Network Working Group Q. Xie Request for Comments: 4060 D. Pearce Category: Standards Track Motorola May 2005
Network Working Group Q. Xie Request for Comments: 4060 D. Pearce Category: Standards Track Motorola May 2005
RTP Payload Formats for European Telecommunications Standards Institute (ETSI) European Standard ES 202 050, ES 202 211, and ES 202 212 Distributed Speech Recognition Encoding
欧洲电信标准协会(ETSI)欧洲标准ES 202 050、ES 202 211和ES 202 212分布式语音识别编码的RTP有效载荷格式
Status of This Memo
关于下段备忘
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2005).
版权所有(C)互联网协会(2005年)。
Abstract
摘要
This document specifies RTP payload formats for encapsulating European Telecommunications Standards Institute (ETSI) European Standard ES 202 050 DSR Advanced Front-end (AFE), ES 202 211 DSR Extended Front-end (XFE), and ES 202 212 DSR Extended Advanced Front-end (XAFE) signal processing feature streams for distributed speech recognition (DSR) systems.
本文件规定了用于封装欧洲电信标准协会(ETSI)欧洲标准ES 202 050 DSR高级前端(AFE)、ES 202 211 DSR扩展前端(XFE)和ES 202 212 DSR扩展高级前端(XAFE)用于分布式语音识别(DSR)的信号处理特征流的RTP有效载荷格式系统。
Table of Contents
目录
1. Introduction ....................................................2 1.1. Conventions and Acronyms ...................................3 2. ETSI DSR Front-end Codecs .......................................4 2.1. ES 202 050 Advanced DSR Front-end Codec ....................4 2.2. ES 202 211 Extended DSR Front-end Codec ....................4 2.3. ES 202 212 Extended Advanced DSR Front-end Codec ...........5 3. DSR RTP Payload Formats .........................................6 3.1. Common Considerations of the Three DSR RTP Payload Formats ....................................................6 3.1.1. Number of FPs in Each RTP Packet ....................6 3.1.2. Support for Discontinuous Transmission ..............6 3.1.3. RTP Header Usage ....................................6 3.2. Payload Format for ES 202 050 DSR ..........................7 3.2.1. Frame Pair Formats ..................................7 3.3. Payload Format for ES 202 211 DSR ..........................9 3.3.1. Frame Pair Formats ..................................9 3.4. Payload Format for ES 202 212 DSR .........................11 3.4.1. Frame Pair Formats .................................12 4. IANA Considerations ............................................14 4.1. Mapping MIME Parameters into SDP ..........................15 4.2. Usage in Offer/Answer .....................................16 4.3. Congestion Control ........................................16 5. Security Considerations ........................................16 6. Acknowledgments ................................................16 7. References .....................................................16 7.1. Normative References ......................................16 7.2. Informative References ....................................17
1. Introduction ....................................................2 1.1. Conventions and Acronyms ...................................3 2. ETSI DSR Front-end Codecs .......................................4 2.1. ES 202 050 Advanced DSR Front-end Codec ....................4 2.2. ES 202 211 Extended DSR Front-end Codec ....................4 2.3. ES 202 212 Extended Advanced DSR Front-end Codec ...........5 3. DSR RTP Payload Formats .........................................6 3.1. Common Considerations of the Three DSR RTP Payload Formats ....................................................6 3.1.1. Number of FPs in Each RTP Packet ....................6 3.1.2. Support for Discontinuous Transmission ..............6 3.1.3. RTP Header Usage ....................................6 3.2. Payload Format for ES 202 050 DSR ..........................7 3.2.1. Frame Pair Formats ..................................7 3.3. Payload Format for ES 202 211 DSR ..........................9 3.3.1. Frame Pair Formats ..................................9 3.4. Payload Format for ES 202 212 DSR .........................11 3.4.1. Frame Pair Formats .................................12 4. IANA Considerations ............................................14 4.1. Mapping MIME Parameters into SDP ..........................15 4.2. Usage in Offer/Answer .....................................16 4.3. Congestion Control ........................................16 5. Security Considerations ........................................16 6. Acknowledgments ................................................16 7. References .....................................................16 7.1. Normative References ......................................16 7.2. Informative References ....................................17
Distributed speech recognition (DSR) technology is intended for a remote device acting as a thin client (a.k.a. the front-end) to communicate with a speech recognition server (a.k.a. a speech engine), over a network connection to obtain speech recognition services. More details on DSR over Internet can be found in RFC 3557 [10].
分布式语音识别(DSR)技术旨在使远程设备作为瘦客户端(又称前端)通过网络连接与语音识别服务器(又称语音引擎)通信,以获得语音识别服务。有关互联网DSR的更多详细信息,请参见RFC 3557[10]。
To achieve interoperability with different client devices and speech engines, the first ETSI standard DSR front-end ES 201 108 was published in early 2000 [11]. An RTP packetization for ES 201 108 frames is defined in RFC 3557 [10] by IETF.
为了实现与不同客户端设备和语音引擎的互操作性,第一个ETSI标准DSR前端ES 201 108于2000年初发布[11]。IETF在RFC 3557[10]中定义了ES 201 108帧的RTP分组。
In ES 202 050 [1], ETSI issues another standard for an Advanced DSR front-end that provides substantially improved recognition performance when background noise is present. The codecs in ES 202
在ES 202 050[1]中,ETSI发布了另一个高级DSR前端标准,该标准在存在背景噪声时提供了显著改进的识别性能。es202中的编解码器
050 use a slightly different frame format from that of ES 201 108 and thus the two do not inter-operate with each other.
