Network Working Group                                   K. Kompella, Ed.
Request for Comments: 4202                              Y. Rekhter,  Ed.
Category: Standards Track                               Juniper Networks
                                                            October 2005
        
Network Working Group                                   K. Kompella, Ed.
Request for Comments: 4202                              Y. Rekhter,  Ed.
Category: Standards Track                               Juniper Networks
                                                            October 2005
        

Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)

支持通用多协议标签交换(GMPLS)的路由扩展

Status of This Memo

关于下段备忘

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

Abstract

摘要

This document specifies routing extensions in support of carrying link state information for Generalized Multi-Protocol Label Switching (GMPLS). This document enhances the routing extensions required to support MPLS Traffic Engineering (TE).

本文件规定了支持承载通用多协议标签交换(GMPLS)链路状态信息的路由扩展。本文档增强了支持MPLS流量工程(TE)所需的路由扩展。

Table of Contents

目录

   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   3
       1.1.  Requirements for Layer-Specific TE Attributes . . . . .   4
       1.2.  Excluding Data Traffic from Control Channels. . . . . .   6
   2.  GMPLS Routing Enhancements. . . . . . . . . . . . . . . . . .   7
       2.1.  Support for Unnumbered Links. . . . . . . . . . . . . .   7
       2.2.  Link Protection Type. . . . . . . . . . . . . . . . . .   7
       2.3.  Shared Risk Link Group Information. . . . . . . . . . .   9
       2.4.  Interface Switching Capability Descriptor . . . . . . .   9
             2.4.1.  Layer-2 Switch Capable. . . . . . . . . . . . .  11
             2.4.2.  Packet-Switch Capable . . . . . . . . . . . . .  11
             2.4.3.  Time-Division Multiplex Capable . . . . . . . .  12
             2.4.4.  Lambda-Switch Capable . . . . . . . . . . . . .  13
             2.4.5.  Fiber-Switch Capable. . . . . . . . . . . . . .  13
             2.4.6.  Multiple Switching Capabilities per Interface .  13
             2.4.7.  Interface Switching Capabilities and Labels . .  14
             2.4.8.  Other Issues. . . . . . . . . . . . . . . . . .  14
       2.5.  Bandwidth Encoding. . . . . . . . . . . . . . . . . . .  15
   3.  Examples of Interface Switching Capability Descriptor . . . .  15
       3.1.  STM-16 POS Interface on a LSR . . . . . . . . . . . . .  15
       3.2.  GigE Packet Interface on a LSR. . . . . . . . . . . . .  15
       3.3.  STM-64 SDH Interface on a Digital Cross Connect with
             Standard SDH. . . . . . . . . . . . . . . . . . . . . .  15
       3.4.  STM-64 SDH Interface on a Digital Cross Connect with
             Two Types of SDH Multiplexing Hierarchy Supported . . .  16
       3.5.  Interface on an Opaque OXC (SDH Framed) with Support
             for One Lambda per Port/Interface . . . . . . . . . . .  16
       3.6.  Interface on a Transparent OXC (PXC) with External
             DWDM that understands SDH framing . . . . . . . . . . .  17
       3.7.  Interface on a Transparent OXC (PXC) with External
             DWDM That Is Transparent to Bit-Rate and Framing. . . .  17
       3.8.  Interface on a PXC with No External DWDM. . . . . . . .  18
       3.9.  Interface on a OXC with Internal DWDM That Understands
             SDH Framing . . . . . . . . . . . . . . . . . . . . . .  18
       3.10. Interface on a OXC with Internal DWDM That Is
             Transparent to Bit-Rate and Framing . . . . . . . . . .  19
   4.  Example of Interfaces That Support Multiple Switching
       Capabilities. . . . . . . . . . . . . . . . . . . . . . . . .  20
       4.1.  Interface on a PXC+TDM Device with External DWDM. . . .  20
       4.2.  Interface on an Opaque OXC+TDM Device with External
             DWDM. . . . . . . . . . . . . . . . . . . . . . . . . .  21
       4.3.  Interface on a PXC+LSR Device with External DWDM. . . .  21
       4.4.  Interface on a TDM+LSR Device . . . . . . . . . . . . .  21
   5.  Acknowledgements. . . . . . . . . . . . . . . . . . . . . . .  22
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  22
        
   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   3
       1.1.  Requirements for Layer-Specific TE Attributes . . . . .   4
       1.2.  Excluding Data Traffic from Control Channels. . . . . .   6
   2.  GMPLS Routing Enhancements. . . . . . . . . . . . . . . . . .   7
       2.1.  Support for Unnumbered Links. . . . . . . . . . . . . .   7
       2.2.  Link Protection Type. . . . . . . . . . . . . . . . . .   7
       2.3.  Shared Risk Link Group Information. . . . . . . . . . .   9
       2.4.  Interface Switching Capability Descriptor . . . . . . .   9
             2.4.1.  Layer-2 Switch Capable. . . . . . . . . . . . .  11
             2.4.2.  Packet-Switch Capable . . . . . . . . . . . . .  11
             2.4.3.  Time-Division Multiplex Capable . . . . . . . .  12
             2.4.4.  Lambda-Switch Capable . . . . . . . . . . . . .  13
             2.4.5.  Fiber-Switch Capable. . . . . . . . . . . . . .  13
             2.4.6.  Multiple Switching Capabilities per Interface .  13
             2.4.7.  Interface Switching Capabilities and Labels . .  14
             2.4.8.  Other Issues. . . . . . . . . . . . . . . . . .  14
       2.5.  Bandwidth Encoding. . . . . . . . . . . . . . . . . . .  15
   3.  Examples of Interface Switching Capability Descriptor . . . .  15
       3.1.  STM-16 POS Interface on a LSR . . . . . . . . . . . . .  15
       3.2.  GigE Packet Interface on a LSR. . . . . . . . . . . . .  15
       3.3.  STM-64 SDH Interface on a Digital Cross Connect with
             Standard SDH. . . . . . . . . . . . . . . . . . . . . .  15
       3.4.  STM-64 SDH Interface on a Digital Cross Connect with
             Two Types of SDH Multiplexing Hierarchy Supported . . .  16
       3.5.  Interface on an Opaque OXC (SDH Framed) with Support
             for One Lambda per Port/Interface . . . . . . . . . . .  16
       3.6.  Interface on a Transparent OXC (PXC) with External
             DWDM that understands SDH framing . . . . . . . . . . .  17
       3.7.  Interface on a Transparent OXC (PXC) with External
             DWDM That Is Transparent to Bit-Rate and Framing. . . .  17
       3.8.  Interface on a PXC with No External DWDM. . . . . . . .  18
       3.9.  Interface on a OXC with Internal DWDM That Understands
             SDH Framing . . . . . . . . . . . . . . . . . . . . . .  18
       3.10. Interface on a OXC with Internal DWDM That Is
             Transparent to Bit-Rate and Framing . . . . . . . . . .  19
   4.  Example of Interfaces That Support Multiple Switching
       Capabilities. . . . . . . . . . . . . . . . . . . . . . . . .  20
       4.1.  Interface on a PXC+TDM Device with External DWDM. . . .  20
       4.2.  Interface on an Opaque OXC+TDM Device with External
             DWDM. . . . . . . . . . . . . . . . . . . . . . . . . .  21
       4.3.  Interface on a PXC+LSR Device with External DWDM. . . .  21
       4.4.  Interface on a TDM+LSR Device . . . . . . . . . . . . .  21
   5.  Acknowledgements. . . . . . . . . . . . . . . . . . . . . . .  22
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  22
        
   7.  References. . . . . . . . . . . . . . . . . . . . . . . . . .  23
       7.1.  Normative References. . . . . . . . . . . . . . . . . .  23
       7.2.  Informative References. . . . . . . . . . . . . . . . .  24
   8.  Contributors. . . . . . . . . . . . . . . . . . . . . . . . .  24
        
   7.  References. . . . . . . . . . . . . . . . . . . . . . . . . .  23
       7.1.  Normative References. . . . . . . . . . . . . . . . . .  23
       7.2.  Informative References. . . . . . . . . . . . . . . . .  24
   8.  Contributors. . . . . . . . . . . . . . . . . . . . . . . . .  24
        
1. Introduction
1. 介绍

This document specifies routing extensions in support of carrying link state information for Generalized Multi-Protocol Label Switching (GMPLS). This document enhances the routing extensions [ISIS-TE], [OSPF-TE] required to support MPLS Traffic Engineering (TE).

本文件规定了支持承载通用多协议标签交换(GMPLS)链路状态信息的路由扩展。本文档增强了支持MPLS流量工程(TE)所需的路由扩展[ISIS-TE]、[OSPF-TE]。

Traditionally, a TE link is advertised as an adjunct to a "regular" link, i.e., a routing adjacency is brought up on the link, and when the link is up, both the properties of the link are used for Shortest Path First (SPF) computations (basically, the SPF metric) and the TE properties of the link are then advertised.

传统上,TE链路作为“常规”链路的附件进行广告,即,在链路上产生路由邻接,并且当链路启动时,链路的两个属性都用于最短路径优先(SPF)计算(基本上,SPF度量),然后广告链路的TE属性。

GMPLS challenges this notion in three ways. First, links that are not capable of sending and receiving on a packet-by-packet basis may yet have TE properties; however, a routing adjacency cannot be brought up on such links. Second, a Label Switched Path can be advertised as a point-to-point TE link (see [LSP-HIER]); thus, an advertised TE link may be between a pair of nodes that don't have a routing adjacency with each other. Finally, a number of links may be advertised as a single TE link (perhaps for improved scalability), so again, there is no longer a one-to-one association of a regular routing adjacency and a TE link.

