关系提供了路由信息抽象,从而实现了可伸缩的路由信息表示。未指定要支持的分层RA级别的最大数量(不在本文档范围内)。

- Within an ASON RA and for each level of the routing hierarchy, multiple routing paradigms (hierarchical, step-by-step, source-based), centralized or distributed path computation, and multiple different routing protocols MAY be supported. The architecture does not assume a one-to-one correspondence between a routing protocol and an RA level, and allows the routing protocol(s) used within different RAs (including child and parent RAs) to be different. The realization of the routing paradigm(s) to support the hierarchical levels of RAs is not specified.

- 在ASON RA中,对于路由层次结构的每一层,可以支持多种路由范式(层次、逐步、基于源)、集中式或分布式路径计算以及多种不同的路由协议。该体系结构不假设路由协议和RA级别之间存在一对一的对应关系,并且允许不同RA(包括子RAs和父RAs)中使用的路由协议不同。未指定支持RAs层次结构的路由范例的实现。

- The routing adjacency topology (i.e., the associated Protocol Controller (PC) connectivity) and transport topology are NOT assumed to be congruent.

- 路由邻接拓扑(即,关联的协议控制器(PC)连接)和传输拓扑不被认为是一致的。

- The requirements support architectural evolution, e.g., a change in the number of RA levels, as well as aggregation and segmentation of RAs.

- 这些需求支持体系结构的演变,例如,RA级别数量的变化,以及RA的聚合和细分。

The description of the ASON routing architecture provides for a conceptual reference architecture, with definition of functional components and common information elements to enable end-to-end routing in the case of protocol heterogeneity and facilitate management of ASON networks. This description is only conceptual: no physical partitioning of these functions is implied.

ASON路由体系结构的描述提供了概念参考体系结构,定义了功能组件和公共信息元素,以在协议异构的情况下实现端到端路由,并促进ASON网络的管理。这个描述只是概念性的:没有暗示这些函数的物理分区。

2. Conventions Used in This Document
2. 本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

Although [RFC2119] describes interpretations of these key words in terms of protocol specifications and implementations, they are used in this document to describe design requirements for protocol extensions.

尽管[RFC2119]从协议规范和实现的角度描述了这些关键词的解释,但在本文档中,它们用于描述协议扩展的设计要求。

3. ASON Routing Architecture and Requirements
3. ASON路由体系结构和要求

The fundamental architectural concept is the RA and its related functional components (see Appendix 2 on terminology). The routing services offered by an RA are provided by a Routing Performer (RP). An RP is responsible for a single RA, and it MAY be functionally realized using distributed Routing Controllers (RCs). The RC, itself, MAY be implemented as a cluster of distributed entities (ASON refers to the cluster as a Routing Control Domain (RCD)). The RC components for an RA receive routing topology information from their associated Link Resource Manager(s) (LRMs) and store this information in the Routing Information Database (RDB). The RDB is replicated at each RC bounded to the same RA, and MAY contain information about multiple transport plane network layers. Whenever the routing topology changes, the LRM informs the corresponding RC, which in turn updates its associated RDB. In order to ensure RDB synchronization, the RCs cooperate and exchange routing information. Path computation functions MAY exist in each RC, MAY exist on selected RCs within the same RA, or MAY be centralized for the RA.

基本架构概念是RA及其相关功能组件(见附录2术语)。RA提供的路由服务由路由执行者(RP)提供。RP负责单个RA,可以使用分布式路由控制器(RCs)在功能上实现。RC本身可以实现为分布式实体的集群(ASON将集群称为路由控制域(RCD))。RA的RC组件从其关联的链路资源管理器(LRM)接收路由拓扑信息,并将该信息存储在路由信息数据库(RDB)中。RDB在绑定到同一RA的每个RC处复制,并且可能包含关于多个传输平面网络层的信息。每当路由拓扑发生变化时,LRM都会通知相应的RC,而RC又会更新其关联的RDB。为了保证RDB同步,RCs相互协作并交换路由信息。路径计算功能可以存在于每个RC中,可以存在于同一RA内的选定RCs上,或者可以集中用于RA。

In this context, communication between RCs within the same RA is realized using a particular routing protocol (or multiple protocols). In ASON, the communication component is represented by the protocol controller (PC) component(s) and the protocol messages are conveyed over the ASON control plane's Signaling Control Network (SCN). The PC MAY convey information for one or more transport network layers (refer to the note in Section 3.2). The RC is protocol independent, and RC communications MAY be realized by multiple, different PCs within an RA.

在此上下文中,同一RA内的RCs之间的通信是使用特定路由协议(或多个协议)实现的。在ASON中,通信组件由协议控制器(PC)组件表示,协议消息通过ASON控制平面的信令控制网络(SCN)传输。PC可以传送一个或多个传输网络层的信息(请参阅第3.2节中的注释)。RC与协议无关,并且RC通信可由RA内的多个不同PC实现。

The ASON routing architecture defines a multi-level routing hierarchy of RAs based on a containment model to support routing information abstraction. [G.7715.1] defines the ASON hierarchical link state routing protocol requirements for communication of routing information within an RA (one level) to support hierarchical routing information dissemination (including summarized routing information

ASON路由架构基于包容模型定义了RAs的多级路由层次结构,以支持路由信息抽象。[G.7715.1]定义了用于RA(一级)内路由信息通信的ASON分层链路状态路由协议要求,以支持分层路由信息传播(包括汇总路由信息)

for other levels). The communication between any of the other functional component(s) (e.g., SCN, LRM, and between RCDs (RC-RC communication between RAs)) is outside the scope of [G.7715.1] protocol requirements and, thus, is also outside the scope of this document.

其他级别)。任何其他功能组件(如SCN、LRM和RCD之间的通信(RAs之间的RC-RC通信))之间的通信不在[g.7715.1]协议要求的范围内,因此也不在本文件的范围内。

ASON routing components are identified by identifiers that are drawn from different name spaces (see [G.7715.1]). These are control plane identifiers for transport resources, components, and SCN addresses. The formats of those identifiers in a routing protocol realization SHALL be implementation specific and outside the scope of this document.

ASON路由组件由来自不同名称空间的标识符标识(见[G.7715.1])。这些是传输资源、组件和SCN地址的控制平面标识符。路由协议实现中这些标识符的格式应为特定于实现的格式,且不在本文件范围内。

The failure of an RC, or the failure of communications between RCs, and the subsequent recovery from the failure condition MUST NOT disrupt calls in progress (i.e., already established) and their associated connections. Calls being set up MAY fail to complete, and the call setup service MAY be unavailable during recovery actions.