050使用与ES 201 108稍有不同的帧格式,因此两者不相互操作。
The RTP packetization for ES 202 050 front-end defined in this document uses the same RTP packet format layout as that defined in RFC 3557 [10]. The differences are in the DSR codec frame bit definition and the payload type MIME registration.
本文件中定义的ES 202 050前端RTP包化使用与RFC 3557[10]中定义的RTP包格式布局相同的RTP包格式布局。不同之处在于DSR编解码器帧位定义和负载类型MIME注册。
The two further standards, ES 202 211 and ES 202 212, provide extensions to each of the DSR front-end standards. The extensions allow the speech waveform to be reconstructed for human audition and can also be used to improve recognition performance for tonal languages. This is done by sending additional pitch and voicing information for each frame along with the recognition features.
另外两个标准ES 202 211和ES 202 212提供了对每个DSR前端标准的扩展。这种扩展允许为人类听觉重建语音波形,也可以用于提高音调语言的识别性能。这是通过发送每个帧的附加音调和语音信息以及识别特征来完成的。
The RTP packet format for these extended standards is also defined in this document.
本文件还定义了这些扩展标准的RTP数据包格式。
It is worthwhile to note that the performance of most speech recognizers are extremely sensitive to consecutive frame losses and DSR speech recognizers are no exception. If a DSR over RTP session is expected to endure high packet loss ratio between the front-end and the speech engine, one should consider limiting the maximum number of DSR frames allowed in a packet, or employing other loss management techniques, such as FEC or interleaving, to minimize the chance of losing consecutive frames.
值得注意的是,大多数语音识别器的性能对连续帧丢失极为敏感,DSR语音识别器也不例外。如果期望在RTP会话上的DSR能够承受前端和语音引擎之间的高丢包率,则应该考虑限制分组中允许的DSR帧的最大数量,或者采用其他的损失管理技术,例如FEC或交织,以最小化丢失连续帧的机会。
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [4].
本文件中出现的关键词必须、不得、必需、应、不应、应、不应、推荐、不推荐、可和可选时,应按照RFC 2119[4]中所述进行解释。
The following acronyms are used in this document:
本文件中使用了以下首字母缩略词:
DSR - Distributed Speech Recognition ETSI - the European Telecommunications Standards Institute FP - Frame Pair DTX - Discontinuous Transmission VAD - Voice Activity Detection
DSR-分布式语音识别ETSI-欧洲电信标准协会FP-帧对DTX-不连续传输VAD-语音活动检测
Some relevant characteristics of ES 202 050 Advanced, ES 202 211 Extended, and ES 202 212 Extended Advanced DSR front-end codecs are summarized below.
以下总结了ES 202 050 Advanced、ES 202 211 Extended和ES 202 212 Extended Advanced DSR前端编解码器的一些相关特性。
The front-end calculation is a frame-based scheme that produces an output vector every 10 ms. In the front-end feature extraction, noise reduction by two stages of Wiener filtering is performed first. Then, waveform processing is applied to the de-noised signal and mel-cepstral features are calculated. At the end, blind equalization is applied to the cepstral features. The front-end algorithm produces at its output a mel-cepstral representation in the same format as ES 210 108, i.e., 12 cepstral coefficients [C1 - C12], C0 and log Energy. Voice activity detection (VAD) for the classification of each frame as speech or non-speech is also implemented in Feature Extraction. The VAD information is included in the payload format for each frame pair to be sent to the remote recognition engine as part of the payload. This information may optionally be used by the receiving recognition engine to drop non-speech frames. The front-end supports three raw sampling rates: 8 kHz, 11 kHz, and 16 kHz (Note that unlike some other speech codecs, the feature frame size of DSR presented to RTP packetization is not dependent on the number of speech samples used in each 10 ms sample frame. This will become more evident in the following sections).
前端计算是基于帧的方案,每10ms产生一个输出向量。在前端特征提取中,首先通过两个阶段的维纳滤波进行降噪。然后对去噪后的信号进行波形处理,计算mel倒谱特征。最后,对倒谱特征进行盲均衡。前端算法在其输出处产生与ES 210 108相同格式的mel倒谱表示,即12个倒谱系数[C1-C12]、C0和对数能量。在特征提取中还实现了语音活动检测(VAD),用于将每一帧分类为语音或非语音。VAD信息包括在作为有效载荷一部分发送到远程识别引擎的每个帧对的有效载荷格式中。接收识别引擎可以选择性地使用该信息来丢弃非语音帧。前端支持三种原始采样率:8 kHz、11 kHz和16 kHz(请注意,与其他一些语音编解码器不同,呈现给RTP打包的DSR的特征帧大小不依赖于每个10 ms采样帧中使用的语音采样数。这将在以下部分中变得更加明显)。
After calculation of the mel-cepstral representation, the representation is first quantized via split-vector quantization to reduce the data rate of the encoded stream. Then, the quantized vectors from two consecutive frames are put into a FP, as described in more detail in Section 3.2.
在计算mel倒谱表示之后,首先通过分割矢量量化对该表示进行量化,以降低编码流的数据速率。然后,如第3.2节中更详细地描述的,将来自两个连续帧的量化向量放入FP。
Some relevant characteristics of ES 202 211 Extended DSR front-end codec are summarized below.