GMPLS从三个方面挑战了这一概念。首先,不能逐个分组地发送和接收的链路可能仍然具有TE属性;但是,无法在此类链接上显示路由邻接。第二,标签交换路径可以作为点对点TE链路公布(参见[LSP-HIER]);因此,广告的TE链路可以在彼此没有路由邻接的一对节点之间。最后,多个链路可以被广告为单个TE链路(可能是为了提高可伸缩性),因此,再次,不再存在常规路由邻接和TE链路的一对一关联。

Thus we have a more general notion of a TE link. A TE link is a "logical" link that has TE properties. The link is logical in a sense that it represents a way to group/map the information about certain physical resources (and their properties) into the information that is used by Constrained SPF for the purpose of path computation, and by GMPLS signaling. This grouping/mapping must be done consistently at both ends of the link. LMP [LMP] could be used to check/verify this consistency.

因此,我们对TE链接有一个更一般的概念。TE链接是具有TE属性的“逻辑”链接。从某种意义上讲,链路是合乎逻辑的,它代表了一种将有关某些物理资源(及其属性)的信息分组/映射到受约束SPF用于路径计算的信息以及GMPLS信令的方法。这种分组/映射必须在链接的两端一致地进行。LMP[LMP]可用于检查/验证这种一致性。

Depending on the nature of resources that form a particular TE link, for the purpose of GMPLS signaling, in some cases the combination of <TE link identifier, label> is sufficient to unambiguously identify the appropriate resource used by an LSP. In other cases, the combination of <TE link identifier, label> is not sufficient; such cases are handled by using the link bundling construct [LINK-BUNDLE] that allows to identify the resource by <TE link identifier, Component link identifier, label>.

根据形成特定TE链路的资源的性质,出于GMPLS信令的目的,在某些情况下,<TE-link-identifier,label>的组合足以明确标识LSP使用的适当资源。在其他情况下,<TE link identifier,label>的组合是不够的;这种情况是通过使用链接绑定构造[link-BUNDLE]来处理的,该构造允许通过<TE link identifier,Component link identifier,label>来识别资源。

Some of the properties of a TE link may be configured on the advertising Label Switching Router (LSR), others which may be obtained from other LSRs by means of some protocol, and yet others which may be deduced from the component(s) of the TE link.

TE链路的一些属性可以配置在广告标签交换路由器(LSR)上,其他属性可以通过某种协议从其他LSR获得,还有其他属性可以从TE链路的组件推导而来。

A TE link between a pair of LSRs doesn't imply the existence of a routing adjacency (e.g., an IGP adjacency) between these LSRs. As we mentioned above, in certain cases a TE link between a pair of LSRs could be advertised even if there is no routing adjacency at all between the LSRs (e.g., when the TE link is a Forwarding Adjacency (see [LSP-HIER])).

一对LSR之间的TE链路并不意味着这些LSR之间存在路由邻接(例如IGP邻接)。如上所述,在某些情况下,即使在lsr之间根本没有路由邻接(例如,当TE链路是转发邻接时(参见[LSP-HIER]),也可以通告一对lsr之间的TE链路。

A TE link must have some means by which the advertising LSR can know of its liveness (this means may be routing hellos, but is not limited to routing hellos). When an LSR knows that a TE link is up, and can determine the TE link's TE properties, the LSR may then advertise that link to its (regular) neighbors.

TE链接必须有某种方式,通过这种方式,广告LSR可以知道其活跃性(这一方式可能是路由hello,但不限于路由hello)。当LSR知道TE链路已启动,并且可以确定TE链路的TE属性时,LSR随后可以向其(常规)邻居播发该链路。

In this document, we call the interfaces over which regular routing adjacencies are established "control channels".

在本文中,我们将建立常规路由邻接的接口称为“控制通道”。

[ISIS-TE] and [OSPF-TE] define the canonical TE properties, and say how to associate TE properties to regular (packet-switched) links. This document extends the set of TE properties, and also says how to associate TE properties with non-packet-switched links such as links between Optical Cross-Connects (OXCs). [LSP-HIER] says how to associate TE properties with links formed by Label Switched Paths.

[ISIS-TE]和[OSPF-TE]定义规范TE属性,并说明如何将TE属性与常规(分组交换)链路相关联。本文档扩展了TE属性集,还介绍了如何将TE属性与非分组交换链路(如光交叉连接(OXC)之间的链路)关联。[LSP-HIER]说明如何将TE属性与标签交换路径形成的链接相关联。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照BCP 14、RFC 2119[RFC2119]中的说明进行解释。

1.1. Requirements for Layer-Specific TE Attributes
1.1. 层特定TE属性的要求

In generalizing TE links to include traditional transport facilities, there are additional factors that influence what information is needed about the TE link. These arise from existing transport layer architecture (e.g., ITU-T Recommendations G.805 and G.806) and associated layer services. Some of these factors are:

在将TE链路推广到包括传统交通设施的过程中,还有其他因素会影响TE链路所需的信息。这些产生于现有的传输层架构(例如,ITU-T建议g.805和g.806)和相关的层服务。其中一些因素包括:

1. The need for LSPs at a specific adaptation, not just a particular bandwidth. Clients of optical networks obtain connection services for specific adaptations, for example, a VC-3 circuit. This not only implies a particular bandwidth, but how the payload is structured. Thus the VC-3 client would not be satisfied with any LSP that offered other than 48.384 Mbit/s and with the expected

1. LSP在特定适应条件下的需要,而不仅仅是特定带宽。光网络的客户端获得特定适配的连接服务,例如VC-3电路。这不仅意味着特定的带宽,还意味着有效负载的结构。因此,VC-3客户不会对提供48.384 Mbit/s以外的任何LSP以及预期的性能感到满意

structure. The corollary is that path computation should be able to find a route that would give a connection at a specific adaptation.

结构由此推论,路径计算应该能够找到一条在特定适应条件下提供连接的路由。

2. Distinguishing variable adaptation. A resource between two OXCs (specifically a G.805 trail) can sometimes support different adaptations at the same time. An example of this is described in section 2.4.8. In this situation, the fact that two adaptations are supported on the same trail is important because the two layers are dependent, and it is important to be able to reflect this layer relationship in routing, especially in view of the relative lack of flexibility of transport layers compared to packet layers.

2. 区分可变适应。两个OXC(特别是G.805 trail)之间的资源有时可以同时支持不同的适应。第2.4.8节中描述了这方面的示例。在这种情况下,在同一条线路上支持两种自适应是很重要的,因为这两个层是相互依赖的,并且能够在路由中反映这一层关系是很重要的,特别是考虑到与分组层相比,传输层相对缺乏灵活性。

3. Inheritable attributes. When a whole multiplexing hierarchy is supported by a TE link, a lower layer attribute may be applicable to the upper layers. Protection attributes are a good example of this. If an OC-192 link is 1+1 protected (a duplicate OC-192 exists for protection), then an STS-3c within that OC-192 (a higher layer) would inherit the same protection property.

3. 可继承属性。当TE链路支持整个复用层次结构时,下层属性可适用于上层。保护属性就是一个很好的例子。如果OC-192链路受1+1保护(存在重复的OC-192进行保护),则该OC-192(更高层)内的STS-3c将继承相同的保护属性。

4. Extensibility of layers. In addition to the existing defined transport layers, new layers and adaptation relationships could come into existence in the future.

4. 层的可扩展性。除了现有定义的传输层外,未来还可能出现新的层和适应关系。

5. Heterogeneous networks whose OXCs do not all support the same set of layers. In a GMPLS network, not all transport layer network elements are expected to support the same layers. For example, there may be switches capable of only VC-11, VC-12, and VC-3, and there may be others that can only support VC-3 and VC-4. Even though a network element cannot support a specific layer, it should be able to know if a network element elsewhere in the network can support an adaptation that would enable that unsupported layer to be used. For example, a VC-11 switch could use a VC-3 capable switch if it knew that a VC-11 path could be constructed over a VC-3 link connection.

5. 其OXC不全部支持同一组层的异构网络。在GMPLS网络中,并非所有传输层网元都支持相同的层。例如,可能有一些交换机只能支持VC-11、VC-12和VC-3,还有一些交换机只能支持VC-3和VC-4。即使网元不能支持特定的层,它也应该能够知道网络中其他地方的网元是否能够支持能够使用该不受支持的层的自适应。例如,如果VC-11交换机知道可以通过VC-3链路连接构建VC-11路径,则可以使用支持VC-3的交换机。

From the factors presented above, development of layer specific GMPLS routing documents should use the following principles for TE-link attributes.

根据上述因素,特定于层的GMPLS路由文件的开发应使用以下TE链路属性原则。

1. Separation of attributes. The attributes in a given layer are separated from attributes in another layer.

1. 属性分离。给定层中的属性与另一层中的属性分离。

2. Support of inter-layer attributes (e.g., adaptation relationships). Between a client and server layer, a general mechanism for describing the layer relationship exists. For

2. 支持层间属性(例如,适应关系)。在客户端和服务器层之间,存在描述层关系的通用机制。对于

example, "4 client links of type X can be supported by this server layer link". Another example is being able to identify when two layers share a common server layer.

例如,“此服务器层链接可支持4个X类型的客户端链接”。另一个例子是能够识别两个层何时共享一个公共服务器层。

3. Support for inheritable attributes. Attributes which can be inherited should be identified.

3. 支持可继承属性。应该识别可以继承的属性。

4. Layer extensibility. Attributes should be represented in routing such that future layers can be accommodated. This is much like the notion of the generalized label.

4. 层扩展性。属性应在布线中表示,以便可以容纳未来的图层。这很像广义标签的概念。

5. Explicit attribute scope. For example, it should be clear whether a given attribute applies to a set of links at the same layer.

5. 显式属性作用域。例如,应该清楚给定属性是否应用于同一层的一组链接。

The present document captures general attributes that apply to a single layer network, but doesn't capture inter-layer relationships of attributes. This work is left to a future document.