RC的故障或RCs之间的通信故障以及随后从故障状态中恢复不得中断正在进行(即已建立)的呼叫及其相关连接。正在设置的呼叫可能无法完成,并且在恢复操作期间呼叫设置服务可能不可用。

3.1. Multiple Hierarchical Levels of ASON Routing Areas (RAs)
3.1. 多层次层次的ASON路由区域(RAs)

[G.8080] introduces the concept of a Routing Area (RA) in reference to a network subdivision. RAs provide for routing information abstraction. Except for the single RA case, RAs are hierarchically contained: a higher-level (parent) RA contains lower-level (child) RAs that in turn MAY also contain RAs, etc. Thus, RAs contain RAs that recursively define successive hierarchical RA levels.

[G.8080]针对网络细分引入了路由区域(RA)的概念。RAs提供路由信息抽象。除单个RA情况外,RA是分层包含的:较高级别(父级)RA包含较低级别(子级)的RA,后者也可能包含RAs等。因此,RAs包含递归定义连续分层RA级别的RAs。

However, the RA containment relationship describes only an architectural hierarchical organization of RAs. It does not restrict a specific routing protocol's realization (e.g., OSPF multi-areas, path computation, etc.). Moreover, the realization of the routing paradigm to support a hierarchical organization of RAs and the number of hierarchical RA levels to be supported is routing protocol specific and outside the scope of this document.

然而,RA包含关系仅描述了RAs的体系结构层次组织。它不限制特定路由协议的实现(例如,OSPF多区域、路径计算等)。此外,支持RAs分层组织的路由范式的实现以及要支持的分层RA级别的数量是特定于路由协议的,不在本文档的范围内。

In a multi-level hierarchy of RAs, it is necessary to distinguish among RCs for the different levels of the RA hierarchy. Before any pair of RCs establishes communication, they MUST verify that they are bound to the same parent RA (see Section 3.2). An RA identifier (RA ID) is required to provide the scope within which the RCs can communicate. To distinguish between RCs bound to the same RA, an RC identifier (RC ID) is required; the RC ID MUST be unique within its containing RA.

在RAs的多层次结构中,有必要区分RA层次结构不同层次的RCs。在任何一对RCs建立通信之前,它们必须验证它们是否绑定到同一父RA(见第3.2节)。需要RA标识符(RA ID)来提供RCs可以通信的范围。为了区分绑定到同一RA的RCs,需要RC标识符(RC ID);RC ID在其包含的RA中必须是唯一的。

An RA represents a partition of the data plane, and its identifier (i.e., RA ID) is used within the control plane as a reference to the data plane partition. Each RA within a carrier's network SHALL be

RA表示数据平面的分区,其标识符(即RA ID)在控制平面内用作对数据平面分区的引用。运营商网络内的每个RA应

uniquely identifiable. RA IDs MAY be associated with a transport plane name space, whereas RC IDs are associated with a control plane name space.

唯一可识别的。RA ID可以与传输平面名称空间相关联,而RC ID与控制平面名称空间相关联。

3.2. Hierarchical Routing Information Dissemination
3.2. 分层路由信息分发

Routing information can be exchanged between RCs bound to adjacent levels of the RA hierarchy, i.e., Level N+1 and N, where Level N represents the RAs contained by Level N+1. The links connecting RAs may be viewed as external links (inter-RA links), and the links representing connectivity within an RA may be viewed as internal links (intra-RA links). The external links to an RA at one level of the hierarchy may be internal links in the parent RA. Intra-RA links of a child RA MAY be hidden from the parent RA's view.

路由信息可以在绑定到RA层次结构的相邻级别(即级别N+1和N)的RCs之间交换,其中级别N表示级别N+1包含的RAs。连接RAs的链路可被视为外部链路(RA间链路),并且表示RA内的连接性的链路可被视为内部链路(RA内链路)。层次结构的一个级别上到RA的外部链接可能是父RA中的内部链接。子RA的RA内部链接可能从父RA的视图中隐藏。

The physical location of RCs for adjacent RA levels, their relationship, and their communication protocol(s) are outside the scope of this document. No assumption is made regarding how RCs communicate between adjacent RA levels. If routing information is exchanged between an RC, its parent, and its child RCs, it SHOULD include reachability (see Section 3.5.3) and MAY include, upon policy decision, node and link topology. Communication between RAs only takes place between RCs with a parent/child relationship. RCs of one RA never communicate with RCs of another RA at the same level. There SHOULD not be any dependencies on the different routing protocols used within an RA or in different RAs.

相邻RA级别的RCs物理位置、它们之间的关系以及它们的通信协议不在本文件的范围内。未对RCs如何在相邻RA层之间通信进行假设。如果路由信息在RC、其父RCs和其子RCs之间交换,则应包括可达性(见第3.5.3节),并可根据策略决定包括节点和链路拓扑。RAs之间的通信仅在具有父/子关系的RCs之间进行。一个RA的RCs从不与同一级别的另一个RA的RCs通信。在RA内或不同RA中使用的不同路由协议之间不应有任何依赖关系。

Multiple RCs bound to the same RA MAY transform (filter, summarize, etc.) and then forward information to RCs at different levels. However, in this case, the resulting information at the receiving level must be self-consistent (i.e., ensure consistency between transform operations performed on routing information at different levels to ensure proper information processing). This MAY be achieved using a number of mechanisms.

绑定到同一RA的多个RCs可以转换(过滤、汇总等),然后将信息转发给不同级别的RCs。然而,在这种情况下,接收级别的结果信息必须是自一致的(即,确保在不同级别对路由信息执行的转换操作之间的一致性,以确保正确的信息处理)。这可以通过多种机制实现。

Note: There is no implied relationship between multi-layer transport networks and multi-level routing. Implementations MAY support a hierarchical routing topology (multi-level) with a single routing protocol instance for multiple transport switching layers or a hierarchical routing topology for one transport switching layer.

注:多层传输网络和多级路由之间没有隐含的关系。实现可以支持分层路由拓扑(多级),其中单个路由协议实例用于多个传输交换层,或者分层路由拓扑用于一个传输交换层。

1. Type of Information Exchanged

1. 交换的信息类型

The type of information flowing upward (i.e., Level N to Level N+1) and the information flowing downward (i.e., Level N+1 to Level N) are used for similar purposes, namely, the exchange of reachability information and summarized topology information to

向上流动的信息类型(即,从N级到N+1级)和向下流动的信息类型(即,从N+1级到N级)用于类似目的,即,将可达性信息和汇总拓扑信息交换给

allow routing across multiple RAs. The summarization of topology information may impact the accuracy of routing and may require additional path calculation.

允许跨多个RAs路由。拓扑信息的汇总可能会影响路由的准确性,并且可能需要额外的路径计算。

The following information exchanges are expected:

预计将进行以下信息交流:

- Level N+1 visibility to Level N reachability and topology (or upward information communication) allowing RC(s) at Level N+1 to determine the reachable endpoints from Level N.