ES 202 211扩展DSR前端编解码器的一些相关特性总结如下。
ES 202 211 is an extension of the mel-cepstrum DSR Front-end standard ES 201 108 [11]. The mel-cepstrum front-end provides the features for speech recognition but these are not available for human listening. The purpose of the extension is allow the reconstruction of the speech waveform from these features so that they can be replayed. The front-end feature extraction part of the processing is exactly the same as for ES 201 108. To allow speech reconstruction additional fundamental frequency (perceived as pitch) and voicing class (e.g., non-speech, voiced, unvoiced and mixed) information is
ES 202 211是mel倒谱DSR前端标准ES 201 108的扩展[11]。mel倒谱前端提供语音识别功能,但这些功能不适用于人类听力。扩展的目的是允许从这些特征重建语音波形,以便可以重放。处理的前端特征提取部分与ES 201 108完全相同。为了允许语音重建,需要额外的基频(视为基音)和发声类别(例如,非语音、浊音、清音和混合)信息
needed. This extra information is provided by the extended front-end processing algorithms at the device side. It is compressed and transmitted along with the front-end features to the server. This extra information may also be useful for improved speech recognition performance with tonal languages such as Mandarin, Cantonese and Thai.
需要。该额外信息由设备端的扩展前端处理算法提供。它被压缩并与前端功能一起传输到服务器。这些额外的信息也可能有助于提高普通话、广东话和泰语等音调语言的语音识别性能。
Full information about the client side signal processing algorithms used in the standard are described in the specification ES 202 211 [2].
规范ES 202 211[2]中描述了本标准中使用的客户端信号处理算法的全部信息。
The additional fundamental frequency and voicing class information is compressed for each frame pair. The pitch for the first frame of the FP is quantized to 7 bits and the second frame is differentially quantized to 7 bits. The voicing class is indicated with one bit for each frame. The total for the extension information for a frame pair therefore consists of 14 bits plus an additional 2 bits of CRC error protection computed over these extension bits only.
The additional fundamental frequency and voicing class information is compressed for each frame pair. The pitch for the first frame of the FP is quantized to 7 bits and the second frame is differentially quantized to 7 bits. The voicing class is indicated with one bit for each frame. The total for the extension information for a frame pair therefore consists of 14 bits plus an additional 2 bits of CRC error protection computed over these extension bits only.translate error, please retry
The total information for the frame pair is made up of 92 bits for the two compressed front-end feature frames (including 4 bits for their CRC) plus 16 bits for the extension (including 2 bits for their CRC) and 4 bits of null padding to give a total of 14 octets per frame pair. As for ES 201 208 the extended frame pair also corresponds to 20ms of speech. The extended front-end supports three raw sampling rates: 8 kHz, 11 kHz, and 16 kHz.
帧对的总信息由两个压缩前端特征帧的92位(包括CRC的4位)加上扩展的16位(包括CRC的2位)和空填充的4位组成,每个帧对总共有14个八位字节。对于ES 201 208,扩展帧对还对应于20ms的语音。扩展前端支持三种原始采样率:8 kHz、11 kHz和16 kHz。
The quantized vectors from two consecutive frames are put into an FP, as described in more detail in Section 3.3 below.
来自两个连续帧的量化向量被放入FP中,如下文第3.3节中更详细地描述的。
The parameters received at the remote server from the RTP extended DSR payload specified here can be used to synthesize an intelligible speech waveform for replay. The algorithms to do this are described in the specification ES 202 211 [2].
远程服务器从此处指定的RTP扩展DSR有效负载接收到的参数可用于合成可理解的语音波形以进行回放。规范ES 202 211[2]中描述了实现这一点的算法。
ES 202 212 is the extension for the DSR Advanced Front-end ES 202 050 [1]. It provides the same capabilities as the extended mel-cepstrum front-end described in Section 2.2 but for the DSR Advanced Front-end.
ES 202 212是DSR高级前端ES 202 050的扩展[1]。它提供与第2.2节所述的扩展mel倒谱前端相同的功能,但用于DSR高级前端。
The three DSR RTP payload formats defined in this document share the following consideration or behaviours.
本文件中定义的三种DSR RTP有效负载格式具有以下共同考虑或行为。
Any number of FPs MAY be aggregate together in an RTP payload and they MUST be consecutive in time. However, one SHOULD always keep the RTP payload size smaller than the MTU in order to avoid IP fragmentation and SHOULD follow the recommendations given in Section 3.1 in RFC 3557 [10] when determining the proper number of FPs in an RTP payload.
任何数量的FPs可以在RTP有效载荷中聚合在一起,并且它们在时间上必须是连续的。然而,应始终保持RTP有效载荷的大小小于MTU,以避免IP碎片,并在确定RTP有效载荷中FPs的适当数量时,应遵循RFC 3557[10]第3.1节中给出的建议。
Same considerations described in Section 3.2 of RFC 3557 [10] apply to all the three DSR RTP payloads defined in this document.
RFC 3557[10]第3.2节中所述的注意事项同样适用于本文件中定义的所有三个DSR RTP有效载荷。
The format of the RTP header is specified in RFC 3550 [8]. The three payload formats defined here use the fields of the header in a manner consistent with that specification.