本文档捕获适用于单层网络的一般属性,但不捕获属性的层间关系。这项工作留待以后的文件处理。

1.2. Excluding Data Traffic from Control Channels
1.2. 从控制通道排除数据流量

The control channels between nodes in a GMPLS network, such as OXCs, SDH cross-connects and/or routers, are generally meant for control and administrative traffic. These control channels are advertised into routing as normal links as mentioned in the previous section; this allows the routing of (for example) RSVP messages and telnet sessions. However, if routers on the edge of the optical domain attempt to forward data traffic over these channels, the channel capacity will quickly be exhausted.

GMPLS网络中节点之间的控制信道,如OXCs、SDH交叉连接和/或路由器,通常用于控制和管理流量。如前一节所述,这些控制信道作为正常链路播发到路由中;这允许路由(例如)RSVP消息和telnet会话。然而,如果光域边缘的路由器试图通过这些信道转发数据流量,信道容量将很快耗尽。

In order to keep these control channels from being advertised into the user data plane a variety of techniques can be used.

为了防止这些控制信道被广告到用户数据平面中,可以使用多种技术。

If one assumes that data traffic is sent to BGP destinations, and control traffic to IGP destinations, then one can exclude data traffic from the control plane by restricting BGP nexthop resolution. (It is assumed that OXCs are not BGP speakers.) Suppose that a router R is attempting to install a route to a BGP destination D. R looks up the BGP nexthop for D in its IGP's routing table. Say R finds that the path to the nexthop is over interface I. R then checks if it has an entry in its Link State database associated with the interface I. If it does, and the link is not packet-switch capable (see [LSP-HIER]), R installs a discard route for destination D. Otherwise, R installs (as usual) a route for destination D with nexthop I. Note that R need only do this check if it has packet-switch incapable links; if all of its links are packet-switch capable, then clearly this check is redundant.

如果假设数据流量被发送到BGP目的地,并且控制流量到IGP目的地,则可以通过限制BGP nexthop分辨率从控制平面排除数据流量。(假设OXC不是BGP扬声器。)假设路由器R试图安装到BGP目的地D的路由。R在其IGP的路由表中查找BGP nexthop中的D。假设R发现到下一个IP的路径在接口I上。R然后检查其链接状态数据库中是否有与接口I关联的条目。如果有,并且链接不支持分组交换(请参见[LSP-HIER]),R将为目的地D安装丢弃路由。否则,R将安装(与通常一样)目的地D与nexthop I之间的路由。注意,如果R具有分组交换链路,则只需进行此检查;如果它的所有链路都支持分组交换,那么很明显,这个检查是多余的。

In other instances it may be desirable to keep the whole address space of a GMPLS routing plane disjoint from the endpoint addresses in another portion of the GMPLS network. For example, the addresses of a carrier network where the carrier uses GMPLS but does not wish to expose the internals of the addressing or topology. In such a network the control channels are never advertised into the end data network. In this instance, independent mechanisms are used to advertise the data addresses over the carrier network.

在其他情况下,可能需要保持GMPLS路由平面的整个地址空间与GMPLS网络的另一部分中的端点地址不相交。例如,载波网络的地址,其中载波使用GMPLS,但不希望公开寻址或拓扑的内部。在这样的网络中,控制信道永远不会播发到终端数据网络中。在这种情况下,使用独立的机制在载波网络上公布数据地址。

Other techniques for excluding data traffic from control channels may also be needed.

还可能需要用于从控制信道排除数据业务的其他技术。

2. GMPLS Routing Enhancements
2. GMPLS路由增强

In this section we define the enhancements to the TE properties of GMPLS TE links. Encoding of this information in IS-IS is specified in [GMPLS-ISIS]. Encoding of this information in OSPF is specified in [GMPLS-OSPF].

在本节中,我们定义了对GMPLS TE链接的TE属性的增强。[GMPLS-ISIS]中规定了IS-IS中该信息的编码。[GMPLS-OSPF]中规定了OSPF中该信息的编码。

2.1. Support for Unnumbered Links
2.1. 支持未编号的链接

An unnumbered link has to be a point-to-point link. An LSR at each end of an unnumbered link assigns an identifier to that link. This identifier is a non-zero 32-bit number that is unique within the scope of the LSR that assigns it.

未编号的链接必须是点对点链接。未编号链路两端的LSR为该链路分配一个标识符。此标识符是一个非零32位数字,在分配它的LSR范围内是唯一的。

Consider an (unnumbered) link between LSRs A and B. LSR A chooses an idenfitier for that link. So does LSR B. From A's perspective we refer to the identifier that A assigned to the link as the "link local identifier" (or just "local identifier"), and to the identifier that B assigned to the link as the "link remote identifier" (or just "remote identifier"). Likewise, from B's perspective the identifier that B assigned to the link is the local identifier, and the identifier that A assigned to the link is the remote identifier.

考虑LSR A和B之间的(未编号)链接,LSR为该链接选择相同的链接。LSR B也是如此。从A的角度来看,我们将A分配给链路的标识符称为“链路本地标识符”(或简称“本地标识符”),将B分配给链路的标识符称为“链路远程标识符”(或简称“远程标识符”)。同样,从B的角度来看,B分配给链路的标识符是本地标识符,A分配给链路的标识符是远程标识符。

Support for unnumbered links in routing includes carrying information about the identifiers of that link. Specifically, when an LSR advertises an unnumbered TE link, the advertisement carries both the local and the remote identifiers of the link. If the LSR doesn't know the remote identifier of that link, the LSR should use a value of 0 as the remote identifier.

对路由中未编号链接的支持包括携带有关该链接标识符的信息。具体地说,当LSR播发未编号的TE链路时,播发同时携带链路的本地和远程标识符。如果LSR不知道该链接的远程标识符,则LSR应使用值0作为远程标识符。

2.2. Link Protection Type
2.2. 链路保护类型

The Link Protection Type represents the protection capability that exists for a link. It is desirable to carry this information so that it may be used by the path computation algorithm to set up LSPs with appropriate protection characteristics. This information is

链路保护类型表示链路存在的保护能力。希望携带该信息,以便路径计算算法可以使用该信息来建立具有适当保护特性的lsp。这个信息是

organized in a hierarchy where typically the minimum acceptable protection is specified at path instantiation and a path selection technique is used to find a path that satisfies at least the minimum acceptable protection. Protection schemes are presented in order from lowest to highest protection.

以层次结构组织,其中通常在路径实例化时指定最小可接受保护,并使用路径选择技术查找至少满足最小可接受保护的路径。提出了从最低保护到最高保护的保护方案。

This document defines the following protection capabilities:

本文件定义了以下保护功能:

Extra Traffic If the link is of type Extra Traffic, it means that the link is protecting another link or links. The LSPs on a link of this type will be lost if any of the links it is protecting fail.

额外流量如果链接类型为额外流量,则表示该链接正在保护另一个或多个链接。如果正在保护的任何链路出现故障,则此类型链路上的LSP将丢失。

Unprotected If the link is of type Unprotected, it means that there is no other link protecting this link. The LSPs on a link of this type will be lost if the link fails.

未保护如果链接类型为未保护,则表示没有其他链接保护此链接。如果链路出现故障,则此类型链路上的LSP将丢失。

Shared If the link is of type Shared, it means that there are one or more disjoint links of type Extra Traffic that are protecting this link. These Extra Traffic links are shared between one or more links of type Shared.

共享如果链接类型为共享,则表示有一个或多个类型为额外流量的不相交链接正在保护此链接。这些额外流量链接在一个或多个共享类型的链接之间共享。

Dedicated 1:1 If the link is of type Dedicated 1:1, it means that there is one dedicated disjoint link of type Extra Traffic that is protecting this link.

专用1:1如果链路类型为专用1:1,则表示有一个专用不相交的额外通信量类型链路正在保护此链路。

Dedicated 1+1 If the link is of type Dedicated 1+1, it means that a dedicated disjoint link is protecting this link. However, the protecting link is not advertised in the link state database and is therefore not available for the routing of LSPs.

专用1+1如果链接类型为专用1+1,则表示专用不相交链接正在保护此链接。但是,保护链路未在链路状态数据库中公布,因此不可用于LSP的路由。

Enhanced If the link is of type Enhanced, it means that a protection scheme that is more reliable than Dedicated 1+1, e.g., 4 fiber BLSR/MS-SPRING, is being used to protect this link.

增强如果链路类型为增强型,则意味着使用比专用1+1更可靠的保护方案(例如,4光纤BLSR/MS-SPRING)来保护该链路。

The Link Protection Type is optional, and if a Link State Advertisement doesn't carry this information, then the Link Protection Type is unknown.

链接保护类型是可选的,如果链接状态播发不包含此信息,则链接保护类型未知。

2.3. Shared Risk Link Group Information
2.3. 共享风险链接组信息

A set of links may constitute a 'shared risk link group' (SRLG) if they share a resource whose failure may affect all links in the set. For example, two fibers in the same conduit would be in the same SRLG. A link may belong to multiple SRLGs. Thus the SRLG Information describes a list of SRLGs that the link belongs to. An SRLG is identified by a 32 bit number that is unique within an IGP domain. The SRLG Information is an unordered list of SRLGs that the link belongs to.

如果一组链路共享一个资源,而该资源的故障可能会影响该组中的所有链路,则该组链路可能构成“共享风险链路组”(SRLG)。例如,同一导管中的两条光纤将位于同一SRLG中。一条链路可能属于多个SRLGs。因此,SRLG信息描述链路所属的SRLG的列表。SRLG由IGP域内唯一的32位数字标识。SRLG信息是链接所属SRLG的无序列表。

The SRLG of a LSP is the union of the SRLGs of the links in the LSP. The SRLG of a bundled link is the union of the SRLGs of all the component links.

LSP的SRLG是LSP中链路的SRLG的并集。捆绑链路的SRLG是所有组件链路的SRLG的并集。

If an LSR is required to have multiple diversely routed LSPs to another LSR, the path computation should attempt to route the paths so that they do not have any links in common, and such that the path SRLGs are disjoint.

