Network Working Group                                     R. Hinden, Ed.
Request for Comments: 3768                                         Nokia
Obsoletes: 2338                                               April 2004
Category: Standards Track
        
Network Working Group                                     R. Hinden, Ed.
Request for Comments: 3768                                         Nokia
Obsoletes: 2338                                               April 2004
Category: Standards Track
        

Virtual Router Redundancy Protocol (VRRP)

虚拟路由器冗余协议(VRRP)

Status of this Memo

本备忘录的状况

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2004). All Rights Reserved.

版权所有(C)互联网协会(2004年)。版权所有。

Abstract

摘要

This memo defines the Virtual Router Redundancy Protocol (VRRP). VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IP address(es) associated with a virtual router is called the Master, and forwards packets sent to these IP addresses. The election process provides dynamic fail over in the forwarding responsibility should the Master become unavailable. This allows any of the virtual router IP addresses on the LAN to be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host.

本备忘录定义了虚拟路由器冗余协议(VRRP)。VRRP指定一个选择协议,该协议动态地将虚拟路由器的责任分配给LAN上的一个VRRP路由器。控制与虚拟路由器关联的IP地址的VRRP路由器称为主路由器,并转发发送到这些IP地址的数据包。如果主机不可用,选择过程在转发责任中提供动态故障切换。这允许局域网上的任何虚拟路由器IP地址被终端主机用作默认的第一跳路由器。使用VRRP的优点是,无需在每个终端主机上配置动态路由或路由器发现协议,即可获得更高的可用性默认路径。

Table of Contents

目录

   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   2
       1.1.  Contributors. . . . . . . . . . . . . . . . . . . . . .   3
       1.2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . .   4
       1.3.  Definitions . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Required Features . . . . . . . . . . . . . . . . . . . . . .   5
       2.1.  IP Address Backup . . . . . . . . . . . . . . . . . . .   5
       2.2.  Preferred Path Indication . . . . . . . . . . . . . . .   5
       2.3.  Minimization of Unnecessary Service Disruptions . . . .   5
       2.4.  Efficient Operation over Extended LANs. . . . . . . . .   6
   3.  VRRP Overview . . . . . . . . . . . . . . . . . . . . . . . .   6
   4.  Sample Configurations . . . . . . . . . . . . . . . . . . . .   7
        
   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   2
       1.1.  Contributors. . . . . . . . . . . . . . . . . . . . . .   3
       1.2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . .   4
       1.3.  Definitions . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Required Features . . . . . . . . . . . . . . . . . . . . . .   5
       2.1.  IP Address Backup . . . . . . . . . . . . . . . . . . .   5
       2.2.  Preferred Path Indication . . . . . . . . . . . . . . .   5
       2.3.  Minimization of Unnecessary Service Disruptions . . . .   5
       2.4.  Efficient Operation over Extended LANs. . . . . . . . .   6
   3.  VRRP Overview . . . . . . . . . . . . . . . . . . . . . . . .   6
   4.  Sample Configurations . . . . . . . . . . . . . . . . . . . .   7
        
       4.1.  Sample Configuration 1. . . . . . . . . . . . . . . . .   7
       4.2.  Sample Configuration 2. . . . . . . . . . . . . . . . .   9
   5.  Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . .  10
       5.1.  VRRP Packet Format. . . . . . . . . . . . . . . . . . .  10
       5.2.  IP Field Descriptions . . . . . . . . . . . . . . . . .  10
       5.3.  VRRP Field Descriptions . . . . . . . . . . . . . . . .  11
   6.  Protocol State Machine. . . . . . . . . . . . . . . . . . . .  13
       6.1.  Parameters per Virtual Router . . . . . . . . . . . . .  13
       6.2.  Timers. . . . . . . . . . . . . . . . . . . . . . . . .  14
       6.3.  State Transition Diagram. . . . . . . . . . . . . . . .  15
       6.4.  State Descriptions. . . . . . . . . . . . . . . . . . .  15
   7.  Sending and Receiving VRRP Packets. . . . . . . . . . . . . .  18
       7.1.  Receiving VRRP Packets. . . . . . . . . . . . . . . . .  18
       7.2.  Transmitting Packets. . . . . . . . . . . . . . . . . .  19
       7.3.  Virtual MAC Address . . . . . . . . . . . . . . . . . .  19
   8.  Operational Issues. . . . . . . . . . . . . . . . . . . . . .  20
       8.1.  ICMP Redirects. . . . . . . . . . . . . . . . . . . . .  20
       8.2.  Host ARP Requests . . . . . . . . . . . . . . . . . . .  20
       8.3.  Proxy ARP . . . . . . . . . . . . . . . . . . . . . . .  20
       8.4.  Potential Forwarding Loop . . . . . . . . . . . . . . .  21
   9.  Operation over FDDI, Token Ring, and ATM LANE . . . . . . . .  21
       9.1.  Operation over FDDI . . . . . . . . . . . . . . . . . .  21
       9.2.  Operation over Token Ring . . . . . . . . . . . . . . .  21
       9.3.  Operation over ATM LANE . . . . . . . . . . . . . . . .  23
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  23
   11. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . .  24
   12. References. . . . . . . . . . . . . . . . . . . . . . . . . .  24
       12.1. Normative References. . . . . . . . . . . . . . . . . .  24
       12.2. Informative References. . . . . . . . . . . . . . . . .  25
   13. Changes from RFC2338. . . . . . . . . . . . . . . . . . . . .  25
   14. Editor's Address. . . . . . . . . . . . . . . . . . . . . . .  26
   15. Full Copyright Statement. . . . . . . . . . . . . . . . . . .  27
        
       4.1.  Sample Configuration 1. . . . . . . . . . . . . . . . .   7
       4.2.  Sample Configuration 2. . . . . . . . . . . . . . . . .   9
   5.  Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . .  10
       5.1.  VRRP Packet Format. . . . . . . . . . . . . . . . . . .  10
       5.2.  IP Field Descriptions . . . . . . . . . . . . . . . . .  10
       5.3.  VRRP Field Descriptions . . . . . . . . . . . . . . . .  11
   6.  Protocol State Machine. . . . . . . . . . . . . . . . . . . .  13
       6.1.  Parameters per Virtual Router . . . . . . . . . . . . .  13
       6.2.  Timers. . . . . . . . . . . . . . . . . . . . . . . . .  14
       6.3.  State Transition Diagram. . . . . . . . . . . . . . . .  15
       6.4.  State Descriptions. . . . . . . . . . . . . . . . . . .  15
   7.  Sending and Receiving VRRP Packets. . . . . . . . . . . . . .  18
       7.1.  Receiving VRRP Packets. . . . . . . . . . . . . . . . .  18
       7.2.  Transmitting Packets. . . . . . . . . . . . . . . . . .  19
       7.3.  Virtual MAC Address . . . . . . . . . . . . . . . . . .  19
   8.  Operational Issues. . . . . . . . . . . . . . . . . . . . . .  20
       8.1.  ICMP Redirects. . . . . . . . . . . . . . . . . . . . .  20
       8.2.  Host ARP Requests . . . . . . . . . . . . . . . . . . .  20
       8.3.  Proxy ARP . . . . . . . . . . . . . . . . . . . . . . .  20
       8.4.  Potential Forwarding Loop . . . . . . . . . . . . . . .  21
   9.  Operation over FDDI, Token Ring, and ATM LANE . . . . . . . .  21
       9.1.  Operation over FDDI . . . . . . . . . . . . . . . . . .  21
       9.2.  Operation over Token Ring . . . . . . . . . . . . . . .  21
       9.3.  Operation over ATM LANE . . . . . . . . . . . . . . . .  23
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  23
   11. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . .  24
   12. References. . . . . . . . . . . . . . . . . . . . . . . . . .  24
       12.1. Normative References. . . . . . . . . . . . . . . . . .  24
       12.2. Informative References. . . . . . . . . . . . . . . . .  25
   13. Changes from RFC2338. . . . . . . . . . . . . . . . . . . . .  25
   14. Editor's Address. . . . . . . . . . . . . . . . . . . . . . .  26
   15. Full Copyright Statement. . . . . . . . . . . . . . . . . . .  27
        