- 级别N+1对级别N可达性和拓扑的可见性(或向上的信息通信),允许级别N+1的RC从级别N确定可达端点。

- Level N visibility to Level N+1 reachability and topology (or downward information communication) allowing RC(s) bounded to an RA at Level N to develop paths to reachable endpoints outside of the RA.

- N级可见性到N+1级可达性和拓扑(或向下信息通信),允许在N级绑定到RA的RC开发到RA外部可达端点的路径。

2. Interactions between Upward and Downward Communication

2. 上下沟通的互动

When both upward and downward information exchanges contain endpoint reachability information, a feedback loop could potentially be created. Consequently, the routing protocol MUST include a method to:

当向上和向下的信息交换都包含端点可达性信息时,可能会创建一个反馈循环。因此,路由协议必须包括以下方法:

- prevent information propagated from a Level N+1 RA's RC into the Level N RA's RC from being re-introduced into the Level N+1 RA's RC, and

- 防止从N+1级RA的RC传播到N级RA的RC的信息重新引入N+1级RA的RC,以及

- prevent information propagated from a Level N-1 RA's RC into the Level N RA's RC from being re-introduced into the Level N-1 RA's RC.

- 防止从N-1级RA的RC传播到N级RA的RC的信息重新引入N-1级RA的RC。

The routing protocol SHALL differentiate the routing information originated at a given-level RA from derived routing information (received from external RAs), even when this information is forwarded by another RC at the same level. This is a necessary condition to be fulfilled by routing protocols to be loop free.

路由协议应区分源自给定级别RA的路由信息与派生路由信息(从外部RAs接收),即使该信息由同一级别的另一个RC转发。这是路由协议实现无环的必要条件。

3. Method of Communication

3. 通信方法

Two approaches exist for communication between Level N and N+1:

对于N级和N+1级之间的通信,存在两种方法:

- The first approach places an instance of a Level N routing function and an instance of a Level N+1 routing function in the same system. The communications interface is within a single system and is thus not an open interface subject to standardization. However, information re-advertisement or leaking MUST be performed in a consistent manner to ensure interoperability and basic routing protocol correctness (e.g., cost/metric value).

- 第一种方法将N级路由函数的实例和N+1级路由函数的实例放在同一个系统中。通信接口位于单个系统内,因此不是标准化的开放接口。但是,必须以一致的方式执行信息重新发布或泄漏,以确保互操作性和基本路由协议的正确性(例如,成本/度量值)。

- The second approach places the Level N routing function on a separate system from the Level N+1 routing function. In this case, a communication interface must be used between the systems containing the routing functions for different levels. This communication interface and mechanisms are outside the scope of this document.

- 第二种方法将N级路由功能与N+1级路由功能放在一个单独的系统上。在这种情况下,必须在包含不同级别路由功能的系统之间使用通信接口。此通信接口和机制不在本文件范围内。

3.3. Configuration
3.3. 配置
3.3.1. Configuring the Multi-Level Hierarchy
3.3.1. 配置多级层次结构

The RC MUST support static (i.e., operator assisted) and MAY support automated configuration of the information describing its relationship to its parent and its child within the hierarchical structure (including RA ID and RC ID). When applied recursively, the whole hierarchy is thus configured.

RC必须支持静态(即,操作员辅助),并且可以支持在层次结构(包括RA ID和RC ID)中描述其与其父级和子级关系的信息的自动配置。当递归应用时,整个层次结构就是这样配置的。

3.3.2. Configuring RC Adjacencies
3.3.2. 配置RC邻接

The RC MUST support static (i.e., operator assisted) and MAY support automated configuration of the information describing its associated adjacencies to other RCs within an RA. The routing protocol SHOULD support all the types of RC adjacencies described in Section 9 of [G.7715]. The latter includes congruent topology (with distributed RC) and hubbed topology (e.g., note that the latter does not automatically imply a designated RC).

RC必须支持静态(即,操作员辅助),并可支持自动配置描述其与RA内其他RCs相关邻接的信息。路由协议应支持[G.7715]第9节中描述的所有类型的RC邻接。后者包括全等拓扑(具有分布式RC)和带轮毂拓扑(例如,请注意,后者并不自动暗示指定RC)。

3.4. Evolution
3.4. 进化

The containment relationships of RAs may change, motivated by events such as mergers, acquisitions, and divestitures.

受合并、收购和资产剥离等事件的推动,RAs的遏制关系可能会发生变化。

The routing protocol SHOULD be capable of supporting architectural evolution in terms of the number of hierarchical levels of RAs, as well as the aggregation and segmentation of RAs. RA ID uniqueness within an administrative domain may facilitate these operations. The routing protocol is not expected to automatically initiate and/or execute these operations. Reconfiguration of the RA hierarchy may not disrupt calls in progress, though calls being set up may fail to complete, and the call setup service may be unavailable during reconfiguration actions.

路由协议应该能够在RAs的层次数量以及RAs的聚合和分割方面支持架构演进。管理域内的RA ID唯一性可能有助于这些操作。预期路由协议不会自动启动和/或执行这些操作。RA层次结构的重新配置可能不会中断正在进行的呼叫,尽管正在设置的呼叫可能无法完成,并且在重新配置操作期间呼叫设置服务可能不可用。

3.5. Routing Attributes
3.5. 路由属性

Routing for transport networks is performed on a per-layer basis, where the routing paradigms MAY differ among layers and within a layer. Not all equipment supports the same set of transport layers or the same degree of connection flexibility at any given layer. A

传输网络的路由在每层的基础上执行,其中路由范例在层之间和层内可能不同。并非所有设备都支持同一组传输层或在任何给定层上支持相同程度的连接灵活性。A.

server layer trail may support various clients, involving different adaptation functions. In addition, equipment may support variable adaptation functionality, whereby a single server layer trail dynamically supports different multiplexing structures. As a result, routing information MAY include layer-specific, layer-independent, and client/server adaptation information.

服务器层trail可能支持各种客户端,涉及不同的适配功能。此外,设备可以支持可变自适应功能,由此单个服务器层跟踪动态地支持不同的复用结构。结果,路由信息可以包括层特定、层独立和客户端/服务器适配信息。

3.5.1. Taxonomy of Routing Attributes
3.5.1. 路由属性的分类

Attributes can be organized according to the following categories:

属性可以按照以下类别进行组织:

- Node related or link related

- 节点相关或链接相关

- Provisioned, negotiated, or automatically configured

- 提供、协商或自动配置

- Inherited or layer specific (client layers can inherit some attributes from the server layer, while other attributes such as Link Capacity are specified by layer)

- 继承的或特定于层的(客户端层可以继承服务器层的某些属性,而链路容量等其他属性由层指定)

(Component) link attributes MAY be statically or automatically configured for each transport network layer. This may lead to unnecessary repetition. Hence, the inheritance property of attributes MAY also be used to optimize the configuration process.