RTP报头的格式在RFC 3550[8]中规定。这里定义的三种有效负载格式以与该规范一致的方式使用报头的字段。
The RTP timestamp corresponds to the sampling instant of the first sample encoded for the first FP in the packet. The timestamp clock frequency is the same as the sampling frequency, so the timestamp unit is in samples.
RTP时间戳对应于为分组中的第一FP编码的第一样本的采样瞬间。时间戳时钟频率与采样频率相同,因此时间戳单元在采样中。
As defined by all three front-end codecs, the duration of one FP is 20 ms, corresponding to 160, 220, or 320 encoded samples with a sampling rate of 8, 11, or 16 kHz being used at the front-end, respectively. Thus, the timestamp is increased by 160, 220, or 320 for each consecutive FP, respectively.
如所有三个前端编解码器所定义,一个FP的持续时间为20ms,对应于分别在前端使用采样率为8、11或16khz的160、220或320个编码样本。因此,对于每个连续FP,时间戳分别增加160、220或320。
The DSR payload for all three front-end codecs is always an integral number of octets. If additional padding is required for some other purpose, then the P bit in the RTP header may be set and padding appended as specified in RFC 3550 [8].
所有三个前端编解码器的DSR有效负载始终是整数个八位字节。如果出于其他目的需要额外的填充,则可以设置RTP报头中的P位,并按照RFC 3550[8]中的规定追加填充。
The RTP header marker bit (M) MUST be set following the general rules for audio codecs, as defined in Section 4.1 in RFC 3551 [9].
RTP头标记位(M)必须按照RFC 3551[9]第4.1节中定义的音频编解码器的一般规则进行设置。
This document does not specify the assignment of an RTP payload type for these three new packet formats. It is expected that the RTP profile under which any of these payload formats is being used will assign a payload type for this encoding or will specify that the payload type is to be bound dynamically.
本文档未指定这三种新数据包格式的RTP有效负载类型的分配。预计使用这些有效负载格式的RTP配置文件将为此编码分配有效负载类型,或将指定动态绑定有效负载类型。
An ES 202 050 DSR RTP payload datagram uses exactly the same layout as defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header followed by a DSR payload containing a series of DSR FPs.
ES 202 050 DSR RTP有效载荷数据报使用与RFC 3557[10]第3节中定义的布局完全相同的布局,即标准RTP报头后接包含一系列DSR FPs的DSR有效载荷。
The size of each ES 202 050 FP remains 96 bits or 12 octets, as defined in the following sections. This ensures that a DSR RTP payload will always end on an octet boundary.
每个ES 202 050 FP的大小仍为96位或12个八位字节,如以下章节所定义。这确保了DSR RTP有效负载始终以八位字节边界结束。
The following mel-cepstral frame MUST be used, as defined in [1]:
必须使用[1]中定义的以下mel倒谱帧:
Pairs of the quantized 10ms mel-cepstral frames MUST be grouped together and protected with a 4-bit CRC forming a 92-bit long FP. At the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary.
对量化的10ms mel倒谱帧必须分组在一起,并用4位CRC保护,形成92位长的FP。最后,每个FP必须用4个零填充到最后一个八位字节的MSB 4位,以使FP与八位字节边界对齐。
The following diagram shows a complete ES 202 050 FP:
下图显示了完整的ES 202 050 FP:
Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11)| VAD | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+
Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11)| VAD | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+
Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) | VAD |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+
Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) | VAD |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+
CRC for Frame #1 and Frame #2 and padding in FP: ================================================ (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | CRC | Octet 12 +-----+-----+-----+-----+-----+-----+-----+-----+
CRC for Frame #1 and Frame #2 and padding in FP: ================================================ (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | CRC | Octet 12 +-----+-----+-----+-----+-----+-----+-----+-----+
The 4-bit CRC in the FP MUST be calculated using the formula (including the bit-order rules) defined in 7.2 in [1].
FP中的4位CRC必须使用[1]中7.2中定义的公式(包括位顺序规则)进行计算。
Therefore, each FP represents 20ms of original speech. Note that each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary, as shown above. This makes the total size of an FP 96 bits, or 12 octets. Note that this padding is separate from padding indicated by the P bit in the RTP header.
因此,每个FP代表20毫秒的原始语音。请注意,为了使FP与八位字节边界对齐,每个FP必须用4个零填充到最后一个八位字节的MSB 4位,如上所示。这使得FP的总大小为96位或12个八位字节。请注意,此填充与RTP标头中的P位指示的填充是分开的。
The definition of the indices and 'VAD' flag are described in [1] and their value is only set and examined by the codecs in the front-end client and the recognizer.
索引和“VAD”标志的定义如[1]所述,其值仅由前端客户端和识别器中的编解码器设置和检查。
Null FPs are sent to mark the end of a transmission segment. Details on transmission segment and the use of Null FPs can be found in RFC 3557 [10].
发送空FPs以标记传输段的结束。有关传输段和空FPs使用的详细信息,请参见RFC 3557[10]。
A Null FP for the ES 202 050 front-end codec is defined by setting the content of the first and second frame in the FP to null (i.e., filling the first 88 bits of the FP with zeros). The 4-bit CRC MUST be calculated the same way as described in Section 7.2.4 of [1], and 4 zeros MUST be padded to the end of the Null FP in order to make it aligned to the octet boundary.