1. Introduction
1. 介绍

There are a number of methods that an end-host can use to determine its first hop router towards a particular IP destination. These include running (or snooping) a dynamic routing protocol such as Routing Information Protocol [RIP] or OSPF version 2 [OSPF], running an ICMP router discovery client [DISC] or using a statically configured default route.

终端主机可以使用多种方法来确定其朝向特定IP目的地的第一跳路由器。这些包括运行(或窥探)动态路由协议,如路由信息协议[RIP]或OSPF版本2[OSPF],运行ICMP路由器发现客户端[DISC],或使用静态配置的默认路由。

Running a dynamic routing protocol on every end-host may be infeasible for a number of reasons, including administrative overhead, processing overhead, security issues, or lack of a protocol implementation for some platforms. Neighbor or router discovery protocols may require active participation by all hosts on a network, leading to large timer values to reduce protocol overhead in the face

由于许多原因,在每个终端主机上运行动态路由协议可能是不可行的,包括管理开销、处理开销、安全问题,或者某些平台缺少协议实现。邻居或路由器发现协议可能需要网络上所有主机的积极参与,从而产生较大的计时器值,以减少协议开销

of large numbers of hosts. This can result in a significant delay in the detection of a lost (i.e., dead) neighbor, that may introduce unacceptably long "black hole" periods.

大量的主机。这可能导致在检测丢失(即死亡)邻居时出现明显延迟,这可能会引入不可接受的长“黑洞”周期。

The use of a statically configured default route is quite popular; it minimizes configuration and processing overhead on the end-host and is supported by virtually every IP implementation. This mode of operation is likely to persist as dynamic host configuration protocols [DHCP] are deployed, which typically provide configuration for an end-host IP address and default gateway. However, this creates a single point of failure. Loss of the default router results in a catastrophic event, isolating all end-hosts that are unable to detect any alternate path that may be available.

使用静态配置的默认路由非常流行;它最大限度地减少了终端主机上的配置和处理开销,几乎每个IP实现都支持它。随着动态主机配置协议[DHCP]的部署,这种操作模式可能会持续下去,动态主机配置协议通常为终端主机IP地址和默认网关提供配置。但是,这会造成单点故障。丢失默认路由器会导致灾难性事件,隔离所有无法检测任何可用备用路径的终端主机。

The Virtual Router Redundancy Protocol (VRRP) is designed to eliminate the single point of failure inherent in the static default routed environment. VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IP address(es) associated with a virtual router is called the Master, and forwards packets sent to these IP addresses. The election process provides dynamic fail-over in the forwarding responsibility should the Master become unavailable. Any of the virtual router's IP addresses on a LAN can then be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host.

虚拟路由器冗余协议(VRRP)旨在消除静态默认路由环境中固有的单点故障。VRRP指定一个选择协议,该协议动态地将虚拟路由器的责任分配给LAN上的一个VRRP路由器。控制与虚拟路由器关联的IP地址的VRRP路由器称为主路由器,并转发发送到这些IP地址的数据包。如果主机不可用,选择过程在转发责任中提供动态故障切换。局域网上任何虚拟路由器的IP地址都可以被终端主机用作默认的第一跳路由器。使用VRRP的优点是,无需在每个终端主机上配置动态路由或路由器发现协议,即可获得更高的可用性默认路径。

VRRP provides a function similar to the proprietary protocols "Hot Standby Router Protocol (HSRP)" [HSRP] and "IP Standby Protocol" [IPSTB].

VRRP提供的功能类似于专有协议“热备用路由器协议(HSRP)”[HSRP]和“IP备用协议”[IPSTB]。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

1.1. Contributors
1.1. 贡献者

The following people, who are the authors of the RFC 2338 that this document is based on and replaces, contributed to the text in this document. They are P. Higginson, R. Hinden, P. Hunt, S. Knight, A. Lindem, D. Mitzel, M. Shand, D. Weaver, and D. Whipple. They are not listed as authors of the document due to current RFC-Editor policies.

以下人员是本文件所依据和取代的RFC 2338的作者,他们对本文件中的文本做出了贡献。他们是P.希金森、R.兴登、P.亨特、S.奈特、A.林登、D.米泽尔、M.尚德、D.韦弗和D.惠普尔。由于当前的RFC编辑器策略,他们未被列为文档的作者。

1.2. Scope
1.2. 范围

The remainder of this document describes the features, design goals, and theory of operation of VRRP. The message formats, protocol processing rules and state machine that guarantee convergence to a single Virtual Router Master are presented. Finally, operational issues related to MAC address mapping, handling of ARP requests, generation of ICMP redirect messages, and security issues are addressed.

本文件的其余部分描述了VRRP的特点、设计目标和运行理论。介绍了保证收敛到单个虚拟路由器主机的消息格式、协议处理规则和状态机。最后,讨论了与MAC地址映射、ARP请求处理、ICMP重定向消息生成和安全问题相关的操作问题。

This protocol is intended for use with IPv4 routers only. A separate specification will be produced if it is decided that similar functionality is desirable in an IPv6 environment.

此协议仅用于IPv4路由器。如果决定在IPv6环境中需要类似的功能,则将生成单独的规范。

1.3. Definitions
1.3. 定义

VRRP Router A router running the Virtual Router Redundancy Protocol. It may participate in one or more virtual routers.

VRRP路由器运行虚拟路由器冗余协议的路由器。它可以参与一个或多个虚拟路由器。

Virtual Router An abstract object managed by VRRP that acts as a default router for hosts on a shared LAN. It consists of a Virtual Router Identifier and a set of associated IP address(es) across a common LAN. A VRRP Router may backup one or more virtual routers.