如果一个LSR需要有多个不同路由的LSP到另一个LSR,则路径计算应尝试路由路径,以便它们没有任何公共链路,并且路径SRLGs是不相交的。

The SRLG Information may start with a configured value, in which case it does not change over time, unless reconfigured.

SRLG信息可以从配置的值开始,在这种情况下,除非重新配置,否则不会随时间变化。

The SRLG Information is optional and if a Link State Advertisement doesn't carry the SRLG Information, then it means that SRLG of that link is unknown.

SRLG信息是可选的,如果链接状态广告不包含SRLG信息,则表示该链接的SRLG未知。

2.4. Interface Switching Capability Descriptor
2.4. 接口交换能力描述符

In the context of this document we say that a link is connected to a node by an interface. In the context of GMPLS interfaces may have different switching capabilities. For example an interface that connects a given link to a node may not be able to switch individual packets, but it may be able to switch channels within an SDH payload. Interfaces at each end of a link need not have the same switching capabilities. Interfaces on the same node need not have the same switching capabilities.

在本文档的上下文中,我们说链接通过接口连接到节点。在GMPLS的上下文中,接口可能具有不同的交换能力。例如,将给定链路连接到节点的接口可能无法切换单个数据包,但它可能能够切换SDH有效负载内的信道。链路两端的接口不需要具有相同的交换能力。同一节点上的接口不需要具有相同的交换功能。

The Interface Switching Capability Descriptor describes switching capability of an interface. For bi-directional links, the switching capabilities of an interface are defined to be the same in either direction. I.e., for data entering the node through that interface and for data leaving the node through that interface.

接口交换能力描述符描述接口的交换能力。对于双向链路,接口的交换能力定义为在任一方向上相同。即,对于通过该接口进入节点的数据和通过该接口离开节点的数据。

A Link State Advertisement of a link carries the Interface Switching Capability Descriptor(s) only of the near end (the end incumbent on the LSR originating the advertisement).

链路的链路状态公告仅携带近端(发起该公告的LSR上的在任端)的接口交换能力描述符。

An LSR performing path computation uses the Link State Database to determine whether a link is unidirectional or bidirectional.

执行路径计算的LSR使用链路状态数据库来确定链路是单向的还是双向的。

For a bidirectional link the LSR uses its Link State Database to determine the Interface Switching Capability Descriptor(s) of the far-end of the link, as bidirectional links with different Interface Switching Capabilities at its two ends are allowed.

对于双向链路,LSR使用其链路状态数据库来确定链路远端的接口交换能力描述符,因为允许在其两端具有不同接口交换能力的双向链路。

For a unidirectional link it is assumed that the Interface Switching Capability Descriptor at the far-end of the link is the same as at the near-end. Thus, an unidirectional link is required to have the same interface switching capabilities at both ends. This seems a reasonable assumption given that unidirectional links arise only with packet forwarding adjacencies and for these both ends belong to the same level of the PSC hierarchy.

对于单向链路,假定链路远端的接口交换能力描述符与近端相同。因此,要求单向链路在两端具有相同的接口交换能力。这似乎是一个合理的假设,因为单向链路只出现在包转发邻接处,并且对于这些端,它们属于PSC层次结构的同一级别。

This document defines the following Interface Switching Capabilities:

本文件定义了以下接口交换功能:

Packet-Switch Capable-1 (PSC-1) Packet-Switch Capable-2 (PSC-2) Packet-Switch Capable-3 (PSC-3) Packet-Switch Capable-4 (PSC-4) Layer-2 Switch Capable (L2SC) Time-Division-Multiplex Capable (TDM) Lambda-Switch Capable (LSC) Fiber-Switch Capable (FSC)

支持分组交换-1(PSC-1)支持分组交换-2(PSC-2)支持分组交换-3(PSC-3)支持分组交换-4(PSC-4)支持第二层交换机(L2SC)支持时分多路复用(TDM)支持Lambda交换机(LSC)支持光纤交换机(FSC)

If there is no Interface Switching Capability Descriptor for an interface, the interface is assumed to be packet-switch capable (PSC-1).

如果接口没有接口交换能力描述符,则假定该接口具有分组交换能力(PSC-1)。

Interface Switching Capability Descriptors present a new constraint for LSP path computation.

接口交换能力描述符为LSP路径计算提供了一个新的约束。

Irrespective of a particular Interface Switching Capability, the Interface Switching Capability Descriptor always includes information about the encoding supported by an interface. The defined encodings are the same as LSP Encoding as defined in [GMPLS-SIG].

不管特定的接口交换能力如何,接口交换能力描述符始终包含有关接口支持的编码的信息。定义的编码与[GMPLS-SIG]中定义的LSP编码相同。

An interface may have more than one Interface Switching Capability Descriptor. This is used to handle interfaces that support multiple switching capabilities, for interfaces that have Max LSP Bandwidth values that differ by priority level, and for interfaces that support discrete bandwidths.

一个接口可以有多个接口交换能力描述符。这用于处理支持多种交换功能的接口、具有不同优先级的最大LSP带宽值的接口以及支持离散带宽的接口。

Depending on a particular Interface Switching Capability, the Interface Switching Capability Descriptor may include additional information, as specified below.

根据特定接口交换能力,接口交换能力描述符可包括附加信息,如下所述。

2.4.1. Layer-2 Switch Capable
2.4.1. 支持第二层交换机

If an interface is of type L2SC, it means that the node receiving data over this interface can switch the received frames based on the layer 2 address. For example, an interface associated with a link terminating on an ATM switch would be considered L2SC.

如果接口类型为L2SC,则意味着通过该接口接收数据的节点可以基于第2层地址切换接收到的帧。例如,与ATM交换机上终止的链路相关联的接口将被视为L2SC。

2.4.2. Packet-Switch Capable
2.4.2. 支持分组交换

If an interface is of type PSC-1 through PSC-4, it means that the node receiving data over this interface can switch the received data on a packet-by-packet basis, based on the label carried in the "shim" header [RFC3032]. The various levels of PSC establish a hierarchy of LSPs tunneled within LSPs.

如果接口类型为PSC-1至PSC-4,则意味着通过该接口接收数据的节点可以基于“垫片”报头[RFC3032]中携带的标签逐包切换接收的数据。各级PSC建立了在LSP内隧道的LSP层次结构。

For Packet-Switch Capable interfaces the additional information includes Maximum LSP Bandwidth, Minimum LSP Bandwidth, and interface MTU.

对于支持分组交换的接口,附加信息包括最大LSP带宽、最小LSP带宽和接口MTU。

For a simple (unbundled) link, the Maximum LSP Bandwidth at priority p is defined to be the smaller of the unreserved bandwidth at priority p and a "Maximum LSP Size" parameter which is locally configured on the link, and whose default value is equal to the Max Link Bandwidth. Maximum LSP Bandwidth for a bundled link is defined in [LINK-BUNDLE].

对于简单(未绑定)链路,优先级p的最大LSP带宽定义为优先级p的未保留带宽和链路本地配置的“最大LSP大小”参数中的较小者,其默认值等于最大链路带宽。捆绑链路的最大LSP带宽在[link-BUNDLE]中定义。

The Maximum LSP Bandwidth takes the place of the Maximum Link Bandwidth ([ISIS-TE], [OSPF-TE]). However, while Maximum Link Bandwidth is a single fixed value (usually simply the link capacity), Maximum LSP Bandwidth is carried per priority, and may vary as LSPs are set up and torn down.

最大LSP带宽取代最大链路带宽([ISIS-TE]、[OSPF-TE])。然而,虽然最大链路带宽是一个固定值(通常只是链路容量),但最大LSP带宽是按优先级进行的,并且可能随着LSP的设置和拆除而变化。

Although Maximum Link Bandwidth is to be deprecated, for backward compatibility, one MAY set the Maximum Link Bandwidth to the Maximum LSP Bandwidth at priority 7.

尽管不推荐使用最大链路带宽,但为了向后兼容,可以将最大链路带宽设置为优先级为7的最大LSP带宽。

The Minimum LSP Bandwidth specifies the minimum bandwidth an LSP could reserve.

最小LSP带宽指定LSP可以保留的最小带宽。

Typical values for the Minimum LSP Bandwidth and for the Maximum LSP Bandwidth are enumerated in [GMPLS-SIG].

[GMPLS-SIG]中列举了最小LSP带宽和最大LSP带宽的典型值。

On a PSC interface that supports Standard SDH encoding, an LSP at priority p could reserve any bandwidth allowed by the branch of the SDH hierarchy, with the leaf and the root of the branch being defined by the Minimum LSP Bandwidth and the Maximum LSP Bandwidth at priority p.

在支持标准SDH编码的PSC接口上,优先级为p的LSP可以保留SDH层次结构分支允许的任何带宽,分支的叶和根由优先级为p的最小LSP带宽和最大LSP带宽定义。

On a PSC interface that supports Arbitrary SDH encoding, an LSP at priority p could reserve any bandwidth between the Minimum LSP Bandwidth and the Maximum LSP Bandwidth at priority p, provided that the bandwidth reserved by the LSP is a multiple of the Minimum LSP Bandwidth.

在支持任意SDH编码的PSC接口上,优先级为p的LSP可以保留优先级为p的最小LSP带宽和最大LSP带宽之间的任何带宽,前提是LSP保留的带宽是最小LSP带宽的倍数。

The Interface MTU is the maximum size of a packet that can be transmitted on this interface without being fragmented.

接口MTU是一个数据包的最大大小,该数据包可以在此接口上传输,而不会被分割。

2.4.3. Time-Division Multiplex Capable
2.4.3. 具有时分多路复用功能

If an interface is of type TDM, it means that the node receiving data over this interface can multiplex or demultiplex channels within an SDH payload.

如果接口类型为TDM,则意味着通过该接口接收数据的节点可以在SDH有效负载内多路复用或解多路复用信道。

For Time-Division Multiplex Capable interfaces the additional information includes Maximum LSP Bandwidth, the information on whether the interface supports Standard or Arbitrary SDH, and Minimum LSP Bandwidth.