(组件)链路属性可以静态地或自动地为每个传输网络层配置。这可能导致不必要的重复。因此,属性的继承属性也可用于优化配置过程。

ASON uses the term SubNetwork Point (SNP) for the control plane representation of a transport plane resource. The control plane representation and transport plane topology are NOT assumed to be congruent; the control plane representation SHALL not be restricted by the physical topology. The relational grouping of SNPs for routing is termed an SNP Pool (SNPP). The routing function understands topology in terms of SNPP links. Grouping MAY be based on different link attributes (e.g., SRLG information, link weight, etc).

ASON使用术语子网点(SNP)表示传输平面资源的控制平面。控制平面表示和传输平面拓扑不一致;控制平面表示不受物理拓扑的限制。用于路由的SNP的关系分组被称为SNP池(SNPP)。路由函数了解SNPP链路的拓扑结构。分组可以基于不同的链路属性(例如,SRLG信息、链路权重等)。

Two RAs may be linked by one or more SNPP links. Multiple SNPP links may be required when component links are not equivalent for routing purposes with respect to the RAs to which they are attached, to the containing RA, or when smaller groupings are required.

两个RAs可以由一个或多个SNPP链路链接。当组件链路对于其所连接的RAs、包含的RA的路由目的不等效时,或者当需要更小的分组时,可能需要多个SNPP链路。

3.5.2. Commonly Advertised Information
3.5.2. 常见广告信息

Advertisements MAY contain the following common set of information regardless of whether they are link or node related:

广告可能包含以下公共信息集,无论它们是链接还是节点相关:

- RA ID of the RA to which the advertisement is bounded

- 广告绑定到的RA的RA ID

- RC ID of the entity generating the advertisement

- 生成广告的实体的RC ID

- Information to uniquely identify advertisements

- 用于唯一标识广告的信息

- Information to determine whether an advertisement has been updated

- 用于确定广告是否已更新的信息

- Information to indicate when an advertisement has been derived from a different level RA

- 指示何时从不同级别派生广告的信息

3.5.3. Node Attributes
3.5.3. 节点属性

All nodes belong to an RA; hence, the RA ID can be considered an attribute of all nodes. Given that no distinction is made between abstract nodes and those that cannot be decomposed any further, the same attributes MAY be used for their advertisement. In the following tables, Capability refers to the level of support required in the realization of a link state routing protocol, whereas Usage refers to the degree of operational control that SHOULD be available to the operator.

所有节点都属于一个RA;因此,可以将RA ID视为所有节点的属性。假设抽象节点和不能进一步分解的节点之间没有区别,那么相同的属性可以用于它们的广告。在下表中,能力指的是实现链路状态路由协议所需的支持级别,而使用率指的是操作员应能获得的操作控制程度。

The following Node Attributes are defined:

定义了以下节点属性:

      Attribute        Capability      Usage
      -----------      -----------     ---------
      Node ID          REQUIRED        REQUIRED
      Reachability     REQUIRED        OPTIONAL
        
      Attribute        Capability      Usage
      -----------      -----------     ---------
      Node ID          REQUIRED        REQUIRED
      Reachability     REQUIRED        OPTIONAL
        

Table 1. Node Attributes

表1。节点属性

Reachability information describes the set of endpoints that are reachable by the associated node. It MAY be advertised as a set of associated external (e.g., User Network Interface (UNI)) address/address prefixes or a set of associated SNPP link IDs/SNPP ID prefixes, the selection of which MUST be consistent within the applicable scope. These are control plane identifiers; the formats of these identifiers in a protocol realization are implementation specific and outside the scope of this document.

可达性信息描述关联节点可访问的端点集。它可以作为一组相关联的外部(例如,用户网络接口(UNI))地址/地址前缀或一组相关联的SNPP链路ID/SNPP ID前缀进行广告,其选择必须在适用范围内一致。这些是控制平面标识符;协议实现中这些标识符的格式是特定于实现的,不在本文档的范围内。

Note: No distinction is made between nodes that may have further internal details (i.e., abstract nodes) and those that cannot be decomposed any further. Hence, the attributes of a node are not considered as only single-switch attributes but MAY apply to a node at a higher level of the hierarchy that represents a subnetwork.

注意:可能具有进一步内部细节的节点(即抽象节点)与无法进一步分解的节点之间没有区别。因此,节点的属性不仅被视为单个交换机属性,而且可以应用于表示子网络的层次结构的更高级别的节点。

3.5.4. Link Attributes
3.5.4. 链接属性

The following Link Attributes are defined:

定义了以下链接属性:

      Link Attribute                   Capability      Usage
      ---------------                  -----------     ---------
      Local SNPP link ID               REQUIRED        REQUIRED
      Remote SNPP link ID              REQUIRED        REQUIRED
      Layer Specific Characteristics   see Table 3
        
      Link Attribute                   Capability      Usage
      ---------------                  -----------     ---------
      Local SNPP link ID               REQUIRED        REQUIRED
      Remote SNPP link ID              REQUIRED        REQUIRED
      Layer Specific Characteristics   see Table 3
        

Table 2. Link Attributes

表2。链接属性

The SNPP link ID MUST be sufficient to uniquely identify (within the Node ID scope) the corresponding transport plane resource, taking into account the separation of data and control planes (see Section 3.5.1; the control plane representation and transport plane topology are not assumed to be congruent). The SNPP link ID format is routing protocol specific.

考虑到数据平面和控制平面的分离,SNPP链路ID必须足以唯一标识(在节点ID范围内)相应的传输平面资源(见第3.5.1节;控制平面表示和传输平面拓扑不一致)。SNPP链路ID格式是特定于路由协议的。

Note: When the remote end of an SNPP link is located outside of the RA, the remote SNPP link ID is OPTIONAL.

注意:当SNPP链路的远端位于RA之外时,远程SNPP链路ID是可选的。

The following link characteristic attributes are defined:

定义了以下链接特征属性:

- Signal Type: This identifies the characteristic information of the layer network.

- 信号类型:标识层网络的特征信息。

- Link Weight: This is the metric indicating the relative desirability of a particular link over another, e.g., during path computation.

- 链路权重:这是指示特定链路相对于另一链路的相对期望的度量,例如,在路径计算期间。

- Resource Class: This corresponds to the set of administrative groups assigned by the operator to this link. A link MAY belong to zero, one, or more administrative groups.

- 资源类:这与操作员分配给此链接的管理组集相对应。链接可能属于零个、一个或多个管理组。

- Local Connection Types: This attribute identifies whether the local SNP represents a Termination Connection Point (CP), a Connection Point (CP), or can be flexibly configured as a TCP.