虚拟路由器由VRRP管理的抽象对象,用作共享LAN上主机的默认路由器。它由一个虚拟路由器标识符和一组跨公共LAN的关联IP地址组成。VRRP路由器可以备份一个或多个虚拟路由器。

IP Address Owner The VRRP router that has the virtual router's IP address(es) as real interface address(es). This is the router that, when up, will respond to packets addressed to one of these IP addresses for ICMP pings, TCP connections, etc.

IP地址所有者将虚拟路由器的IP地址作为实际接口地址的VRRP路由器。这是一个路由器,当它启动时,它将响应发送到其中一个IP地址的数据包,用于ICMP ping、TCP连接等。

Primary IP Address An IP address selected from the set of real interface addresses. One possible selection algorithm is to always select the first address. VRRP advertisements are always sent using the primary IP address as the source of the IP packet.

主IP地址从实际接口地址集中选择的IP地址。一种可能的选择算法是始终选择第一个地址。VRRP广告始终使用主IP地址作为IP数据包的源发送。

Virtual Router Master The VRRP router that is assuming the responsibility of forwarding packets sent to the IP address(es) associated with the virtual router, and answering ARP requests for these IP addresses. Note that if the IP address owner is available, then it will always become the Master.

虚拟路由器主控VRRP路由器,该路由器负责转发发送到与虚拟路由器关联的IP地址的数据包,并回答这些IP地址的ARP请求。请注意,如果IP地址所有者可用,则它将始终成为主地址。

Virtual Router Backup The set of VRRP routers available to assume forwarding responsibility for a virtual router should the current Master fail.

虚拟路由器备份如果当前主路由器出现故障,可用于承担虚拟路由器转发责任的一组VRRP路由器。

2. Required Features
2. 所需功能

This section outlines the set of features that were considered mandatory and that guided the design of VRRP.

本节概述了被认为是强制性的、指导VRRP设计的一系列功能。

2.1. IP Address Backup
2.1. IP地址备份

Backup of IP addresses is the primary function of the Virtual Router Redundancy Protocol. While providing election of a Virtual Router Master and the additional functionality described below, the protocol should strive to:

IP地址备份是虚拟路由器冗余协议的主要功能。在提供虚拟路由器主机的选择和下面描述的附加功能的同时,协议应努力:

- Minimize the duration of black holes. - Minimize the steady state bandwidth overhead and processing complexity. - Function over a wide variety of multiaccess LAN technologies capable of supporting IP traffic. - Provide for election of multiple virtual routers on a network for load balancing. - Support of multiple logical IP subnets on a single LAN segment.

- 尽量减少黑洞的持续时间最小化稳态带宽开销和处理复杂性。-可在多种支持IP通信的多址LAN技术上运行。-提供在网络上选择多个虚拟路由器以实现负载平衡。-在单个LAN网段上支持多个逻辑IP子网。

2.2. Preferred Path Indication
2.2. 首选路径指示

A simple model of Master election among a set of redundant routers is to treat each router with equal preference and claim victory after converging to any router as Master. However, there are likely to be many environments where there is a distinct preference (or range of preferences) among the set of redundant routers. For example, this preference may be based upon access link cost or speed, router performance or reliability, or other policy considerations. The protocol should allow the expression of this relative path preference in an intuitive manner, and guarantee Master convergence to the most preferential router currently available.

在一组冗余路由器中,主选择的一个简单模型是以相同的偏好对待每个路由器,并在收敛到任何一个路由器作为主路由器后声称胜利。然而,在许多环境中,冗余路由器组之间可能存在明显的偏好(或偏好范围)。例如,此偏好可基于接入链路成本或速度、路由器性能或可靠性或其他策略考虑。该协议应允许以直观的方式表达这种相对路径偏好,并保证主机收敛到当前可用的最优先路由器。

2.3. Minimization of Unnecessary Service Disruptions
2.3. 最大限度地减少不必要的服务中断

Once Master election has been performed then any unnecessary transitions between Master and Backup routers can result in a disruption in service. The protocol should ensure after Master election that no state transition is triggered by any Backup router of equal or lower preference as long as the Master continues to function properly.

一旦执行了主选择,则主路由器和备份路由器之间任何不必要的转换都可能导致服务中断。协议应确保在主设备选择后,只要主设备继续正常工作,具有相同或更低优先级的任何备份路由器都不会触发状态转换。

Some environments may find it beneficial to avoid the state transition triggered when a router becomes available that is preferred over the current Master. It may be useful to support an override of the immediate convergence to the preferred path.

某些环境可能会发现,避免在路由器可用时触发状态转换是有益的,这是当前主机的首选。支持覆盖立即收敛到首选路径可能很有用。

2.4. Efficient Operation over Extended LANs
2.4. 扩展局域网上的高效操作

Sending IP packets on a multiaccess LAN requires mapping from an IP address to a MAC address. The use of the virtual router MAC address in an extended LAN employing learning bridges can have a significant effect on the bandwidth overhead of packets sent to the virtual router. If the virtual router MAC address is never used as the source address in a link level frame then the station location is never learned, resulting in flooding of all packets sent to the virtual router. To improve the efficiency in this environment the protocol should: 1) use the virtual router MAC as the source in a packet sent by the Master to trigger station learning; 2) trigger a message immediately after transitioning to Master to update the station learning; and 3) trigger periodic messages from the Master to maintain the station learning cache.

在多址LAN上发送IP数据包需要从IP地址映射到MAC地址。在采用学习网桥的扩展LAN中使用虚拟路由器MAC地址会对发送到虚拟路由器的数据包的带宽开销产生显著影响。如果虚拟路由器MAC地址从未用作链路级帧中的源地址,则永远不会读入站点位置,从而导致发送到虚拟路由器的所有数据包泛滥。为了提高这种环境下的效率,该协议应该:1)使用虚拟路由器MAC作为主机发送的数据包中的源来触发站点学习;2) 转换到Master后立即触发消息以更新站点学习;以及3)触发来自主机的周期性消息,以维护站点学习缓存。

3. VRRP Overview
3. VRRP概述

VRRP specifies an election protocol to provide the virtual router function described earlier. All protocol messaging is performed using IP multicast datagrams, thus the protocol can operate over a variety of multiaccess LAN technologies supporting IP multicast. Each VRRP virtual router has a single well-known MAC address allocated to it. This document currently only details the mapping to networks using the IEEE 802 48-bit MAC address. The virtual router MAC address is used as the source in all periodic VRRP messages sent by the Master router to enable bridge learning in an extended LAN.