对于支持时分多路复用的接口,附加信息包括最大LSP带宽、接口是否支持标准或任意SDH的信息以及最小LSP带宽。

For a simple (unbundled) link the Maximum LSP Bandwidth at priority p is defined as the maximum bandwidth an LSP at priority p could reserve. Maximum LSP Bandwidth for a bundled link is defined in [LINK-BUNDLE].

对于简单(非绑定)链路,优先级p的最大LSP带宽定义为优先级p的LSP可以保留的最大带宽。捆绑链路的最大LSP带宽在[link-BUNDLE]中定义。

The Minimum LSP Bandwidth specifies the minimum bandwidth an LSP could reserve.

最小LSP带宽指定LSP可以保留的最小带宽。

Typical values for the Minimum LSP Bandwidth and for the Maximum LSP Bandwidth are enumerated in [GMPLS-SIG].

[GMPLS-SIG]中列举了最小LSP带宽和最大LSP带宽的典型值。

On an interface having Standard SDH multiplexing, an LSP at priority p could reserve any bandwidth allowed by the branch of the SDH hierarchy, with the leaf and the root of the branch being defined by the Minimum LSP Bandwidth and the Maximum LSP Bandwidth at priority p.

在具有标准SDH多路复用的接口上,优先级为p的LSP可以保留SDH层次结构分支允许的任何带宽,分支的叶和根由优先级为p的最小LSP带宽和最大LSP带宽定义。

On an interface having Arbitrary SDH multiplexing, an LSP at priority p could reserve any bandwidth between the Minimum LSP Bandwidth and the Maximum LSP Bandwidth at priority p, provided that the bandwidth reserved by the LSP is a multiple of the Minimum LSP Bandwidth.

在具有任意SDH多路复用的接口上,优先级为p的LSP可以保留优先级为p的最小LSP带宽和最大LSP带宽之间的任何带宽,前提是LSP保留的带宽是最小LSP带宽的倍数。

Interface Switching Capability Descriptor for the interfaces that support sub VC-3 may include additional information. The nature and the encoding of such information is outside the scope of this document.

支持子VC-3的接口的接口交换能力描述符可能包括附加信息。此类信息的性质和编码不在本文件范围内。

A way to handle the case where an interface supports multiple branches of the SDH multiplexing hierarchy, multiple Interface Switching Capability Descriptors would be advertised, one per branch. For example, if an interface supports VC-11 and VC-12 (which are not part of same branch of SDH multiplexing tree), then it could advertise two descriptors, one for each one.

处理一个接口支持SDH多路复用层次结构的多个分支的情况的一种方法是公布多个接口交换能力描述符,每个分支一个。例如,如果接口支持VC-11和VC-12(它们不是SDH多路复用树的同一分支的一部分),那么它可以公布两个描述符,每个描述符一个。

2.4.4. Lambda-Switch Capable
2.4.4. Lambda开关功能

If an interface is of type LSC, it means that the node receiving data over this interface can recognize and switch individual lambdas within the interface. An interface that allows only one lambda per interface, and switches just that lambda is of type LSC.

如果接口类型为LSC,则意味着通过该接口接收数据的节点可以识别并切换接口内的各个lambda。一种接口,每个接口只允许一个lambda,并且只切换lambda为LSC类型。

The additional information includes Reservable Bandwidth per priority, which specifies the bandwidth of an LSP that could be supported by the interface at a given priority number.

附加信息包括每个优先级的可保留带宽,它指定接口在给定优先级编号下可以支持的LSP带宽。

A way to handle the case of multiple data rates or multiple encodings within a single TE Link, multiple Interface Switching Capability Descriptors would be advertised, one per supported data rate and encoding combination. For example, an LSC interface could support the establishment of LSC LSPs at both STM-16 and STM-64 data rates.

在单个TE链路中处理多个数据速率或多个编码的方法,将公布多个接口交换能力描述符,每个支持的数据速率和编码组合一个。例如,LSC接口可以支持以STM-16和STM-64数据速率建立LSC LSP。

2.4.5. Fiber-Switch Capable
2.4.5. 支持光纤交换机

If an interface is of type FSC, it means that the node receiving data over this interface can switch the entire contents to another interface (without distinguishing lambdas, channels or packets). I.e., an interface of type FSC switches at the granularity of an entire interface, and can not extract individual lambdas within the interface. An interface of type FSC can not restrict itself to just one lambda.

如果接口类型为FSC,则意味着通过该接口接收数据的节点可以将整个内容切换到另一个接口(无需区分lambda、通道或数据包)。即,FSC类型的接口以整个接口的粒度进行切换,并且不能提取接口中的单个lambda。FSC类型的接口不能将自身限制为仅一个lambda。

2.4.6. Multiple Switching Capabilities per Interface
2.4.6. 每个接口具有多个交换功能

An interface that connects a link to an LSR may support not one, but several Interface Switching Capabilities. For example, consider a fiber link carrying a set of lambdas that terminates on an LSR interface that could either cross-connect one of these lambdas to some other outgoing optical channel, or could terminate the lambda, and extract (demultiplex) data from that lambda using TDM, and then cross-connect these TDM channels to some outgoing TDM channels. To support this a Link State Advertisement may carry a list of Interface Switching Capabilities Descriptors.

将链路连接到LSR的接口可能不支持一个,而是支持多个接口交换功能。例如,考虑在LLSR接口上承载一组lambdas的光纤链路,其可以将这些lambdas中的一个交叉连接到某个其它出射光信道,或者可以终止lambda,并使用TDM从λ中提取(解复用)数据,然后将这些TDM通道交叉连接到一些输出TDM通道。为了支持这一点,链路状态公告可以携带接口交换能力描述符的列表。

2.4.7. Interface Switching Capabilities and Labels
2.4.7. 接口交换功能和标签

Depicting a TE link as a tuple that contains Interface Switching Capabilities at both ends of the link, some examples links may be:

将TE链路描述为包含链路两端接口交换能力的元组,一些示例链路可能是:

      [PSC, PSC] - a link between two packet LSRs
      [TDM, TDM] - a link between two Digital Cross Connects
      [LSC, LSC] - a link between two OXCs
      [PSC, TDM] - a link between a packet LSR and Digital Cross Connect
      [PSC, LSC] - a link between a packet LSR and an OXC
      [TDM, LSC] - a link between a Digital Cross Connect and an OXC
        
      [PSC, PSC] - a link between two packet LSRs
      [TDM, TDM] - a link between two Digital Cross Connects
      [LSC, LSC] - a link between two OXCs
      [PSC, TDM] - a link between a packet LSR and Digital Cross Connect
      [PSC, LSC] - a link between a packet LSR and an OXC
      [TDM, LSC] - a link between a Digital Cross Connect and an OXC
        

Both ends of a given TE link has to use the same way of carrying label information over that link. Carrying label information on a given TE link depends on the Interface Switching Capability at both ends of the link, and is determined as follows:

给定TE链接的两端必须使用相同的方式在该链接上承载标签信息。在给定TE链路上携带标签信息取决于链路两端的接口交换能力,确定如下:

      [PSC, PSC] - label is carried in the "shim" header [RFC3032]
      [TDM, TDM] - label represents a TDM time slot [GMPLS-SONET-SDH]
      [LSC, LSC] - label represents a lambda
      [FSC, FSC] - label represents a port on an OXC
      [PSC, TDM] - label represents a TDM time slot [GMPLS-SONET-SDH]
      [PSC, LSC] - label represents a lambda
      [PSC, FSC] - label represents a port
      [TDM, LSC] - label represents a lambda
      [TDM, FSC] - label represents a port
      [LSC, FSC] - label represents a port
        
      [PSC, PSC] - label is carried in the "shim" header [RFC3032]
      [TDM, TDM] - label represents a TDM time slot [GMPLS-SONET-SDH]
      [LSC, LSC] - label represents a lambda
      [FSC, FSC] - label represents a port on an OXC
      [PSC, TDM] - label represents a TDM time slot [GMPLS-SONET-SDH]
      [PSC, LSC] - label represents a lambda
      [PSC, FSC] - label represents a port
      [TDM, LSC] - label represents a lambda
      [TDM, FSC] - label represents a port
      [LSC, FSC] - label represents a port
        
2.4.8. Other Issues
2.4.8. 其他问题

It is possible that Interface Switching Capability Descriptor will change over time, reflecting the allocation/deallocation of LSPs. For example, assume that VC-3, VC-4, VC-4-4c, VC-4-16c and VC-4-64c LSPs can be established on a STM-64 interface whose Encoding Type is SDH. Thus, initially in the Interface Switching Capability Descriptor the Minimum LSP Bandwidth is set to VC-3, and Maximum LSP Bandwidth is set to STM-64 for all priorities. As soon as an LSP of VC-3 size at priority 1 is established on the interface, it is no longer capable of VC-4-64c for all but LSPs at priority 0. Therefore, the node advertises a modified Interface Switching Capability Descriptor indicating that the Maximum LSP Bandwidth is no longer STM-64, but STM-16 for all but priority 0 (at priority 0 the Maximum LSP Bandwidth is still STM-64). If subsequently there is another VC-3 LSP, there is no change in the Interface Switching Capability Descriptor. The Descriptor remains the same until the node can no longer establish a VC-4-16c LSP over the interface (which

接口交换能力描述符可能会随时间变化,反映LSP的分配/解除分配。例如,假设可以在编码类型为SDH的STM-64接口上建立VC-3、VC-4、VC-4-4c、VC-4-16c和VC-4-64c LSP。因此,最初在接口交换能力描述符中,对于所有优先级,最小LSP带宽设置为VC-3,最大LSP带宽设置为STM-64。一旦在接口上建立优先级为1的VC-3大小的LSP,它就不再能够为所有LSP提供VC-4-64c,但优先级为0的LSP除外。因此,节点播发修改后的接口交换能力描述符,该描述符指示最大LSP带宽不再是STM-64,而是对于除优先级0以外的所有端口的STM-16(在优先级0处,最大LSP带宽仍然是STM-64)。如果随后有另一个VC-3 LSP,则接口交换能力描述符没有变化。描述符保持不变,直到节点无法在接口上建立VC-4-16c LSP为止(该接口

means that at this point more than 144 time slots are taken by LSPs on the interface). Once this happened, the Descriptor is modified again, and the modified Descriptor is advertised to other nodes.