- 本地连接类型:该属性标识本地SNP是表示终止连接点(CP)、连接点(CP),还是可以灵活地配置为TCP。

- Link Capacity: This provides the sum of the available and potential bandwidth capacity for a particular network transport layer. Other capacity measures MAY be further considered.

- 链路容量:它提供特定网络传输层的可用和潜在带宽容量之和。可进一步考虑其他能力措施。

- Link Availability: This represents the survivability capability such as the protection type associated with the link.

- 链路可用性:这表示生存能力,例如与链路相关的保护类型。

- Diversity Support: This represents diversity information such as the SRLG information associated with the link.

- 多样性支持:这表示多样性信息,例如与链路相关的SRLG信息。

- Local Adaptation Support: This indicates the set of client layer adaptations supported by the TCP associated with the local SNPP. This is applicable only when the local SNP represents a TCP or can be flexibly configured as a TCP.

- 本地适配支持:这表示与本地SNPP关联的TCP支持的客户端层适配集。这仅适用于本地SNP表示TCP或可灵活配置为TCP的情况。

      Link Characteristics            Capability      Usage
      -----------------------         ----------      ---------
      Signal Type                     REQUIRED        OPTIONAL
      Link Weight                     REQUIRED        OPTIONAL
      Resource Class                  REQUIRED        OPTIONAL
      Local Connection Types          REQUIRED        OPTIONAL
      Link Capacity                   REQUIRED        OPTIONAL
      Link Availability               OPTIONAL        OPTIONAL
      Diversity Support               OPTIONAL        OPTIONAL
      Local Adaptation Support        OPTIONAL        OPTIONAL
        
      Link Characteristics            Capability      Usage
      -----------------------         ----------      ---------
      Signal Type                     REQUIRED        OPTIONAL
      Link Weight                     REQUIRED        OPTIONAL
      Resource Class                  REQUIRED        OPTIONAL
      Local Connection Types          REQUIRED        OPTIONAL
      Link Capacity                   REQUIRED        OPTIONAL
      Link Availability               OPTIONAL        OPTIONAL
      Diversity Support               OPTIONAL        OPTIONAL
      Local Adaptation Support        OPTIONAL        OPTIONAL
        

Table 3. Link Characteristics

表3。链路特性

Note: Separate advertisements of layer-specific attributes MAY be chosen. However, this may lead to unnecessary duplication. This can be avoided using the inheritance property, so that the attributes derivable from the local adaptation information do not need to be advertised. Thus, an optimization MAY be used when several layers are present by indicating when an attribute is inheritable from a server layer.

注:可选择层特定属性的单独广告。然而,这可能导致不必要的重复。使用继承属性可以避免这种情况,因此不需要公布从本地自适应信息派生的属性。因此,当存在多个层时,可以通过指示属性何时可从服务器层继承来使用优化。

4. Security Considerations
4. 安全考虑

The ASON routing protocol MUST deliver the operational security objectives where required. The overall security objectives (defined in ITU-T Recommendation [M.3016]) of confidentiality, integrity, and accountability may take on varying levels of importance. These objectives do not necessarily imply requirements on the routing protocol itself, and MAY be met by other established means.

ASON路由协议必须在需要时提供操作安全目标。保密性、完整性和问责制的总体安全目标(定义见ITU-T建议[M.3016])可能具有不同的重要性。这些目标不一定意味着对路由协议本身的要求,并且可以通过其他已建立的方法来实现。

Note: A threat analysis of a proposed routing protocol SHOULD address masquerade, eavesdropping, unauthorized access, loss or corruption of information (including replay attacks), repudiation, forgery, and denial of service attacks.

注意:对拟定路由协议的威胁分析应解决伪装、窃听、未经授权的访问、信息丢失或损坏(包括重播攻击)、否认、伪造和拒绝服务攻击。

5. Conclusions
5. 结论

The description of the ASON routing architecture and components is provided in terms of routing functionality. This description is only conceptual: no physical partitioning of these functions is implied.

ASON路由架构和组件的描述是在路由功能方面提供的。这个描述只是概念性的:没有暗示这些函数的物理分区。

In summary, the ASON routing architecture assumes:

总之,ASON路由体系结构假设:

- A network is subdivided into ASON RAs, which MAY support multiple routing protocols; no one-to-one relationship SHALL be assumed.

- 一个网络被细分为ASON RAs,它可以支持多种路由协议;不应假设一对一的关系。

- Routing Controllers (RCs) provide for the exchange of routing information (primitives) for the RA. The RC is protocol independent and MAY be realized by multiple, different protocol controllers within an RA. The routing information exchanged between RCs SHALL be subject to policy constraints imposed at reference points (External- and Internal-NNI).

- 路由控制器(RCs)为RA提供路由信息(原语)交换。RC与协议无关,可由RA内的多个不同协议控制器实现。RCs之间交换的路由信息应遵守在参考点(外部和内部NNI)施加的政策约束。

- In a multi-level RA hierarchy based on containment, communication between RCs of different RAs happens only when there is a parent/child relationship between the RAs. RCs of child RAs never communicate with the RCs of other child RAs. There SHOULD not be any dependencies on the different routing protocols used within a child RA and that of its parent. The routing information exchanged within the parent RA SHALL be independent of both the routing protocol operating within a child RA and any control distribution choice(s), e.g., centralized, fully distributed.

- 在基于包容的多级RA层次结构中,不同RA的RCs之间的通信仅在RAs之间存在父/子关系时发生。子RAs的RCs从不与其他子RAs的RCs通信。子RA及其父RA中使用的不同路由协议之间不应有任何依赖关系。在父RA内交换的路由信息应独立于在子RA内运行的路由协议和任何控制分配选择,例如集中、完全分配。

- For an RA, the set of RCs is referred to as an ASON routing (control) domain. The routing information exchanged between routing domains (inter-RA, i.e., inter-domain) SHALL be independent of both the intra-domain routing protocol(s) and the intra-domain control distribution choice(s), e.g., centralized, fully distributed. RCs bounded to different RA levels MAY be collocated within the same physical element or physically distributed.

- 对于RA,RCs集被称为ASON路由(控制)域。路由域(RA间,即域间)之间交换的路由信息应独立于域内路由协议和域内控制分布选择,例如集中、完全分布。绑定到不同RA级别的RCs可在同一物理元件内并置或物理分布。

- The routing adjacency topology (i.e., the associated PC connectivity topology) and the transport network topology SHALL NOT be assumed to be congruent.

- 不应假设路由邻接拓扑(即相关PC连接拓扑)和传输网络拓扑是一致的。

- The routing topology SHALL support multiple links between nodes and RAs.