VRRP指定一个选择协议,以提供前面描述的虚拟路由器功能。所有协议消息都使用IP多播数据报执行,因此该协议可以在支持IP多播的多种多址LAN技术上运行。每个VRRP虚拟路由器都有一个已知的MAC地址分配给它。本文档目前仅详细说明了使用IEEE 802 48位MAC地址到网络的映射。虚拟路由器MAC地址用作主路由器发送的所有定期VRRP消息的源,以在扩展LAN中启用网桥学习。

A virtual router is defined by its virtual router identifier (VRID) and a set of IP addresses. A VRRP router may associate a virtual router with its real addresses on an interface, and may also be configured with additional virtual router mappings and priority for virtual routers it is willing to backup. The mapping between VRID and addresses must be coordinated among all VRRP routers on a LAN. However, there is no restriction against reusing a VRID with a different address mapping on different LANs. The scope of each virtual router is restricted to a single LAN.

虚拟路由器由其虚拟路由器标识符(VRID)和一组IP地址定义。VRRP路由器可以将虚拟路由器与其接口上的真实地址相关联,并且还可以为其愿意备份的虚拟路由器配置额外的虚拟路由器映射和优先级。必须在局域网上的所有VRRP路由器之间协调VRID和地址之间的映射。但是,在不同的LAN上使用具有不同地址映射的VRID没有限制。每个虚拟路由器的作用域仅限于单个LAN。

To minimize network traffic, only the Master for each virtual router sends periodic VRRP Advertisement messages. A Backup router will not attempt to preempt the Master unless it has higher priority. This eliminates service disruption unless a more preferred path becomes available. It's also possible to administratively prohibit all

为了最小化网络流量,只有每个虚拟路由器的主路由器定期发送VRRP广告消息。备份路由器不会尝试抢占主路由器,除非它具有更高的优先级。这将消除服务中断,除非有更首选的路径可用。也可以通过行政手段禁止所有

preemption attempts. The only exception is that a VRRP router will always become Master of any virtual router associated with addresses it owns. If the Master becomes unavailable then the highest priority Backup will transition to Master after a short delay, providing a controlled transition of the virtual router responsibility with minimal service interruption.

先发制人的尝试。唯一的例外是,VRRP路由器将始终成为与其拥有的地址相关联的任何虚拟路由器的主机。如果主机变得不可用,则最高优先级的备份将在短时间延迟后过渡到主机,以最小的服务中断提供虚拟路由器责任的受控过渡。

The VRRP protocol design provides rapid transition from Backup to Master to minimize service interruption, and incorporates optimizations that reduce protocol complexity while guaranteeing controlled Master transition for typical operational scenarios. The optimizations result in an election protocol with minimal runtime state requirements, minimal active protocol states, and a single message type and sender. The typical operational scenarios are defined to be two redundant routers and/or distinct path preferences among each router. A side effect when these assumptions are violated (i.e., more than two redundant paths all with equal preference) is that duplicate packets may be forwarded for a brief period during Master election. However, the typical scenario assumptions are likely to cover the vast majority of deployments, loss of the Master router is infrequent, and the expected duration in Master election convergence is quite small ( << 1 second ). Thus the VRRP optimizations represent significant simplifications in the protocol design while incurring an insignificant probability of brief network degradation.

VRRP协议设计提供了从备份到主服务器的快速转换,以最大限度地减少服务中断,并采用了一些优化,这些优化可降低协议复杂性,同时保证在典型操作场景下进行受控主服务器转换。优化的结果是选举协议具有最低的运行时状态要求、最低的活动协议状态以及单一的消息类型和发送方。典型的操作场景定义为两个冗余路由器和/或每个路由器之间的不同路径偏好。违反这些假设(即,两条以上的冗余路径具有相同的优先权)时的副作用是,在主选择期间,重复数据包可能会被转发一段短时间。然而,典型的场景假设可能涵盖绝大多数部署,主路由器的丢失很少,并且主选择收敛的预期持续时间非常小(<<1秒)。因此,VRRP优化代表了协议设计的显著简化,同时导致短暂网络退化的可能性很小。

4. Sample Configurations
4. 示例配置
4.1. Sample Configuration 1
4.1. 示例配置1

The following figure shows a simple network with two VRRP routers implementing one virtual router. Note that this example is provided to help understand the protocol, but is not expected to occur in actual practice.

下图显示了一个简单的网络,其中两个VRRP路由器实现一个虚拟路由器。请注意,提供此示例是为了帮助理解协议,但实际操作中预计不会出现此示例。

            +-----------+      +-----------+
            |   Rtr1    |      |   Rtr2    |
            |(MR VRID=1)|      |(BR VRID=1)|
            |           |      |           |
    VRID=1  +-----------+      +-----------+
    IP A ---------->*            *<--------- IP B
                    |            |
                    |            |
  ------------------+------------+-----+--------+--------+--------+--
                                       ^        ^        ^        ^
                                       |        |        |        |
                                     (IP A)   (IP A)   (IP A)   (IP A)
                                       |        |        |        |
                                    +--+--+  +--+--+  +--+--+  +--+--+
                                    |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                    +-----+  +-----+  +--+--+  +--+--+
     Legend:
              ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                           H  =  Host computer
                          MR  =  Master Router
                          BR  =  Backup Router
                           *  =  IP Address
                        (IP)  =  default router for hosts
        
            +-----------+      +-----------+
            |   Rtr1    |      |   Rtr2    |
            |(MR VRID=1)|      |(BR VRID=1)|
            |           |      |           |
    VRID=1  +-----------+      +-----------+
    IP A ---------->*            *<--------- IP B
                    |            |
                    |            |
  ------------------+------------+-----+--------+--------+--------+--
                                       ^        ^        ^        ^
                                       |        |        |        |
                                     (IP A)   (IP A)   (IP A)   (IP A)
                                       |        |        |        |
                                    +--+--+  +--+--+  +--+--+  +--+--+
                                    |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                    +-----+  +-----+  +--+--+  +--+--+
     Legend:
              ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                           H  =  Host computer
                          MR  =  Master Router
                          BR  =  Backup Router
                           *  =  IP Address
                        (IP)  =  default router for hosts
        

Eliminating all mention of VRRP (VRID=1) from the figure above leaves it as a typical IP deployment. Each router is permanently assigned an IP address on the LAN interface (Rtr1 is assigned IP A and Rtr2 is assigned IP B), and each host installs a static default route through one of the routers (in this example they all use Rtr1's IP A).

从上图中删除所有提及VRRP(VRID=1)的内容,使其成为典型的IP部署。每个路由器在LAN接口上被永久分配一个IP地址(Rtr1被分配IP A,Rtr2被分配IP B),并且每个主机通过其中一个路由器安装一个静态默认路由(在本例中,它们都使用Rtr1的IP A)。

Moving to the VRRP environment, each router has the exact same permanently assigned IP address. Rtr1 is said to be the IP address owner of IP A, and Rtr2 is the IP address owner of IP B. A virtual router is then defined by associating a unique identifier (the virtual router ID) with the address owned by a router. Finally, the VRRP protocol manages virtual router fail over to a backup router.