表示此时接口上的LSP占用了144个以上的时隙)。一旦发生这种情况,将再次修改描述符,并将修改后的描述符通告给其他节点。

2.5. Bandwidth Encoding
2.5. 带宽编码

Encoding in IEEE floating point format [IEEE] of the discrete values that could be used to identify Unreserved bandwidth, Maximum LSP bandwidth and Minimum LSP bandwidth is described in Section 3.1.2 of [GMPLS-SIG].

[GMPLS-SIG]第3.1.2节描述了可用于识别无保留带宽、最大LSP带宽和最小LSP带宽的离散值的IEEE浮点格式编码[IEEE]。

3. Examples of Interface Switching Capability Descriptor
3. 接口交换能力描述符示例
3.1. STM-16 POS Interface on a LSR
3.1. LSR上的STM-16 POS接口

Interface Switching Capability Descriptor: Interface Switching Capability = PSC-1 Encoding = SDH Max LSP Bandwidth[p] = 2.5 Gbps, for all p

接口交换能力描述符:接口交换能力=PSC-1编码=SDH最大LSP带宽[p]=2.5 Gbps,适用于所有p

If multiple links with such interfaces at both ends were to be advertised as one TE link, link bundling techniques should be used.

如果将两端具有此类接口的多个链路作为一个TE链路进行广告,则应使用链路捆绑技术。

3.2. GigE Packet Interface on a LSR
3.2. LSR上的GigE数据包接口

Interface Switching Capability Descriptor: Interface Switching Capability = PSC-1 Encoding = Ethernet 802.3 Max LSP Bandwidth[p] = 1.0 Gbps, for all p

接口交换能力描述符:接口交换能力=PSC-1编码=以太网802.3最大LSP带宽[p]=1.0 Gbps,对于所有p

If multiple links with such interfaces at both ends were to be advertised as one TE link, link bundling techniques should be used.

如果将两端具有此类接口的多个链路作为一个TE链路进行广告,则应使用链路捆绑技术。

3.3. STM-64 SDH Interface on a Digital Cross Connect with Standard SDH
3.3. 与标准SDH数字交叉连接上的STM-64 SDH接口

Consider a branch of SDH multiplexing tree : VC-3, VC-4, VC-4-4c, VC-4-16c, VC-4-64c. If it is possible to establish all these connections on a STM-64 interface, the Interface Switching Capability Descriptor of that interface can be advertised as follows:

考虑SDH复用树的一个分支:VC-3、VC-4、VC-4-4C、VC-4-16C、VC-4-64 C。如果可以在STM-64接口上建立所有这些连接,则该接口的接口交换能力描述符可以按如下方式公布:

Interface Switching Capability Descriptor: Interface Switching Capability = TDM [Standard SDH] Encoding = SDH Min LSP Bandwidth = VC-3 Max LSP Bandwidth[p] = STM-64, for all p

接口交换能力描述符:接口交换能力=TDM[标准SDH]编码=SDH最小LSP带宽=VC-3最大LSP带宽[p]=STM-64,适用于所有p

If multiple links with such interfaces at both ends were to be advertised as one TE link, link bundling techniques should be used.

如果将两端具有此类接口的多个链路作为一个TE链路进行广告,则应使用链路捆绑技术。

3.4. STM-64 SDH Interface on a Digital Cross Connect with Two Types of SDH Multiplexing Hierarchy Supported

3.4. 支持两种SDH复用层次结构的数字交叉连接上的STM-64 SDH接口

Interface Switching Capability Descriptor 1: Interface Switching Capability = TDM [Standard SDH] Encoding = SDH Min LSP Bandwidth = VC-3 Max LSP Bandwidth[p] = STM-64, for all p

接口交换能力描述符1:接口交换能力=TDM[标准SDH]编码=SDH最小LSP带宽=VC-3最大LSP带宽[p]=STM-64,适用于所有p

Interface Switching Capability Descriptor 2: Interface Switching Capability = TDM [Arbitrary SDH] Encoding = SDH Min LSP Bandwidth = VC-4 Max LSP Bandwidth[p] = STM-64, for all p

接口交换能力描述符2:接口交换能力=TDM[任意SDH]编码=SDH最小LSP带宽=VC-4最大LSP带宽[p]=STM-64,适用于所有p

If multiple links with such interfaces at both ends were to be advertised as one TE link, link bundling techniques should be used.

如果将两端具有此类接口的多个链路作为一个TE链路进行广告,则应使用链路捆绑技术。

3.5. Interface on an Opaque OXC (SDH Framed) with Support for One Lambda per Port/Interface

3.5. 不透明OXC(SDH框架)上的接口,每个端口/接口支持一个λ

An "opaque OXC" is considered operationally an OXC, as the whole lambda (carrying the SDH line) is switched transparently without further multiplexing/demultiplexing, and either none of the SDH overhead bytes, or at least the important ones are not changed.

“不透明OXC”在操作上被视为OXC,因为整个lambda(承载SDH线路)在没有进一步复用/解复用的情况下被透明地交换,并且SDH开销字节或者至少重要字节没有改变。

An interface on an opaque OXC handles a single wavelength, and cannot switch multiple wavelengths as a whole. Thus, an interface on an opaque OXC is always LSC, and not FSC, irrespective of whether there is DWDM external to it.

不透明OXC上的接口处理单个波长,不能整体切换多个波长。因此,不透明OXC上的接口始终是LSC,而不是FSC,无论其外部是否有DWDM。

Note that if there is external DWDM, then the framing understood by the DWDM must be same as that understood by the OXC.

请注意,如果存在外部DWDM,则DWDM理解的帧必须与OXC理解的帧相同。

A TE link is a group of one or more interfaces on an OXC. All interfaces on a given OXC are required to have identifiers unique to that OXC, and these identifiers are used as labels (see 3.2.1.1 of [GMPLS-SIG]).

TE链接是OXC上的一组一个或多个接口。给定OXC上的所有接口都要求具有该OXC独有的标识符,这些标识符用作标签(见[GMPLS-SIG]的3.2.1.1)。

The following is an example of an interface switching capability descriptor on an SDH framed opaque OXC:

以下是SDH帧不透明OXC上接口交换能力描述符的示例:

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = SDH Reservable Bandwidth = Determined by SDH Framer (say STM-64)

接口交换能力描述符:接口交换能力=LSC编码=SDH可保留带宽=由SDH成帧器确定(如STM-64)

3.6. Interface on a Transparent OXC (PXC) with External DWDM That Understands SDH Framing

3.6. 透明OXC(PXC)上的接口,具有理解SDH帧的外部DWDM

This example assumes that DWDM and PXC are connected in such a way that each interface (port) on the PXC handles just a single wavelength. Thus, even if in principle an interface on the PXC could switch multiple wavelengths as a whole, in this particular case an interface on the PXC is considered LSC, and not FSC.

本例假设DWDM和PXC的连接方式是,PXC上的每个接口(端口)仅处理一个波长。因此,即使原则上PXC上的接口可以作为一个整体切换多个波长,在这种特定情况下,PXC上的接口被视为LSC,而不是FSC。

                     _______
                    |       |
               /|___|       |
              | |___|  PXC  |
      ========| |___|       |
              | |___|       |
               \|   |_______|
             DWDM
         (SDH framed)
        
                     _______
                    |       |
               /|___|       |
              | |___|  PXC  |
      ========| |___|       |
              | |___|       |
               \|   |_______|
             DWDM
         (SDH framed)
        

A TE link is a group of one or more interfaces on the PXC. All interfaces on a given PXC are required to have identifiers unique to that PXC, and these identifiers are used as labels (see 3.2.1.1 of [GMPLS-SIG]).

TE链路是PXC上的一组一个或多个接口。给定PXC上的所有接口都要求具有该PXC独有的标识符,这些标识符用作标签(见[GMPLS-SIG]的3.2.1.1)。

The following is an example of an interface switching capability descriptor on a transparent OXC (PXC) with external DWDM that understands SDH framing:

以下是具有理解SDH帧的外部DWDM的透明OXC(PXC)上的接口交换能力描述符示例:

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = SDH (comes from DWDM) Reservable Bandwidth = Determined by DWDM (say STM-64)

接口交换能力描述符:接口交换能力=LSC编码=SDH(来自DWDM)可保留带宽=由DWDM确定(如STM-64)

3.7. Interface on a Transparent OXC (PXC) with External DWDM That Is Transparent to Bit-Rate and Framing

3.7. 透明OXC(PXC)上的接口,具有对比特率和帧透明的外部DWDM

This example assumes that DWDM and PXC are connected in such a way that each interface (port) on the PXC handles just a single wavelength. Thus, even if in principle an interface on the PXC could switch multiple wavelengths as a whole, in this particular case an interface on the PXC is considered LSC, and not FSC.

本例假设DWDM和PXC的连接方式是,PXC上的每个接口(端口)仅处理一个波长。因此,即使原则上PXC上的接口可以作为一个整体切换多个波长,在这种特定情况下,PXC上的接口被视为LSC,而不是FSC。

                        _______
                       |       |
                  /|___|       |
                 | |___|  PXC  |
         ========| |___|       |
                 | |___|       |
                  \|   |_______|
                DWDM (transparent to bit-rate and framing)
        
                        _______
                       |       |
                  /|___|       |
                 | |___|  PXC  |
         ========| |___|       |
                 | |___|       |
                  \|   |_______|
                DWDM (transparent to bit-rate and framing)
        

A TE link is a group of one or more interfaces on the PXC. All interfaces on a given PXC are required to have identifiers unique to that PXC, and these identifiers are used as labels (see 3.2.1.1 of [GMPLS-SIG]).