ES 202 050前端编解码器的空FP通过将FP中第一帧和第二帧的内容设置为空(即,用零填充FP的前88位)来定义。必须采用与[1]第7.2.4节所述相同的方法计算4位CRC,并且必须将4个零填充到空FP的末端,以使其与八位字节边界对齐。
An ES 202 211 DSR RTP payload datagram is very similar to that defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header followed by a DSR payload containing a series of DSR FPs.
ES 202 211 DSR RTP有效载荷数据报与RFC 3557[10]第3节中定义的数据报非常相似,即标准RTP报头后接包含一系列DSR FPs的DSR有效载荷。
The size of each ES 202 211 FP is 112 bits or 14 octets, as defined in the following sections. This ensures that a DSR RTP payload will always end on an octet boundary.
每个ES 202 211 FP的大小为112位或14个八位字节,如以下部分中所定义。这确保了DSR RTP有效负载始终以八位字节边界结束。
The following mel-cepstral frame MUST be used, as defined in Section 6.2.4 in [2]:
必须使用[2]第6.2.4节中定义的以下mel倒谱帧:
Immediately following two frames (Frame #1 and Frame #2) worth of codebook indices (or 88 bits), there is a 4-bit CRC calculated on these 88 bits. The pitch indices of the first frame (Pidx1: 7 bits) and the second frame (Pidx2: 5 bits) of the frame pair then follow. The class indices of the two frames in the frame pair worth 1 bit each (Cidx1 and Cidx2) next follow. Finally, a 2-bit CRC calculated on the pitch and class bits (total: 14 bits) of the frame pair is included (PC-CRC). The total number of bits in a frame pair packet is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108. At the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary.
紧接着两帧(第1帧和第2帧)的码本索引(或88位)之后,在这88位上计算出一个4位CRC。然后,帧对的第一帧(Pidx1:7位)和第二帧(Pidx2:5位)的基音索引跟随。接下来,帧对中的两个帧的类索引各值1位(Cidx1和Cidx2)。最后,包括根据帧对的基音和类位(总计:14位)计算的2位CRC(PC-CRC)。因此,帧对分组中的比特总数为44+44+4+7+5+1+1+2=108。最后,每个FP必须用4个零填充到最后一个八位字节的MSB 4位,以使FP与八位字节边界对齐。
The following diagram shows a complete ES 202 211 FP:
下图显示了完整的ES 202 211 FP:
Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11) | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+
Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11) | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+
Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+
Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+
CRC for Frame #1 and Frame #2 in FP: ==================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ | CRC | Octet 12/1 +-----+-----+-----+-----+
CRC for Frame #1 and Frame #2 in FP: ==================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ | CRC | Octet 12/1 +-----+-----+-----+-----+
Extension information and padding in FP: ======================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : Pidx1 | Octet 12/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | Pidx2 | Pidx1 (cont) : Octet 13 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | PC-CRC |Cidx2|Cidx1| Octet 14 +-----+-----+-----+-----+-----+-----+-----+-----+
Extension information and padding in FP: ======================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : Pidx1 | Octet 12/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | Pidx2 | Pidx1 (cont) : Octet 13 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | PC-CRC |Cidx2|Cidx1| Octet 14 +-----+-----+-----+-----+-----+-----+-----+-----+
The 4-bit CRC and the 2-bit PC-CRC in the FP MUST be calculated using the formula (including the bit-order rules) defined in 6.2.4 in [2].
FP中的4位CRC和2位PC-CRC必须使用[2]中6.2.4中定义的公式(包括位顺序规则)进行计算。
Therefore, each FP represents 20ms of original speech. Note, as shown above, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary. This makes the total size of an FP 112 bits, or 14 octets. Note, this padding is separate from padding indicated by the P bit in the RTP header.
因此,每个FP代表20毫秒的原始语音。注意,如上所示,为了使FP与八位字节边界对齐,每个FP必须用4个零填充到最后一个八位字节的MSB 4位。这使得FP的总大小为112位或14个八位字节。注意,此填充与RTP标头中的P位指示的填充是分开的。
A Null FP for the ES 202 211 front-end codec is defined by setting all the 112 bits of the FP with zeros. Null FPs are sent to mark the end of a transmission segment. Details on transmission segment and the use of Null FPs can be found in RFC 3557 [10].
ES 202 211前端编解码器的空FP通过将FP的所有112位设置为零来定义。发送空FPs以标记传输段的结束。有关传输段和空FPs使用的详细信息,请参见RFC 3557[10]。
Similar to other ETSI DSR front-end encoding schemes, the encoded DSR feature stream of ES 202 212 is transmitted in a sequence of FPs, where each FP represents two consecutive original voice frames.
与其他ETSI DSR前端编码方案类似,ES 202 212的编码DSR特征流以FPs序列发送,其中每个FP表示两个连续的原始语音帧。
An ES 202 212 DSR RTP payload datagram is very similar to that defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header followed by a DSR payload containing a series of DSR FPs.
ES 202 212 DSR RTP有效载荷数据报与RFC 3557[10]第3节中定义的数据报非常相似,即标准RTP报头后接包含一系列DSR FPs的DSR有效载荷。
The size of each ES 202 212 FP is 112 bits or 14 octets, as defined in the following sections. This ensures that an ES 202 212 DSR RTP payload will always end on an octet boundary.