移动到VRRP环境,每个路由器都有完全相同的永久分配IP地址。Rtr1被称为IP A的IP地址所有者,Rtr2是IP B的IP地址所有者。然后通过将唯一标识符(虚拟路由器ID)与路由器拥有的地址相关联来定义虚拟路由器。最后,VRRP协议管理虚拟路由器故障转移到备份路由器。

The example above shows a virtual router configured to cover the IP address owned by Rtr1 (VRID=1,IP_Address=A). When VRRP is enabled on Rtr1 for VRID=1 it will assert itself as Master, with priority=255, since it is the IP address owner for the virtual router IP address. When VRRP is enabled on Rtr2 for VRID=1 it will transition to Backup, with priority=100, since it is not the IP address owner. If Rtr1 should fail then the VRRP protocol will transition Rtr2 to Master, temporarily taking over forwarding responsibility for IP A to provide uninterrupted service to the hosts.

上面的示例显示了一个虚拟路由器,它被配置为覆盖Rtr1拥有的IP地址(VRID=1,IP_地址=a)。当VRRP在Rtr1上为VRID=1启用时,它将断言自己为主,优先级为255,因为它是虚拟路由器IP地址的IP地址所有者。当在Rtr2上为VRID=1启用VRRP时,它将转换为备份,优先级为100,因为它不是IP地址所有者。如果Rtr1失败,则VRRP协议将Rtr2转换为主机,暂时接管IP A的转发责任,以向主机提供不间断服务。

Note that in this example IP B is not backed up, it is only used by Rtr2 as its interface address. In order to backup IP B, a second virtual router must be configured. This is shown in the next section.

请注意,在此示例中,IP B未备份,它仅由Rtr2用作其接口地址。为了备份IP B,必须配置第二个虚拟路由器。这将在下一节中显示。

4.2. Sample Configuration 2
4.2. 示例配置2

The following figure shows a configuration with two virtual routers with the hosts spitting their traffic between them. This example is expected to be very common in actual practice.

下图显示了两个虚拟路由器的配置,其中主机在它们之间吐出流量。这个例子在实际操作中很常见。

            +-----------+      +-----------+
            |   Rtr1    |      |   Rtr2    |
            |(MR VRID=1)|      |(BR VRID=1)|
            |(BR VRID=2)|      |(MR VRID=2)|
    VRID=1  +-----------+      +-----------+  VRID=2
    IP A ---------->*            *<---------- IP B
                    |            |
                    |            |
  ------------------+------------+-----+--------+--------+--------+--
                                       ^        ^        ^        ^
                                       |        |        |        |
                                     (IP A)   (IP A)   (IP B)   (IP B)
                                       |        |        |        |
                                    +--+--+  +--+--+  +--+--+  +--+--+
                                    |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                    +-----+  +-----+  +--+--+  +--+--+
     Legend:
              ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                           H  =  Host computer
                          MR  =  Master Router
                          BR  =  Backup Router
                           *  =  IP Address
                        (IP)  =  default router for hosts
        
            +-----------+      +-----------+
            |   Rtr1    |      |   Rtr2    |
            |(MR VRID=1)|      |(BR VRID=1)|
            |(BR VRID=2)|      |(MR VRID=2)|
    VRID=1  +-----------+      +-----------+  VRID=2
    IP A ---------->*            *<---------- IP B
                    |            |
                    |            |
  ------------------+------------+-----+--------+--------+--------+--
                                       ^        ^        ^        ^
                                       |        |        |        |
                                     (IP A)   (IP A)   (IP B)   (IP B)
                                       |        |        |        |
                                    +--+--+  +--+--+  +--+--+  +--+--+
                                    |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                    +-----+  +-----+  +--+--+  +--+--+
     Legend:
              ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                           H  =  Host computer
                          MR  =  Master Router
                          BR  =  Backup Router
                           *  =  IP Address
                        (IP)  =  default router for hosts
        

In the example above, half of the hosts have configured a static route through Rtr1's IP A and half are using Rtr2's IP B. The configuration of virtual router VRID=1 is exactly the same as in the first example (see section 4.1), and a second virtual router has been added to cover the IP address owned by Rtr2 (VRID=2, IP_Address=B). In this case Rtr2 will assert itself as Master for VRID=2 while Rtr1 will act as a backup. This scenario demonstrates a deployment providing load splitting when both routers are available while providing full redundancy for robustness.

在上面的示例中,一半的主机通过Rtr1的IP a配置了静态路由,另一半使用Rtr2的IP B。虚拟路由器VRID=1的配置与第一个示例中的配置完全相同(参见第4.1节),并且添加了第二个虚拟路由器以覆盖Rtr2拥有的IP地址(VRID=2,IP_地址=B)。在这种情况下,Rtr2将自己声明为VRID=2的主控,而Rtr1将充当备份。此场景演示了在两个路由器都可用时提供负载拆分的部署,同时为健壮性提供完全冗余。

5. Protocol
5. 协议

The purpose of the VRRP packet is to communicate to all VRRP routers the priority and the state of the Master router associated with the Virtual Router ID.

VRRP包的目的是向所有VRRP路由器传送与虚拟路由器ID相关联的主路由器的优先级和状态。

VRRP packets are sent encapsulated in IP packets. They are sent to the IPv4 multicast address assigned to VRRP.

VRRP数据包被封装在IP数据包中发送。它们被发送到分配给VRRP的IPv4多播地址。

5.1. VRRP Packet Format
5.1. VRRP数据包格式

This section defines the format of the VRRP packet and the relevant fields in the IP header.

本节定义了VRRP数据包的格式以及IP报头中的相关字段。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Version| Type  | Virtual Rtr ID|   Priority    | Count IP Addrs|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Auth Type   |   Adver Int   |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         IP Address (1)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            .                                  |
   |                            .                                  |
   |                            .                                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         IP Address (n)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Authentication Data (1)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Authentication Data (2)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Version| Type  | Virtual Rtr ID|   Priority    | Count IP Addrs|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Auth Type   |   Adver Int   |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         IP Address (1)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            .                                  |
   |                            .                                  |
   |                            .                                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         IP Address (n)                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Authentication Data (1)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Authentication Data (2)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
5.2. IP Field Descriptions
5.2. IP字段描述
5.2.1. Source Address
5.2.1. 源地址

The primary IP address of the interface the packet is being sent from.

发送数据包的接口的主IP地址。

5.2.2. Destination Address
5.2.2. 目的地址

The IP multicast address as assigned by the IANA for VRRP is:

IANA为VRRP分配的IP多播地址为:

224.0.0.18

224.0.0.18

This is a link local scope multicast address. Routers MUST NOT forward a datagram with this destination address regardless of its TTL.

这是一个链路本地作用域多播地址。路由器不得转发具有此目标地址的数据报,无论其TTL如何。

5.2.3. TTL
5.2.3. TTL

The TTL MUST be set to 255. A VRRP router receiving a packet with the TTL not equal to 255 MUST discard the packet.