TE链路是PXC上的一组一个或多个接口。给定PXC上的所有接口都要求具有该PXC独有的标识符,这些标识符用作标签(见[GMPLS-SIG]的3.2.1.1)。

The following is an example of an interface switching capability descriptor on a transparent OXC (PXC) with external DWDM that is transparent to bit-rate and framing:

以下是具有对比特率和帧透明的外部DWDM的透明OXC(PXC)上的接口交换能力描述符的示例:

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = Lambda (photonic) Reservable Bandwidth = Determined by optical technology limits

接口交换能力描述符:接口交换能力=LSC编码=λ(光子)可保留带宽=由光学技术限制确定

3.8. Interface on a PXC with No External DWDM
3.8. 没有外部DWDM的PXC上的接口

The absence of DWDM in between two PXCs, implies that an interface is not limited to one wavelength. Thus, the interface is advertised as FSC.

两个PXC之间没有DWDM意味着接口不限于一个波长。因此,该接口被宣传为FSC。

A TE link is a group of one or more interfaces on the PXC. All interfaces on a given PXC are required to have identifiers unique to that PXC, and these identifiers are used as port labels (see 3.2.1.1 of [GMPLS-SIG]).

TE链路是PXC上的一组一个或多个接口。给定PXC上的所有接口都要求具有该PXC独有的标识符,这些标识符用作端口标签(见[GMPLS-SIG]的3.2.1.1)。

Interface Switching Capability Descriptor: Interface Switching Capability = FSC Encoding = Lambda (photonic) Reservable Bandwidth = Determined by optical technology limits

接口交换能力描述符:接口交换能力=FSC编码=λ(光子)可保留带宽=由光学技术限制确定

Note that this example assumes that the PXC does not restrict each port to carry only one wavelength.

注意,该示例假设PXC不限制每个端口仅承载一个波长。

3.9. Interface on a OXC with Internal DWDM That Understands SDH Framing
3.9. OXC上的接口,具有理解SDH帧的内部DWDM

This example assumes that DWDM and OXC are connected in such a way that each interface on the OXC handles multiple wavelengths individually. In this case an interface on the OXC is considered LSC, and not FSC.

本例假设DWDM和OXC的连接方式是,OXC上的每个接口分别处理多个波长。在这种情况下,OXC上的接口被视为LSC,而不是FSC。

                  _______
                 |       |
               /||       ||\
              | ||  OXC  || |
      ========| ||       || |====
              | ||       || |
               \||_______||/
             DWDM
         (SDH framed)
        
                  _______
                 |       |
               /||       ||\
              | ||  OXC  || |
      ========| ||       || |====
              | ||       || |
               \||_______||/
             DWDM
         (SDH framed)
        

A TE link is a group of one or more of the interfaces on the OXC. All lambdas associated with a particular interface are required to have identifiers unique to that interface, and these identifiers are used as labels (see 3.2.1.1 of [GMPLS-SIG]).

TE链接是OXC上一个或多个接口的组。要求与特定接口相关的所有lambda具有该接口独有的标识符,这些标识符用作标签(见[GMPLS-SIG]的3.2.1.1)。

The following is an example of an interface switching capability descriptor on an OXC with internal DWDM that understands SDH framing and supports discrete bandwidths:

以下是具有内部DWDM的OXC上接口交换能力描述符的示例,该描述符理解SDH帧并支持离散带宽:

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = SDH (comes from DWDM) Max LSP Bandwidth = Determined by DWDM (say STM-16)

接口交换能力描述符:接口交换能力=LSC编码=SDH(来自DWDM)最大LSP带宽=由DWDM确定(如STM-16)

Interface Switching Capability = LSC Encoding = SDH (comes from DWDM) Max LSP Bandwidth = Determined by DWDM (say STM-64)

接口交换能力=LSC编码=SDH(来自DWDM)最大LSP带宽=由DWDM确定(如STM-64)

3.10. Interface on a OXC with Internal DWDM That Is Transparent to Bit-Rate and Framing

3.10. OXC上的接口,内部DWDM对比特率和帧透明

This example assumes that DWDM and OXC are connected in such a way that each interface on the OXC handles multiple wavelengths individually. In this case an interface on the OXC is considered LSC, and not FSC.

本例假设DWDM和OXC的连接方式是,OXC上的每个接口分别处理多个波长。在这种情况下,OXC上的接口被视为LSC,而不是FSC。

                         _______
                        |       |
                      /||       ||\
                     | ||  OXC  || |
             ========| ||       || |====
                     | ||       || |
                      \||_______||/
                    DWDM (transparent to bit-rate and framing)
        
                         _______
                        |       |
                      /||       ||\
                     | ||  OXC  || |
             ========| ||       || |====
                     | ||       || |
                      \||_______||/
                    DWDM (transparent to bit-rate and framing)
        

A TE link is a group of one or more of the interfaces on the OXC. All lambdas associated with a particular interface are required to have identifiers unique to that interface, and these identifiers are used as labels (see 3.2.1.1 of [GMPLS-SIG]).

TE链接是OXC上一个或多个接口的组。要求与特定接口相关的所有lambda具有该接口独有的标识符,这些标识符用作标签(见[GMPLS-SIG]的3.2.1.1)。

The following is an example of an interface switching capability descriptor on an OXC with internal DWDM that is transparent to bit-rate and framing:

以下是具有内部DWDM的OXC上的接口交换能力描述符示例,其对比特率和帧是透明的:

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = Lambda (photonic) Max LSP Bandwidth = Determined by optical technology limits

接口交换能力描述符:接口交换能力=LSC编码=λ(光子)最大LSP带宽=由光学技术限制确定

4. Example of Interfaces That Support Multiple Switching Capabilities
4. 支持多种交换功能的接口示例

There can be many combinations possible, some are described below.

可以有许多可能的组合,一些组合如下所述。

4.1. Interface on a PXC+TDM Device with External DWDM
4.1. 带有外部DWDM的PXC+TDM设备上的接口

As discussed earlier, the presence of the external DWDM limits that only one wavelength be on a port of the PXC. On such a port, the attached PXC+TDM device can do one of the following. The wavelength may be cross-connected by the PXC element to other out-bound optical channel, or the wavelength may be terminated as an SDH interface and SDH channels switched.

如前所述,外部DWDM的存在限制了PXC端口上只能有一个波长。在这样的端口上,连接的PXC+TDM设备可以执行以下操作之一。波长可以由PXC元件交叉连接到其他外边界光信道,或者波长可以作为SDH接口和SDH信道交换而终止。

From a GMPLS perspective the PXC+TDM functionality is treated as a single interface. The interface is described using two Interface descriptors, one for the LSC and another for the TDM, with appropriate parameters. For example,

从GMPLS的角度来看,PXC+TDM功能被视为单个接口。使用两个接口描述符描述接口,一个用于LSC,另一个用于TDM,并带有适当的参数。例如

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = SDH (comes from WDM) Reservable Bandwidth = STM-64

接口交换能力描述符:接口交换能力=LSC编码=SDH(来自WDM)可保留带宽=STM-64

and

Interface Switching Capability Descriptor: Interface Switching Capability = TDM [Standard SDH] Encoding = SDH Min LSP Bandwidth = VC-3 Max LSP Bandwidth[p] = STM-64, for all p

接口交换能力描述符:接口交换能力=TDM[标准SDH]编码=SDH最小LSP带宽=VC-3最大LSP带宽[p]=STM-64,适用于所有p

4.2. Interface on an Opaque OXC+TDM Device with External DWDM
4.2. 带外部DWDM的不透明OXC+TDM设备上的接口

An interface on an "opaque OXC+TDM" device would also be advertised as LSC+TDM much the same way as the previous case.

“不透明OXC+TDM”设备上的接口也将以LSC+TDM的方式进行宣传,与前一种情况大致相同。

4.3. Interface on a PXC+LSR Device with External DWDM
4.3. 带有外部DWDM的PXC+LSR设备上的接口

As discussed earlier, the presence of the external DWDM limits that only one wavelength be on a port of the PXC. On such a port, the attached PXC+LSR device can do one of the following. The wavelength may be cross-connected by the PXC element to other out-bound optical channel, or the wavelength may be terminated as a Packet interface and packets switched.

如前所述,外部DWDM的存在限制了PXC端口上只能有一个波长。在这样的端口上,连接的PXC+LSR设备可以执行以下操作之一。波长可以由PXC元件交叉连接到其他外边界光信道,或者波长可以作为分组接口和分组交换而终止。

From a GMPLS perspective the PXC+LSR functionality is treated as a single interface. The interface is described using two Interface descriptors, one for the LSC and another for the PSC, with appropriate parameters. For example,

从GMPLS的角度来看,PXC+LSR功能被视为单个接口。使用两个接口描述符描述接口,一个用于LSC,另一个用于PSC,并带有适当的参数。例如

Interface Switching Capability Descriptor: Interface Switching Capability = LSC Encoding = SDH (comes from WDM) Reservable Bandwidth = STM-64

接口交换能力描述符:接口交换能力=LSC编码=SDH(来自WDM)可保留带宽=STM-64

and

Interface Switching Capability Descriptor: Interface Switching Capability = PSC-1 Encoding = SDH Max LSP Bandwidth[p] = 10 Gbps, for all p

接口交换能力描述符:接口交换能力=PSC-1编码=SDH最大LSP带宽[p]=10 Gbps,适用于所有p

4.4. Interface on a TDM+LSR Device
4.4. TDM+LSR设备上的接口

On a TDM+LSR device that offers a channelized SDH interface the following may be possible:

在提供信道化SDH接口的TDM+LSR设备上,可能会出现以下情况:

- A subset of the SDH channels may be uncommitted. That is, they are not currently in use and hence are available for allocation.