每个ES 202 212 FP的大小为112位或14个八位字节,如以下部分中所定义。这确保了ES 202 212 DSR RTP有效负载始终以八位字节边界结束。
The following mel-cepstral frame MUST be used, as defined in Section 7.2.4 of [3]:
必须使用[3]第7.2.4节中定义的以下mel倒谱帧:
Immediately following two frames (Frame #1 and Frame #2) worth of codebook indices (or 88 bits), there is a 4-bit CRC calculated on these 88 bits. The pitch indices of the first frame (Pidx1: 7 bits) and the second frame (Pidx2: 5 bits) of the frame pair then follow. The class indices of the two frames in the frame pair worth 1 bit each next follow (Cidx1 and Cidx2). Finally, a 2-bit CRC (PC-CRC) calculated on the pitch and class bits (total: 14 bits) of the frame pair is included. The total number of bits in frame pair packet is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108. At the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in order to make the FP aligned to the octet boundary. The padding brings the total size of a FP to 112 bits, or 14 octets. Note that this padding is separate from padding indicated by the P bit in the RTP header.
紧接着两帧(第1帧和第2帧)的码本索引(或88位)之后,在这88位上计算出一个4位CRC。然后,帧对的第一帧(Pidx1:7位)和第二帧(Pidx2:5位)的基音索引跟随。帧对中的两个帧的类索引下一个值为1位(Cidx1和Cidx2)。最后,包括根据帧对的基音和类位(总计:14位)计算的2位CRC(PC-CRC)。因此,帧对分组中的比特总数为44+44+4+7+5+1+1+2=108。最后,每个FP必须用4个零填充到最后一个八位字节的MSB 4位,以使FP与八位字节边界对齐。填充使FP的总大小达到112位或14个八位字节。请注意,此填充与RTP标头中的P位指示的填充是分开的。
The following diagram shows a complete ES 202 212 FP:
下图显示了完整的ES 202 212 FP:
Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11)| VAD | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+
Frame #1 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(2,3) | idx(0,1) | Octet 1 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(4,5) | idx(2,3) (cont) : Octet 2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(6,7) |idx(4,5)(cont) Octet 3 +-----+-----+-----+-----+-----+-----+-----+-----+ idx(10,11)| VAD | idx(8,9) | Octet 4 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(12,13) | idx(10,11) (cont) : Octet 5 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) (cont) : Octet 6/1 +-----+-----+-----+-----+
Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) | VAD |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+
Frame #2 in FP: =============== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : idx(0,1) | Octet 6/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(2,3) |idx(0,1)(cont) Octet 7 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(6,7) | idx(4,5) | Octet 8 +-----+-----+-----+-----+-----+-----+-----+-----+ : idx(8,9) | idx(6,7) (cont) : Octet 9 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(10,11) | VAD |idx(8,9)(cont) Octet 10 +-----+-----+-----+-----+-----+-----+-----+-----+ | idx(12,13) | Octet 11 +-----+-----+-----+-----+-----+-----+-----+-----+
CRC for Frame #1 and Frame #2 in FP: ==================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ | CRC | Octet 12/1 +-----+-----+-----+-----+
CRC for Frame #1 and Frame #2 in FP: ==================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ | CRC | Octet 12/1 +-----+-----+-----+-----+
Extension information and padding in FP: ======================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : Pidx1 | Octet 12/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | Pidx2 | Pidx1 (cont) : Octet 13 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | PC-CRC |Cidx2|Cidx1| Octet 14 +-----+-----+-----+-----+-----+-----+-----+-----+
Extension information and padding in FP: ======================================== (MSB) (LSB) 0 1 2 3 4 5 6 7 +-----+-----+-----+-----+ : Pidx1 | Octet 12/2 +-----+-----+-----+-----+-----+-----+-----+-----+ | Pidx2 | Pidx1 (cont) : Octet 13 +-----+-----+-----+-----+-----+-----+-----+-----+ | 0 | 0 | 0 | 0 | PC-CRC |Cidx2|Cidx1| Octet 14 +-----+-----+-----+-----+-----+-----+-----+-----+
The codebook indices, VAD flag, pitch index, and class index are specified in Section 6 of [3]. The 4-bit CRC and the 2-bit PC-CRC in the FP MUST be calculated using the formula (including the bit-order rules) defined in 7.2.4 in [3].
[3]第6节规定了码本索引、VAD标志、基音索引和类索引。FP中的4位CRC和2位PC-CRC必须使用[3]中7.2.4中定义的公式(包括位顺序规则)进行计算。
A Null FP for the ES 202 212 front-end codec is defined by setting all 112 bits of the FP with zeros. Null FPs are sent to mark the end of a transmission segment. Details on transmission segments and the use of Null FPs can be found in RFC 3557 [10].
ES 202 212前端编解码器的空FP通过将FP的所有112位设置为零来定义。发送空FPs以标记传输段的结束。有关传输段和空FPs使用的详细信息,请参见RFC 3557[10]。
For each of the three ETSI DSR front-end codecs covered in this document, a new MIME subtype registration has been registered by the IANA for the corresponding payload type, as described below.