TTL必须设置为255。接收TTL不等于255的数据包的VRRP路由器必须丢弃该数据包。

5.2.4. Protocol
5.2.4. 协议

The IP protocol number assigned by the IANA for VRRP is 112 (decimal).

IANA为VRRP分配的IP协议号为112(十进制)。

5.3. VRRP Field Descriptions
5.3. VRRP字段描述
5.3.1. Version
5.3.1. 版本

The version field specifies the VRRP protocol version of this packet. This document defines version 2.

版本字段指定此数据包的VRRP协议版本。本文档定义了版本2。

5.3.2. Type
5.3.2. 类型

The type field specifies the type of this VRRP packet. The only packet type defined in this version of the protocol is:

类型字段指定此VRRP数据包的类型。本协议版本中定义的唯一数据包类型为:

1 ADVERTISEMENT

1广告

A packet with unknown type MUST be discarded.

必须丢弃类型未知的数据包。

5.3.3. Virtual Rtr ID (VRID)
5.3.3. 虚拟Rtr ID(VRID)

The Virtual Router Identifier (VRID) field identifies the virtual router this packet is reporting status for. Configurable item in the range 1-255 (decimal). There is no default.

虚拟路由器标识符(VRID)字段标识此数据包报告状态的虚拟路由器。范围为1-255(十进制)的可配置项。没有默认设置。

5.3.4. Priority
5.3.4. 优先事项

The priority field specifies the sending VRRP router's priority for the virtual router. Higher values equal higher priority. This field is an 8 bit unsigned integer field.

优先级字段为虚拟路由器指定发送VRRP路由器的优先级。值越高,优先级越高。此字段是一个8位无符号整数字段。

The priority value for the VRRP router that owns the IP address(es) associated with the virtual router MUST be 255 (decimal).

拥有与虚拟路由器关联的IP地址的VRRP路由器的优先级值必须为255(十进制)。

VRRP routers backing up a virtual router MUST use priority values between 1-254 (decimal). The default priority value for VRRP routers backing up a virtual router is 100 (decimal).

备份虚拟路由器的VRRP路由器必须使用1-254(十进制)之间的优先级值。备份虚拟路由器的VRRP路由器的默认优先级值为100(十进制)。

The priority value zero (0) has special meaning indicating that the current Master has stopped participating in VRRP. This is used to trigger Backup routers to quickly transition to Master without having to wait for the current Master to timeout.

优先级值0(0)具有特殊意义,表示当前主机已停止参与VRRP。这用于触发备份路由器快速过渡到主路由器,而无需等待当前主路由器超时。

5.3.5. Count IP Addrs
5.3.5. 计数IP地址

The number of IP addresses contained in this VRRP advertisement.

此VRRP公告中包含的IP地址数。

5.3.6. Authentication Type
5.3.6. 身份验证类型

The authentication type field identifies the authentication method being utilized. Authentication type is unique on a Virtual Router basis. The authentication type field is an 8 bit unsigned integer. A packet with unknown authentication type or that does not match the locally configured authentication method MUST be discarded.

“身份验证类型”字段标识正在使用的身份验证方法。身份验证类型在虚拟路由器上是唯一的。身份验证类型字段是8位无符号整数。必须丢弃身份验证类型未知或与本地配置的身份验证方法不匹配的数据包。

Note: Earlier version of the VRRP specification had several defined authentication types [RFC2338]. These were removed in this specification because operational experience showed that they did not provide any real security and would only cause multiple masters to be created.

注:VRRP规范的早期版本定义了几种认证类型[RFC2338]。在本规范中删除了这些组件,因为运行经验表明它们不提供任何真正的安全性,只会导致创建多个主组件。

The authentication methods currently defined are:

当前定义的身份验证方法有:

0 - No Authentication 1 - Reserved 2 - Reserved

0-无身份验证1-保留2-保留

5.3.6.1. Authentication Type 0 - No Authentication
5.3.6.1. 身份验证类型0-无身份验证

The use of this authentication type means that VRRP protocol exchanges are not authenticated. The contents of the Authentication Data field should be set to zero on transmission and ignored on reception.

使用此身份验证类型意味着VRRP协议交换未经身份验证。认证数据字段的内容在传输时应设置为零,在接收时应忽略。

5.3.6.2. Authentication Type 1 - Reserved
5.3.6.2. 身份验证类型1-保留

This authentication type is reserved to maintain backwards compatibility with RFC 2338.

保留此身份验证类型是为了保持与RFC 2338的向后兼容性。

5.3.6.3. Authentication Type 2 - Reserved
5.3.6.3. 身份验证类型2-保留

This authentication type is reserved to maintain backwards compatibility with RFC 2338.

保留此身份验证类型是为了保持与RFC 2338的向后兼容性。

5.3.7. Advertisement Interval (Adver Int)
5.3.7. 播发间隔(Adver Int)

The Advertisement interval indicates the time interval (in seconds) between ADVERTISEMENTS. The default is 1 second. This field is used for troubleshooting misconfigured routers.

播发间隔表示播发之间的时间间隔(以秒为单位)。默认值为1秒。此字段用于对配置错误的路由器进行故障排除。

5.3.8. Checksum
5.3.8. 校验和

The checksum field is used to detect data corruption in the VRRP message.

校验和字段用于检测VRRP消息中的数据损坏。

The checksum is the 16-bit one's complement of the one's complement sum of the entire VRRP message starting with the version field. For computing the checksum, the checksum field is set to zero. See RFC 1071 for more detail [CKSM].

校验和是从版本字段开始的整个VRRP消息的补码和的16位补码。为了计算校验和,校验和字段设置为零。更多详情参见RFC 1071[CKSM]。

5.3.9. IP Address(es)
5.3.9. IP地址

One or more IP addresses that are associated with the virtual router. The number of addresses included is specified in the "Count IP Addrs" field. These fields are used for troubleshooting misconfigured routers.

与虚拟路由器关联的一个或多个IP地址。包含的地址数在“计数IP地址”字段中指定。这些字段用于对配置错误的路由器进行故障排除。

5.3.10. Authentication Data
5.3.10. 认证数据

The authentication string is currently only used to maintain backwards compatibility with RFC 2338. It SHOULD be set to zero on transmission and ignored on reception.

身份验证字符串当前仅用于保持与RFC 2338的向后兼容性。传输时应设置为零,接收时忽略。

6. Protocol State Machine
6. 协议状态机
6.1. Parameters per Virtual Router
6.1. 每个虚拟路由器的参数

VRID Virtual Router Identifier. Configurable item in the range 1-255 (decimal). There is no default.

虚拟路由器标识符。范围为1-255(十进制)的可配置项。没有默认设置。

Priority Priority value to be used by this VRRP router in Master election for this virtual router. The value of 255 (decimal) is reserved for the router that owns the IP addresses associated with the virtual router. The value of 0 (zero) is reserved for Master

此VRRP路由器在此虚拟路由器的主选择中使用的优先级值。255(十进制)的值是为拥有与虚拟路由器关联的IP地址的路由器保留的。0(零)的值保留给Master

router to indicate it is releasing responsibility for the virtual router. The range 1-254 (decimal) is available for VRRP routers backing up the virtual router. The default value is 100 (decimal).