- 路由拓扑应支持节点和RAs之间的多条链路。

In summary, the following functionality is expected from GMPLS routing to instantiate the ASON hierarchical routing architecture realization (see [G.7715] and [G.7715.1]):

综上所述,GMPLS路由应具备以下功能,以实例化ASON分层路由体系结构实现(见[G.7715]和[G.7715.1]):

- RAs SHALL be uniquely identifiable within a carrier's network, each having a unique RA ID within the carrier's network.

- RAs应在运营商网络内唯一可识别,每个RAs在运营商网络内具有唯一的RA ID。

- Within an RA (one level), the routing protocol SHALL support dissemination of hierarchical routing information (including summarized routing information for other levels) in support of an

- 在RA(一个级别)内,路由协议应支持传播分层路由信息(包括其他级别的汇总路由信息),以支持

architecture of multiple hierarchical levels of RAs; the number of hierarchical RA levels to be supported by a routing protocol is implementation specific.

RAs的多层次架构;路由协议支持的分层RA级别的数量是特定于实现的。

- The routing protocol SHALL support routing information based on a common set of information elements as defined in [G.7715] and [G.7715.1], divided between attributes pertaining to links and abstract nodes (each representing either a subnetwork or simply a node). [G.7715] recognizes that the manner in which the routing information is represented and exchanged will vary with the routing protocol used.

- 路由协议应支持基于[G.7715]和[G.7715.1]中定义的一组公共信息元素的路由信息,这些信息元素分为与链路和抽象节点有关的属性(每个属性代表一个子网或仅代表一个节点)。[G.7715]认识到路由信息的表示和交换方式将随所使用的路由协议而变化。

- The routing protocol SHALL converge such that the distributed RDBs become synchronized after a period of time.

- 路由协议应收敛,以便分布式RDB在一段时间后变得同步。

To support hierarchical routing information dissemination within an RA, the routing protocol MUST deliver:

为了支持RA内的分层路由信息传播,路由协议必须提供:

- Processing of routing information exchanged between adjacent levels of the hierarchy (i.e., Level N+1 and N) including reachability and, upon policy, decision summarized topology information.

- 在层次结构的相邻级别(即,级别N+1和N)之间交换的路由信息的处理,包括可达性,以及根据策略,决策汇总的拓扑信息。

- Self-consistent information at the receiving level resulting from any transformation (filter, summarize, etc.) and forwarding of information from one RC to RC(s) at different levels when multiple RCs are bound to a single RA.

- 当多个RCs绑定到一个RA时,任何转换(过滤、汇总等)以及将信息从一个RC转发到不同级别的RC时,在接收级别产生的自一致信息。

- A mechanism to prevent the re-introduction of information propagated into the Level N RA's RC back to the adjacent level RA's RC from which this information has been initially received.

- 一种机制,用于防止将传播到N级RA的RC的信息重新引入到最初接收到该信息的相邻RA的RC。

In order to support operator-assisted changes in the containment relationships of RAs, the routing protocol SHALL support evolution in terms of the number of hierarchical levels of RAs. For example: support of non-disruptive operations such as adding and removing RAs at the top/bottom of the hierarchy, adding or removing a hierarchical level of RAs in or from the middle of the hierarchy, as well as aggregation and segmentation of RAs. The number of hierarchical levels to be supported is routing protocol specific and reflects a containment relationship; e.g., an RA insertion involves supporting a different routing protocol domain in a portion of the network.

为了支持运营商协助的RAs包含关系的变更,路由协议应支持RAs分层级别数量的演变。例如:支持无中断操作,例如在层次结构的顶部/底部添加和删除RAs,在层次结构的中间添加或删除RAs的层次结构级别,以及RAs的聚合和分段。要支持的层次结构级别的数量是特定于路由协议的,并且反映了包含关系;e、 例如,RA插入涉及在网络的一部分中支持不同的路由协议域。

Reachability information (see Section 3.5.3) of the set of endpoints reachable by a node may be advertised either as a set of UNI Transport Resource addresses/address prefixes or a set of associated SNPP link IDs/SNPP link ID prefixes, assigned and selected consistently in their applicability scope. The formats of the

节点可到达的端点集的可达性信息(见第3.5.3节)可以作为一组UNI传输资源地址/地址前缀或一组相关的SNPP链路ID/SNPP链路ID前缀进行公布,并在其适用范围内一致地分配和选择。文件的格式

control plane identifiers in a protocol realization are implementation specific. Use of a routing protocol within an RA should not restrict the choice of routing protocols for use in other RAs (child or parent).

协议实现中的控制平面标识符是特定于实现的。在RA中使用路由协议不应限制在其他RA(子级或父级)中使用的路由协议的选择。

As ASON does not restrict the control plane architecture choice used, either a collocated architecture or a physically separated architecture may be used. A collection of links and nodes such as a subnetwork or RA MUST be able to represent itself to the wider network as a single logical entity with only its external links visible to the topology database.

由于ASON不限制所使用的控制平面架构选择,因此可以使用并置架构或物理上分离的架构。链路和节点的集合(如子网或RA)必须能够将自身作为单个逻辑实体向更广泛的网络表示,并且拓扑数据库只能看到其外部链路。

6. Contributors
6. 贡献者

This document is the result of the CCAMP Working Group ASON Routing Requirements design team joint effort. The following are the design team member authors who contributed to the present document:

本文件是CCAMP工作组ASON路由需求设计团队共同努力的结果。以下是对本文件作出贡献的设计团队成员作者:

Wesam Alanqar (Sprint) Deborah Brungard (ATT) David Meyer (Cisco Systems) Lyndon Ong (Ciena) Dimitri Papadimitriou (Alcatel) Jonathan Sadler (Tellabs) Stephen Shew (Nortel)

Wesam Alanqar(斯普林特)Deborah Brungard(ATT)David Meyer(思科系统)Lyndon Ong(Ciena)Dimitri Papadimitriou(阿尔卡特)Jonathan Sadler(Tellabs)Stephen Shew(北电)

7. Acknowledgements
7. 致谢

The authors would like to thank Kireeti Kompella for having initiated the proposal of an ASON Routing Requirement Design Team and the ITU-T SG15/Q14 for their careful review and input.

作者要感谢Kireeti Kompella发起了ASON路由需求设计团队的提案,并感谢ITU-T SG15/Q14的仔细审查和投入。

8. References
8. 工具书类
8.1. Normative References
8.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

8.2. Informative References
8.2. 资料性引用

For information on the availability of the following documents, please see http://www.itu.int:

有关下列文件的可用性信息,请参见http://www.itu.int:

[G.707] ITU-T Rec. G.707/Y.1322, "Network Node Interface for the Synchronous Digital Hierarchy (SDH)", December 2003.

[G.707]ITU-T Rec.G.707/Y.1322,“同步数字体系(SDH)的网络节点接口”,2003年12月。

[G.709] ITU-T Rec. G.709/Y.1331, "Interfaces for the Optical Transport Network (OTN)", March 2003.