对于本文档中涉及的三个ETSI DSR前端编解码器中的每一个,IANA已经为相应的有效负载类型注册了一个新的MIME子类型注册,如下所述。
Media Type name: audio
媒体类型名称:音频
Media subtype names:
媒体子类型名称:
dsr-es202050 (for ES 202 050 front-end)
dsr-es202050(用于ES 202 050前端)
dsr-es202211 (for ES 202 211 front-end)
dsr-es202211(用于ES 202 211前端)
dsr-es202212 (for ES 202 212 front-end)
dsr-es202212(用于ES 202 212前端)
Required parameters: none
所需参数:无
Optional parameters:
可选参数:
rate: Indicates the sample rate of the speech. Valid values include: 8000, 11000, and 16000. If this parameter is not present, 8000 sample rate is assumed.
速率:表示语音的采样速率。有效值包括:8000、11000和16000。如果不存在此参数,则假定采样率为8000。
maxptime: see RFC 3267 [7]. If this parameter is not present, maxptime is assumed to be 80ms.
maxptime:参见RFC 3267[7]。如果此参数不存在,则假定maxptime为80ms。
Note, since the performance of most speech recognizers are extremely sensitive to consecutive FP losses, if the user of the payload format expects a high packet loss ratio for the session, it MAY consider to explicitly choose a maxptime value for the session that is shorter than the default value.
注意,由于大多数语音识别器的性能对连续的FP损失非常敏感,如果有效载荷格式的用户期望会话的高分组丢失率,则它可以考虑明确地选择比默认值短的会话的MppTimeValk值。
ptime: see RFC 2327 [5].
ptime:见RFC 2327[5]。
Encoding considerations: These types are defined for transfer via RTP [8] as described in Section 3 of RFC 4060.
编码注意事项:如RFC 4060第3节所述,这些类型定义为通过RTP[8]传输。
Security considerations: See Section 5 of RFC 4060.
安全注意事项:见RFC 4060第5节。
Person & email address to contact for further information: Qiaobing.Xie@motorola.com
联系人和电子邮件地址,以获取更多信息:Qiaobing。Xie@motorola.com
Intended usage: COMMON. It is expected that many VoIP applications (as well as mobile applications) will use this type.
预期用途:普通。预计许多VoIP应用程序(以及移动应用程序)将使用这种类型。
Author: Qiaobing.Xie@motorola.com
作者:乔冰。Xie@motorola.com
Change controller: IETF Audio/Video transport working group
更改控制器:IETF音频/视频传输工作组
The information carried in the MIME media type specification has a specific mapping to fields in the Session Description Protocol (SDP) [5], which is commonly used to describe RTP sessions. When SDP is used to specify sessions employing ES 202 050, ES 202 211, or ES 202 212 DSR codec, the mapping is as follows:
MIME媒体类型规范中包含的信息与会话描述协议(SDP)[5]中的字段具有特定映射,该协议通常用于描述RTP会话。当使用SDP指定使用ES 202 050、ES 202 211或ES 202 212 DSR编解码器的会话时,映射如下:
o The MIME type ("audio") goes in SDP "m=" as the media name.
o MIME类型(“音频”)以SDP“m=”作为媒体名称。
o The MIME subtype ("dsr-es202050", "dsr-es202211", or "dsr-es202212") goes in SDP "a=rtpmap" as the encoding name.
o MIME子类型(“dsr-es202050”、“dsr-es202211”或“dsr-es202212”)以SDP“a=rtpmap”作为编码名称。
o The optional parameter "rate" also goes in "a=rtpmap" as clock rate. If no rate is given, then the default value (i.e., 8000) is used in SDP.
o 可选参数“rate”也作为时钟频率进入“a=rtpmap”。如果未给出费率,则在SDP中使用默认值(即8000)。
o The optional parameters "ptime" and "maxptime" go in the SDP "a=ptime" and "a=maxptime" attributes, respectively.
o 可选参数“ptime”和“maxptime”分别位于SDP“a=ptime”和“a=maxptime”属性中。
Example of usage of ES 202 050 DSR:
ES 202 050 DSR的使用示例:
m=audio 49120 RTP/AVP 101 a=rtpmap:101 dsr-es202050/8000 a=maxptime:40
m=audio 49120 RTP/AVP 101 a=rtpmap:101 dsr-es202050/8000 a=maxptime:40
Example of usage of ES 202 211 DSR:
ES 202 211 DSR的使用示例:
m=audio 49120 RTP/AVP 101 a=rtpmap:101 dsr-es202211/8000 a=maxptime:40
m=audio 49120 RTP/AVP 101 a=rtpmap:101 dsr-es202211/8000 a=maxptime:40
Example of usage of ES 202 212 DSR:
ES 202 212 DSR的使用示例:
m=audio 49120 RTP/AVP 101 a=rtpmap:101 dsr-es202212/8000 a=maxptime:40
m=audio 49120 RTP/AVP 101 a=rtpmap:101 dsr-es202212/8000 a=maxptime:40
All SDP parameters in this payload format are declarative, and all reasonable values are expected to be supported. Thus, the standard usage of Offer/Answer as described in RFC 3264 [6] should be followed.
此有效负载格式中的所有SDP参数都是声明性的,预期支持所有合理的值。因此,应遵循RFC 3264[6]中所述的提供/应答的标准用法。
Congestion control for RTP MUST be used in accordance with RFC 3550 [8], and in any applicable RTP profile, e.g., RFC 3551 [9].
RTP的拥塞控制必须按照RFC 3550[8]和任何适用的RTP配置文件(如RFC 3551[9])使用。
Implementations using the payload defined in this specification are subject to the security considerations discussed in the RTP specification RFC 3550 [8] and any RTP profile, e.g., RFC 3551 [9]. This payload does not specify any different security services.