路由器,指示其正在释放对虚拟路由器的责任。范围1-254(十进制)可用于备份虚拟路由器的VRRP路由器。默认值为100(十进制)。

IP_Addresses One or more IP addresses associated with this virtual router. Configured item. No default.

IP_地址与此虚拟路由器关联的一个或多个IP地址。已配置项。没有默认值。

Advertisement_Interval Time interval between ADVERTISEMENTS (seconds). Default is 1 second.

广告间隔广告之间的时间间隔(秒)。默认值为1秒。

Skew_Time Time to skew Master_Down_Interval in seconds. Calculated as:

倾斜时间以秒为单位倾斜主间隔的时间。计算如下:

( (256 - Priority) / 256 )

((256-优先级)/256)

Master_Down_Interval Time interval for Backup to declare Master down (seconds). Calculated as:

主控停机时间间隔备份宣布主控停机的时间间隔(秒)。计算如下:

(3 * Advertisement_Interval) + Skew_time

(3*广告间隔)+倾斜时间

Preempt_Mode Controls whether a higher priority Backup router preempts a lower priority Master. Values are True to allow preemption and False to prohibit preemption. Default is True.

抢占模式控制高优先级备份路由器是否抢占低优先级主机。值为True表示允许抢占,值为False表示禁止抢占。默认值为True。

Note: Exception is that the router that owns the IP address(es) associated with the virtual router always preempts independent of the setting of this flag.

注意:例外情况是,拥有与虚拟路由器关联的IP地址的路由器总是独立于此标志的设置而抢占。

Authentication_Type Type of authentication being used. Values are defined in section 5.3.6.

身份验证\正在使用的身份验证类型。数值在第5.3.6节中定义。

Authentication_Data Authentication data specific to the Authentication_Type being used.

身份验证数据特定于所使用的身份验证类型的身份验证数据。

6.2. Timers
6.2. 计时器

Master_Down_Timer Timer that fires when ADVERTISEMENT has not been heard for Master_Down_Interval.

Master_Down_定时器,当尚未听到Master_Down_间隔的广告时触发。

Adver_Timer Timer that fires to trigger sending of ADVERTISEMENT based on Advertisement_Interval.

Adver_定时器,根据广告间隔触发广告发送。

6.3. State Transition Diagram
6.3. 状态转移图
                      +---------------+
           +--------->|               |<-------------+
           |          |  Initialize   |              |
           |   +------|               |----------+   |
           |   |      +---------------+          |   |
           |   |                                 |   |
           |   V                                 V   |
   +---------------+                       +---------------+
   |               |---------------------->|               |
   |    Master     |                       |    Backup     |
   |               |<----------------------|               |
   +---------------+                       +---------------+
        
                      +---------------+
           +--------->|               |<-------------+
           |          |  Initialize   |              |
           |   +------|               |----------+   |
           |   |      +---------------+          |   |
           |   |                                 |   |
           |   V                                 V   |
   +---------------+                       +---------------+
   |               |---------------------->|               |
   |    Master     |                       |    Backup     |
   |               |<----------------------|               |
   +---------------+                       +---------------+
        
6.4. State Descriptions
6.4. 状态描述

In the state descriptions below, the state names are identified by {state-name}, and the packets are identified by all upper case characters.

在下面的状态描述中,状态名称由{state name}标识,数据包由所有大写字符标识。

A VRRP router implements an instance of the state machine for each virtual router election it is participating in.

VRRP路由器为其参与的每个虚拟路由器选择实现一个状态机实例。

6.4.1. Initialize
6.4.1. 初始化

The purpose of this state is to wait for a Startup event. If a Startup event is received, then:

此状态的目的是等待启动事件。如果收到启动事件,则:

- If the Priority = 255 (i.e., the router owns the IP address(es) associated with the virtual router)

- 如果优先级=255(即,路由器拥有与虚拟路由器关联的IP地址)

o Send an ADVERTISEMENT o Broadcast a gratuitous ARP request containing the virtual router MAC address for each IP address associated with the virtual router. o Set the Adver_Timer to Advertisement_Interval o Transition to the {Master} state

o 发送广告以广播免费的ARP请求,其中包含与虚拟路由器关联的每个IP地址的虚拟路由器MAC地址。o将Adver_计时器设置为advision_Interval o转换为{Master}状态

else

其他的

o Set the Master_Down_Timer to Master_Down_Interval o Transition to the {Backup} state

o 将Master_Down_计时器设置为Master_Down_Interval o转换为{Backup}状态

endif

恩迪夫

6.4.2. Backup
6.4.2. 备份

The purpose of the {Backup} state is to monitor the availability and state of the Master Router.

{Backup}状态的目的是监视主路由器的可用性和状态。

While in this state, a VRRP router MUST do the following:

在此状态下,VRRP路由器必须执行以下操作:

- MUST NOT respond to ARP requests for the IP address(s) associated with the virtual router.

- 不得响应与虚拟路由器关联的IP地址的ARP请求。

- MUST discard packets with a destination link layer MAC address equal to the virtual router MAC address.

- 必须丢弃目标链路层MAC地址等于虚拟路由器MAC地址的数据包。

- MUST NOT accept packets addressed to the IP address(es) associated with the virtual router.

- 不得接受地址为与虚拟路由器关联的IP地址的数据包。

- If a Shutdown event is received, then:

- 如果收到关机事件,则:

o Cancel the Master_Down_Timer o Transition to the {Initialize} state

o 取消主计时器到{Initialize}状态的转换

endif

恩迪夫

- If the Master_Down_Timer fires, then:

- 如果主定时器触发,则:

o Send an ADVERTISEMENT o Broadcast a gratuitous ARP request containing the virtual router MAC address for each IP address associated with the virtual router o Set the Adver_Timer to Advertisement_Interval o Transition to the {Master} state

o 发送广告或广播免费的ARP请求,其中包含与虚拟路由器关联的每个IP地址的虚拟路由器MAC地址,或将Adver_计时器设置为广告间隔,或转换为{Master}状态

endif

恩迪夫

- If an ADVERTISEMENT is received, then:

- 如果收到广告,则:

If the Priority in the ADVERTISEMENT is Zero, then:

如果广告中的优先级为零,则:

o Set the Master_Down_Timer to Skew_Time

o 将主定时器设置为倾斜时间

else:

其他:

If Preempt_Mode is False, or If the Priority in the ADVERTISEMENT is greater than or equal to the local Priority, then:

如果Preempt_模式为False,或者如果播发中的优先级大于或等于本地优先级,则:

o Reset the Master_Down_Timer to Master_Down_Interval

o 将Master_Down_定时器重置为Master_Down_间隔

else:

其他:

o Discard the ADVERTISEMENT

o 丢弃广告

endif endif endif

endif endif endif

6.4.3. Master
6.4.3. 主人

While in the {Master} state the router functions as the forwarding router for the IP address(es) associated with the virtual router.