- SDH信道的子集可以是未提交的。也就是说,它们目前未被使用,因此可供分配。

- A second subset of channels may already be committed for transit purposes. That is, they are already cross-connected by the SDH cross connect function to other out-bound channels and thus are not immediately available for allocation.

- 信道的第二子集可能已经被提交用于传输目的。也就是说,它们已经通过SDH交叉连接功能交叉连接到其他外联信道,因此无法立即进行分配。

- Another subset of channels could be in use as terminal channels. That is, they are already allocated by terminate on a packet interface and packets switched.

- 信道的另一个子集可以用作终端信道。也就是说,它们已经通过数据包接口上的terminate和数据包交换进行了分配。

From a GMPLS perspective the TDM+PSC functionality is treated as a single interface. The interface is described using two Interface descriptors, one for the TDM and another for the PSC, with appropriate parameters. For example,

从GMPLS的角度来看,TDM+PSC功能被视为单个接口。使用两个接口描述符描述接口,一个用于TDM,另一个用于PSC,并带有适当的参数。例如

Interface Switching Capability Descriptor: Interface Switching Capability = TDM [Standard SDH] Encoding = SDH Min LSP Bandwidth = VC-3 Max LSP Bandwidth[p] = STM-64, for all p

接口交换能力描述符:接口交换能力=TDM[标准SDH]编码=SDH最小LSP带宽=VC-3最大LSP带宽[p]=STM-64,适用于所有p

and

Interface Switching Capability Descriptor: Interface Switching Capability = PSC-1 Encoding = SDH Max LSP Bandwidth[p] = 10 Gbps, for all p

接口交换能力描述符:接口交换能力=PSC-1编码=SDH最大LSP带宽[p]=10 Gbps,适用于所有p

5. Acknowledgements
5. 致谢

The authors would like to thank Suresh Katukam, Jonathan Lang, Zhi-Wei Lin, and Quaizar Vohra for their comments and contributions to the document. Thanks too to Stephen Shew for the text regarding "Representing TE Link Capabilities".

作者感谢Suresh Katukam、Jonathan Lang、Zhi Wei Lin和Quaizar Vohra对本文件的评论和贡献。也感谢Stephen Shew关于“表示TE链接功能”的文本。

6. Security Considerations
6. 安全考虑

There are a number of security concerns in implementing the extensions proposed here, particularly since these extensions will potentially be used to control the underlying transport infrastructure. It is vital that there be secure and/or authenticated means of transferring this information among the entities that require its use.

在实施此处提出的扩展时存在许多安全问题,特别是因为这些扩展可能用于控制基础交通基础设施。必须有安全和/或经过认证的方式在需要使用该信息的实体之间传输该信息。

While this document proposes extensions, it does not state how these extensions are implemented in routing protocols such as OSPF or IS-IS. The documents that do state how routing protocols implement these extensions [GMPLS-OSPF, GMPLS-ISIS] must also state how the information is to be secured.

虽然本文档提出了扩展,但并未说明如何在OSPF或IS-IS等路由协议中实现这些扩展。说明路由协议如何实现这些扩展[GMPLS-OSPF,GMPLS-ISIS]的文件还必须说明如何保护信息。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[GMPLS-OSPF] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005.

[GMPLS-OSPF]Kompella,K.,Ed.和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的OSPF扩展”,RFC 4203,2005年10月。

[GMPLS-SIG] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[GMPLS-SIG]Berger,L.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[GMPLS-SONET-SDH] Mannie, E. and D. Papadimitriou, "Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control", RFC 3946, October 2004.

[GMPLS-SONET-SDH]Mannie,E.和D.Papadimitriou,“同步光网络(SONET)和同步数字体系(SDH)控制的通用多协议标签交换(GMPLS)扩展”,RFC 3946,2004年10月。

[IEEE] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593- 7653-8).

[IEEE]IEEE,“二进制浮点运算的IEEE标准”,标准754-19851985(ISBN 1-5593-7653-8)。

[LINK-BUNDLE] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.

[链路捆绑]Kompella,K.,Rekhter,Y.,和L.Berger,“MPLS流量工程(TE)中的链路捆绑”,RFC 42012005年10月。

[LMP] Lang, J., Ed., "Link Management Protocol (LMP)", RFC 4204, October 2005.

[LMP]Lang,J.,Ed.,“链路管理协议(LMP)”,RFC 4204,2005年10月。

[LSP-HIER] Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE))", RFC 4206, October 2005.

[LSP-HIER]Kompella,K.和Y.Rekhter,“具有通用多协议标签交换(GMPLS)流量工程(TE)的标签交换路径(LSP)层次结构”,RFC 4206,2005年10月。

[OSPF-TE] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, September 2003.

[OSPF-TE]Katz,D.,Kompella,K.,和D.Yeung,“OSPF版本2的交通工程(TE)扩展”,RFC 3630,2003年9月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, January 2001.

[RFC3032]Rosen,E.,Tappan,D.,Fedorkow,G.,Rekhter,Y.,Farinaci,D.,Li,T.,和A.Conta,“MPLS标签堆栈编码”,RFC 3032,2001年1月。

7.2. Informative References
7.2. 资料性引用

[GMPLS-ISIS] Kompella, K., Ed. and Y. Rekhter, Ed., "Intermediate System to Intermediate System (IS-IS) Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4205, October 2005.

[GMPLS-ISIS]Kompella,K.,Ed.和Y.Rekhter,Ed.,“支持通用多协议标签交换(GMPLS)的中间系统到中间系统(IS-IS)扩展”,RFC 4205,2005年10月。

[ISIS-TE] Smit, H. and T. Li, "Intermediate System to Intermediate System (IS-IS) Extensions for Traffic Engineering (TE)", RFC 3784, June 2004.

[ISIS-TE]Smit,H.和T.Li,“交通工程(TE)的中间系统到中间系统(IS-IS)扩展”,RFC 37842004年6月。

8. Contributors
8. 贡献者

Ayan Banerjee Calient Networks 5853 Rue Ferrari San Jose, CA 95138

加利福尼亚州圣何塞法拉利街5853号阿扬·班纳吉·卡里昂网络公司,邮编95138

   Phone: +1.408.972.3645
   EMail: abanerjee@calient.net
        
   Phone: +1.408.972.3645
   EMail: abanerjee@calient.net
        

John Drake Calient Networks 5853 Rue Ferrari San Jose, CA 95138

约翰·德雷克·卡林特网络公司,加利福尼亚州圣何塞法拉利路5853号,邮编95138

Phone: (408) 972-3720 EMail: jdrake@calient.net

电话:(408)972-3720电子邮件:jdrake@calient.net

Greg Bernstein Ciena Corporation 10480 Ridgeview Court Cupertino, CA 94014

格雷格·伯恩斯坦·西纳公司10480加利福尼亚州库比蒂诺里奇维尤法院,邮编94014

Phone: (408) 366-4713 EMail: greg@ciena.com

电话:(408)366-4713电子邮件:greg@ciena.com

Don Fedyk Nortel Networks Corp. 600 Technology Park Drive Billerica, MA 01821

唐·费迪克北电网络公司,地址:马萨诸塞州比尔里卡科技园大道600号,邮编:01821

   Phone: +1-978-288-4506
   EMail: dwfedyk@nortelnetworks.com
        
   Phone: +1-978-288-4506
   EMail: dwfedyk@nortelnetworks.com
        

Eric Mannie Libre Exaministe

埃里克·曼尼自由撰稿人

   EMail: eric_mannie@hotmail.com
        
   EMail: eric_mannie@hotmail.com
        

Debanjan Saha Tellium Optical Systems 2 Crescent Place P.O. Box 901 Ocean Port, NJ 07757

新泽西州海港901号新月广场2号德班詹萨哈碲光学系统邮政信箱07757

Phone: (732) 923-4264 EMail: dsaha@tellium.com

电话:(732)923-4264电子邮件:dsaha@tellium.com

Vishal Sharma Metanoia, Inc. 335 Elan Village Lane, Unit 203 San Jose, CA 95134-2539

Vishal Sharma Metanoia,Inc.加利福尼亚州圣何塞市Elan村巷335号203单元,邮编95134-2539

   Phone: +1 408-943-1794
   EMail: v.sharma@ieee.org
        
   Phone: +1 408-943-1794
   EMail: v.sharma@ieee.org
        

Debashis Basak AcceLight Networks, 70 Abele Rd, Bldg 1200 Bridgeville PA 15017

Debashis Basak AcceLight Networks,地址:宾夕法尼亚州布里奇维尔1200号楼Abele路70号,邮编:15017

   EMail: dbasak@accelight.com
        
   EMail: dbasak@accelight.com
        

Lou Berger Movaz Networks, Inc. 7926 Jones Branch Drive Suite 615 McLean VA, 22102

Lou Berger Movaz Networks,Inc.地址:弗吉尼亚州麦克莱恩市琼斯支路615号7926室,邮编:22102

   EMail: lberger@movaz.com
        
   EMail: lberger@movaz.com
        

Authors' Addresses

作者地址

Kireeti Kompella Juniper Networks, Inc. 1194 N. Mathilda Ave Sunnyvale, CA 94089

Kireeti Kompella Juniper Networks,Inc.加利福尼亚州桑尼维尔市马蒂尔达大道北1194号,邮编94089

   EMail: kireeti@juniper.net
        
   EMail: kireeti@juniper.net
        

Yakov Rekhter Juniper Networks, Inc. 1194 N. Mathilda Ave Sunnyvale, CA 94089

Yakov Rekhter Juniper Networks,Inc.加利福尼亚州桑尼维尔市马蒂尔达大道北1194号,邮编94089

   EMail: yakov@juniper.net
        
   EMail: yakov@juniper.net
        

Full Copyright Statement

完整版权声明

Copyright (C) The Internet Society (2005).

版权所有(C)互联网协会(2005年)。

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。