[G.709]ITU-T Rec.G.709/Y.1331,“光传输网络(OTN)接口”,2003年3月。

[G.7715] ITU-T Rec. G.7715/Y.1306, "Architecture and Requirements for the Automatically Switched Optical Network (ASON)", June 2002.

[G.7715]ITU-T Rec.G.7715/Y.1306,“自动交换光网络(ASON)的体系结构和要求”,2002年6月。

[G.7715.1] ITU-T Draft Rec. G.7715.1/Y.1706.1, "ASON Routing Architecture and Requirements for Link State Protocols", November 2003.

[G.7715.1]ITU-T建议草案G.7715.1/Y.1706.1,“ASON路由体系结构和链路状态协议要求”,2003年11月。

[G.805] ITU-T Rec. G.805, "Generic Functional Architecture of Transport Networks", March 2000.

[G.805]ITU-T Rec.G.805,“传输网络的通用功能架构”,2000年3月。

[G.8080] ITU-T Rec. G.8080/Y.1304, "Architecture for the Automatically Switched Optical Network (ASON)", November 2001 (and Revision, January 2003).

[G.8080]ITU-T Rec.G.8080/Y.1304,“自动交换光网络(ASON)的体系结构”,2001年11月(修订版,2003年1月)。

[M.3016] ITU-T Rec. M.3016.0, "Security for the Management Plane: Overview", May 2005.

[M.3016]ITU-T Rec.M.3016.0,“管理层的安全:概述”,2005年5月。

[T1.105] ANSI T1.105, "Synchronous Optical Network (SONET) - Basic Description including Multiplex Structure, Rates, and Formats", 2001.

[T1.105]ANSI T1.105,“同步光网络(SONET)-基本描述,包括多路复用结构、速率和格式”,2001年。

Appendix 1: ASON Terminology

附录1:ASON术语

This document makes use of the following terms:

本文件使用了以下术语:

Administrative domain (see Recommendation [G.805]): For the purposes of [G.7715.1], an administrative domain represents the extent of resources that belong to a single player such as a network operator, a service provider, or an end-user. Administrative domains of different players do not overlap amongst themselves.

管理域(见建议[G.805]):在[G.7715.1]中,管理域表示属于单个参与者(如网络运营商、服务提供商或最终用户)的资源范围。不同参与者的管理域之间不会重叠。

Adaptation function (see Recommendation [G.805]): A "transport processing function" that processes the client layer information for transfer over a server layer trail.

自适应功能(见建议[G.805]):一种“传输处理功能”,用于处理客户端层信息,以便通过服务器层路径进行传输。

Client/Server relationship: The association between layer networks that is performed by an "adaptation" function to allow the link connection in the client layer network to be supported by a trail in the server layer network.

客户机/服务器关系:层网络之间的关联,由“自适应”功能执行,以允许服务器层网络中的路径支持客户机层网络中的链路连接。

Control plane: Performs the call control and connection control functions. Through signaling, the control plane sets up and releases connections and may restore a connection in case of a failure.

控制平面:执行呼叫控制和连接控制功能。通过信令,控制平面建立和释放连接,并在发生故障时恢复连接。

(Control) Domain: Represents a collection of (control) entities that are grouped for a particular purpose. The control plane is subdivided into domains matching administrative domains. Within an administrative domain, further subdivisions of the control plane are recursively applied. A routing control domain is an abstract entity that hides the details of the RC distribution.

(控制)域:表示为特定目的分组的(控制)实体的集合。控制平面细分为与管理域匹配的域。在管理域内,递归地应用控制平面的进一步细分。路由控制域是隐藏RC分发详细信息的抽象实体。

External NNI (E-NNI): Interfaces are located between protocol controllers between control domains.

外部NNI(E-NNI):接口位于控制域之间的协议控制器之间。

Internal NNI (I-NNI): Interfaces are located between protocol controllers within control domains.

内部NNI(I-NNI):接口位于控制域内的协议控制器之间。

Link (see Recommendation [G.805]): A "topological component" that describes a fixed relationship between a "subnetwork" or "access group" and another "subnetwork" or "access group". Links are not limited to being provided by a single server trail.

链路(见建议[G.805]):描述“子网”或“接入组”与另一“子网”或“接入组”之间固定关系的“拓扑组件”。链接不限于由单个服务器提供。

Management plane: Performs management functions for the transport plane, the control plane, and the system as a whole. It also provides coordination between all the planes. The following management functional areas are performed in the management plane: performance, fault, configuration, accounting, and security management.

管理平面:对运输平面、控制平面和整个系统执行管理功能。它还提供所有平面之间的协调。在管理平面中执行以下管理功能区域:性能、故障、配置、记帐和安全管理。

Management domain (see Recommendation [G.805]): A management domain defines a collection of managed objects that are grouped to meet organizational requirements according to geography, technology, policy, or other structure, and for a number of functional areas such as configuration, security, (FCAPS), for the purpose of providing control in a consistent manner. Management domains can be disjoint, contained, or overlapping. As such, the resources within an administrative domain can be distributed into several possible overlapping management domains. The same resource can therefore belong to several management domains simultaneously, but a management domain shall not cross the border of an administrative domain.

管理域(见建议[G.805]):管理域定义了管理对象的集合,这些对象根据地理位置、技术、策略或其他结构进行分组,以满足组织需求,并用于许多功能领域,如配置、安全(FCAP),为了以一致的方式提供控制。管理域可以是不相交的、包含的或重叠的。因此,管理域中的资源可以分布到几个可能重叠的管理域中。因此,同一资源可以同时属于多个管理域,但管理域不得跨越管理域的边界。

Multiplexing (see Recommendation [G.805]): Multiplexing techniques are used to combine client layer signals. The many-to-one relationship represents the case of several link connections of client layer networks supported by one server layer trail at the same time.

多路复用(见建议[G.805]):多路复用技术用于组合客户端层信号。多对一关系表示同时由一个服务器层跟踪支持的客户端层网络的多个链路连接的情况。

Subnetwork Point (SNP): The SNP is a control plane abstraction that represents an actual or potential transport plane resource. SNPs (in different subnetwork partitions) may represent the same transport resource. A one-to-one correspondence should not be assumed.

子网点(SNP):SNP是表示实际或潜在传输平面资源的控制平面抽象。SNP(在不同的子网分区中)可以表示相同的传输资源。不应假设一对一的对应关系。

Subnetwork Point Pool (SNPP): A set of SNPs that are grouped together for the purposes of routing.

子网点池(SNPP):为路由目的而分组在一起的一组SNP。

Termination Connection Point (TCP): A TCP represents the output of a Trail Termination function or the input to a Trail Termination Sink function.