使用本规范中定义的有效负载的实现受RTP规范RFC 3550[8]和任何RTP配置文件(如RFC 3551[9])中讨论的安全注意事项的约束。此有效负载未指定任何不同的安全服务。
The design presented here is based on that of RFC 3557 [10]. The authors wish to thank Magnus Westerlund and others for their reviews and comments.
此处介绍的设计基于RFC 3557[10]的设计。作者希望感谢Magnus Westerlund和其他人的评论和评论。
[1] European Telecommunications Standards Institute (ETSI) Standard ES 202 050, "Speech Processing, Transmission and Quality Aspects (STQ); Distributed Speech Recognition; Advanced Front-end Feature Extraction Algorithm; Compression Algorithms", http://pda.etsi.org/pda/.
[1] 欧洲电信标准协会(ETSI)标准ES 202 050,“语音处理、传输和质量方面(STQ);分布式语音识别;高级前端特征提取算法;压缩算法”,http://pda.etsi.org/pda/.
[2] European Telecommunications Standards Institute (ETSI) Standard ES 202 211, "Speech Processing, Transmission and Quality Aspects (STQ); Distributed Speech Recognition; Extended front-end feature extraction algorithm; Compression algorithms; Back-end speech reconstruction algorithm", http://pda.etsi.org/pda/.
[2] 欧洲电信标准协会(ETSI)标准ES 202 211,“语音处理、传输和质量方面(STQ);分布式语音识别;扩展前端特征提取算法;压缩算法;后端语音重建算法”,http://pda.etsi.org/pda/.
[3] European Telecommunications Standards Institute (ETSI) Standard ES 202 212, "Speech Processing, Transmission and Quality aspects (STQ); Distributed speech recognition; Extended advanced front-end feature extraction algorithm; Compression algorithms; Back-end speech reconstruction algorithm", http://pda.etsi.org/pda/.
[3] 欧洲电信标准协会(ETSI)标准ES 202 212,“语音处理、传输和质量方面(STQ);分布式语音识别;扩展高级前端特征提取算法;压缩算法;后端语音重建算法”,http://pda.etsi.org/pda/.
[4] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[4] Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[5] Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998.
[5] Handley,M.和V.Jacobson,“SDP:会话描述协议”,RFC 2327,1998年4月。
[6] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with the Session Description Protocol (SDP)", RFC 3264, June 2002.
[6] Rosenberg,J.和H.Schulzrinne,“具有会话描述协议(SDP)的提供/应答模型”,RFC 3264,2002年6月。
[7] Sjoberg, J., Westerlund, M., Lakaniemi, A., and Q. Xie, "Real-Time Transport Protocol (RTP) Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs", RFC 3267, June 2002.
[7] Sjoberg,J.,Westerlund,M.,Lakaniemi,A.,和Q.Xie,“自适应多速率(AMR)和自适应多速率宽带(AMR-WB)音频编解码器的实时传输协议(RTP)有效载荷格式和文件存储格式”,RFC 3267,2002年6月。
[8] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, July 2003.
[8] Schulzrinne,H.,Casner,S.,Frederick,R.,和V.Jacobson,“RTP:实时应用的传输协议”,STD 64,RFC 35502003年7月。
[9] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control", STD 65, RFC 3551, July 2003.
[9] Schulzrinne,H.和S.Casner,“具有最小控制的音频和视频会议的RTP配置文件”,STD 65,RFC 3551,2003年7月。
[10] Xie, Q., "RTP Payload Format for European Telecommunications Standards Institute (ETSI) European Standard ES 201 108 Distributed Speech Recognition Encoding", RFC 3557, July 2003.
[10] Xie,Q.“欧洲电信标准协会(ETSI)欧洲标准ES 201 108分布式语音识别编码的RTP有效载荷格式”,RFC 3557,2003年7月。
[11] European Telecommunications Standards Institute (ETSI) Standard ES 201 108, "Speech Processing, Transmission and Quality Aspects (STQ); Distributed Speech Recognition; Front-end Feature Extraction Algorithm; Compression Algorithms", http://pda.etsi.org/pda/.
[11] 欧洲电信标准协会(ETSI)标准ES 201 108,“语音处理、传输和质量方面(STQ);分布式语音识别;前端特征提取算法;压缩算法”,http://pda.etsi.org/pda/.
Authors' Addresses
作者地址
Qiaobing Xie Motorola, Inc. 1501 W. Shure Drive, 2-F9 Arlington Heights, IL 60004 US
谢乔平摩托罗拉公司,美国伊利诺伊州阿灵顿高地2-F9舒尔大道西1501号,邮编60004
Phone: +1-847-632-3028 EMail: qxie1@email.mot.com
Phone: +1-847-632-3028 EMail: qxie1@email.mot.com
David Pearce Motorola Labs UK Research Laboratory Jays Close Viables Industrial Estate Basingstoke, HANTS RG22 4PD UK
David Pearce摩托罗拉实验室英国研究实验室Jays Close Viables工业区Basingstoke,HANTS RG22 4PD英国
Phone: +44 (0)1256 484 436 EMail: bdp003@motorola.com
Phone: +44 (0)1256 484 436 EMail: bdp003@motorola.com
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (2005).
版权所有(C)互联网协会(2005年)。
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。