终端连接点(TCP):TCP表示跟踪终端功能的输出或跟踪终端接收器功能的输入。

Trail (see Recommendation [G.805]): A "transport entity" that consists of an associated pair of "unidirectional trails" capable of simultaneously transferring information in opposite directions between their respective inputs and outputs.

轨迹(见建议[G.805]):一种“传输实体”,由一对相关联的“单向轨迹”组成,能够在各自的输入和输出之间以相反方向同时传输信息。

Transport plane: Provides bi-directional or unidirectional transfer of user information, from one location to another. It can also provide transfer of some control and network management information. The transport plane is layered; it is equivalent to the Transport Network defined in the [G.805] Recommendation.

传输平面:提供用户信息从一个位置到另一个位置的双向或单向传输。它还可以提供一些控制和网络管理信息的传输。运输机是分层的,;它相当于[G.805]建议中定义的传输网络。

User Network Interface (UNI): Interfaces are located between protocol controllers between a user and a control domain. Note: there is no routing function associated with a UNI reference point.

用户网络接口(UNI):接口位于用户和控制域之间的协议控制器之间。注:没有与UNI参考点关联的路由功能。

Variable adaptation function: A single server layer trail may dynamically support different multiplexing structures, i.e., link connections for multiple client layer networks.

可变自适应功能:单个服务器层跟踪可能动态支持不同的多路复用结构,即多个客户端层网络的链路连接。

Appendix 2: ASON Routing Terminology

附录2:ASON路由术语

This document makes use of the following terms:

本文件使用了以下术语:

Routing Area (RA): An RA represents a partition of the data plane, and its identifier is used within the control plane as the representation of this partition. Per [G.8080], an RA is defined by a set of subnetworks, the links that interconnect them, and the interfaces representing the ends of the links exiting that RA. An RA may contain smaller RAs inter-connected by links. The limit of subdivision results in an RA that contains two subnetworks interconnected by a single link.

路由区域(RA):RA表示数据平面的分区,其标识符在控制平面内用作此分区的表示。根据[G.8080],RA由一组子网络、互连它们的链路以及代表退出RA的链路端部的接口定义。RA可以包含通过链路相互连接的较小RA。细分的限制导致RA包含由单个链路互连的两个子网络。

Routing Database (RDB): Repository for the local topology, network topology, reachability, and other routing information that is updated as part of the routing information exchange and may additionally contain information that is configured. The RDB may contain routing information for more than one Routing Area (RA).

路由数据库(RDB):本地拓扑、网络拓扑、可达性和其他路由信息的存储库,作为路由信息交换的一部分进行更新,还可能包含已配置的信息。RDB可能包含多个路由区域(RA)的路由信息。

Routing Components: ASON routing architecture functions. These functions can be classified as protocol independent (Link Resource Manager or LRM, Routing Controller or RC) and protocol specific (Protocol Controller or PC).

路由组件:ASON路由架构功能。这些功能可分为协议独立(链路资源管理器或LRM、路由控制器或RC)和协议特定(协议控制器或PC)。

Routing Controller (RC): Handles (abstract) information needed for routing and the routing information exchange with peering RCs by operating on the RDB. The RC has access to a view of the RDB. The RC is protocol independent.

路由控制器(RC):通过在RDB上操作,处理路由所需的(抽象)信息以及与对等RCs的路由信息交换。RC可以访问RDB的视图。RC是独立于协议的。

Note: Since the RDB may contain routing information pertaining to multiple RAs (and possibly to multiple layer networks), the RCs accessing the RDB may share the routing information.

注意:由于RDB可能包含与多个RAs(以及可能与多层网络)相关的路由信息,因此访问RDB的RCs可能共享路由信息。

Link Resource Manager (LRM): Supplies all the relevant component and Traffic Engineering (TE) link information to the RC. It informs the RC about any state changes of the link resources it controls.

链路资源管理器(LRM):向RC提供所有相关组件和流量工程(TE)链路信息。它将通知RC其控制的链路资源的任何状态更改。

Protocol Controller (PC): Handles protocol-specific message exchanges according to the reference point over which the information is exchanged (e.g., E-NNI, I-NNI), and internal exchanges with the RC. The PC function is protocol dependent.

协议控制器(PC):根据交换信息的参考点(如e-NNI、I-NNI)处理特定于协议的消息交换,以及与RC的内部交换。PC功能取决于协议。

Authors' Addresses

作者地址

Wesam Alanqar Sprint

韦萨姆·阿兰卡尔短跑

   EMail: wesam.alanqar@mail.sprint.com
        
   EMail: wesam.alanqar@mail.sprint.com
        

Deborah Brungard, Ed. AT&T Rm. D1-3C22 - 200 S. Laurel Ave. Middletown, NJ 07748, USA

德博拉·布伦加德,美国电话电报公司编辑室。D1-3C22-200美国新泽西州米德尔敦月桂大道南07748号

   Phone: +1 732 4201573
   EMail: dbrungard@att.com
        
   Phone: +1 732 4201573
   EMail: dbrungard@att.com
        

David Meyer Cisco Systems

大卫梅耶思科系统公司

   EMail: dmm@1-4-5.net
        
   EMail: dmm@1-4-5.net
        

Lyndon Ong Ciena Corporation 5965 Silver Creek Valley Rd, San Jose, CA 95128, USA

美国加利福尼亚州圣何塞市银溪谷路5965号林登·翁·西纳公司,邮编95128

   Phone: +1 408 8347894
   EMail: lyong@ciena.com
        
   Phone: +1 408 8347894
   EMail: lyong@ciena.com
        

Dimitri Papadimitriou Alcatel Francis Wellensplein 1, B-2018 Antwerpen, Belgium

迪米特里·帕帕迪米特里奥·阿尔卡特·弗朗西斯·韦伦斯普林1号,B-2018比利时安特卫普

   Phone: +32 3 2408491
   EMail: dimitri.papadimitriou@alcatel.be
        
   Phone: +32 3 2408491
   EMail: dimitri.papadimitriou@alcatel.be
        

Jonathan Sadler 1415 W. Diehl Rd Naperville, IL 60563

乔纳森·萨德勒(Jonathan Sadler)美国伊利诺伊州纳珀维尔市西迪尔路1415号,邮编:60563

   EMail: jonathan.sadler@tellabs.com
        
   EMail: jonathan.sadler@tellabs.com
        

Stephen Shew Nortel Networks PO Box 3511 Station C Ottawa, Ontario, CANADA K1Y 4H7

Stephen Shew Nortel Networks邮政信箱3511加拿大安大略省渥太华C站K1Y 4H7

   Phone: +1 613 7632462
   EMail: sdshew@nortelnetworks.com
        
   Phone: +1 613 7632462
   EMail: sdshew@nortelnetworks.com
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。