在{Master}状态下,路由器充当与虚拟路由器关联的IP地址的转发路由器。

While in this state, a VRRP router MUST do the following:

在此状态下,VRRP路由器必须执行以下操作:

- MUST respond to ARP requests for the IP address(es) associated with the virtual router.

- 必须响应与虚拟路由器关联的IP地址的ARP请求。

- MUST forward packets with a destination link layer MAC address equal to the virtual router MAC address.

- 必须转发目标链路层MAC地址等于虚拟路由器MAC地址的数据包。

- MUST NOT accept packets addressed to the IP address(es) associated with the virtual router if it is not the IP address owner.

- 如果虚拟路由器不是IP地址所有者,则不得接受地址为与虚拟路由器关联的IP地址的数据包。

- MUST accept packets addressed to the IP address(es) associated with the virtual router if it is the IP address owner.

- 如果虚拟路由器是IP地址所有者,则必须接受地址为与虚拟路由器关联的IP地址的数据包。

- If a Shutdown event is received, then:

- 如果收到关机事件,则:

o Cancel the Adver_Timer o Send an ADVERTISEMENT with Priority = 0 o Transition to the {Initialize} state

o 取消Adver_计时器以发送优先级为0的播发,然后转换到{Initialize}状态

endif

恩迪夫

- If the Adver_Timer fires, then:

- 如果Adver_定时器触发,则:

o Send an ADVERTISEMENT o Reset the Adver_Timer to Advertisement_Interval

o 发送广告以将广告计时器重置为广告间隔

endif

恩迪夫

- If an ADVERTISEMENT is received, then:

- 如果收到广告,则:

If the Priority in the ADVERTISEMENT is Zero, then:

如果广告中的优先级为零,则:

o Send an ADVERTISEMENT o Reset the Adver_Timer to Advertisement_Interval

o 发送广告以将广告计时器重置为广告间隔

else:

其他:

If the Priority in the ADVERTISEMENT is greater than the local Priority, or If the Priority in the ADVERTISEMENT is equal to the local Priority and the primary IP Address of the sender is greater than the local primary IP Address, then:

如果播发中的优先级大于本地优先级,或者如果播发中的优先级等于本地优先级且发送方的主IP地址大于本地主IP地址,则:

o Cancel Adver_Timer o Set Master_Down_Timer to Master_Down_Interval o Transition to the {Backup} state

o 取消Adver_定时器o将Master_Down_定时器设置为Master_Down_时间间隔o转换为{Backup}状态

else:

其他:

o Discard ADVERTISEMENT

o 丢弃广告

endif endif endif

endif endif endif

7. Sending and Receiving VRRP Packets
7. 发送和接收VRRP数据包
7.1. Receiving VRRP Packets
7.1. 接收VRRP数据包

Performed the following functions when a VRRP packet is received:

当接收到VRRP数据包时,执行以下功能:

- MUST verify that the IP TTL is 255. - MUST verify the VRRP version is 2. - MUST verify that the received packet contains the complete VRRP packet (including fixed fields, IP Address(es), and Authentication Data). - MUST verify the VRRP checksum. - MUST verify that the VRID is configured on the receiving interface and the local router is not the IP Address owner (Priority equals 255 (decimal)). - MUST verify that the Auth Type matches the locally configured authentication method for the virtual router and perform that authentication method.

- 必须验证IP TTL是否为255。-必须验证VRRP版本为2。-必须验证收到的数据包是否包含完整的VRRP数据包(包括固定字段、IP地址和身份验证数据)。-必须验证VRRP校验和。-必须验证在接收接口上配置了VRID,并且本地路由器不是IP地址所有者(优先级等于255(十进制))。-必须验证身份验证类型是否与虚拟路由器的本地配置身份验证方法匹配,并执行该身份验证方法。

If any one of the above checks fails, the receiver MUST discard the packet, SHOULD log the event and MAY indicate via network management that an error occurred.

如果上述任何一项检查失败,接收方必须丢弃数据包,记录事件,并通过网络管理表明发生了错误。

- MAY verify that "Count IP Addrs" and the list of IP Address matches the IP_Addresses configured for the VRID

- 可以验证“计数IP地址”和IP地址列表是否与为VRID配置的IP_地址匹配

If the above check fails, the receiver SHOULD log the event and MAY indicate via network management that a misconfiguration was detected. If the packet was not generated by the address owner (Priority does not equal 255 (decimal)), the receiver MUST drop the packet, otherwise continue processing.

如果上述检查失败,接收器应记录事件,并可通过网络管理指示检测到错误配置。如果数据包不是由地址所有者生成的(优先级不等于255(十进制)),则接收方必须丢弃数据包,否则继续处理。

- MUST verify that the Adver Interval in the packet is the same as the locally configured for this virtual router

- 必须验证数据包中的Adver间隔是否与为此虚拟路由器本地配置的相同

If the above check fails, the receiver MUST discard the packet, SHOULD log the event and MAY indicate via network management that a misconfiguration was detected.

如果上述检查失败,接收方必须丢弃数据包,记录事件,并通过网络管理表明检测到错误配置。

7.2. Transmitting VRRP Packets
7.2. 发送VRRP数据包

The following operations MUST be performed when transmitting a VRRP packet.

传输VRRP数据包时,必须执行以下操作。

- Fill in the VRRP packet fields with the appropriate virtual router configuration state - Compute the VRRP checksum - Set the source MAC address to Virtual Router MAC Address - Set the source IP address to interface primary IP address - Set the IP protocol to VRRP - Send the VRRP packet to the VRRP IP multicast group

- 用适当的虚拟路由器配置状态填写VRRP数据包字段-计算VRRP校验和-将源MAC地址设置为虚拟路由器MAC地址-将源IP地址设置为接口主IP地址-将IP协议设置为VRRP-将VRRP数据包发送到VRRP IP多播组

Note: VRRP packets are transmitted with the virtual router MAC address as the source MAC address to ensure that learning bridges correctly determine the LAN segment the virtual router is attached to.

注意:VRRP数据包以虚拟路由器MAC地址作为源MAC地址进行传输,以确保学习网桥正确确定虚拟路由器连接到的LAN网段。

7.3. Virtual Router MAC Address
7.3. 虚拟路由器MAC地址

The virtual router MAC address associated with a virtual router is an IEEE 802 MAC Address in the following format:

与虚拟路由器关联的虚拟路由器MAC地址是以下格式的IEEE 802 MAC地址:

00-00-5E-00-01-{VRID} (in hex in internet standard bit-order)

00-00-5E-00-01-{VRID}(以十六进制表示,按互联网标准位顺序)

The first three octets are derived from the IANA's OUI. The next two octets (00-01) indicate the address block assigned to the VRRP protocol. {VRID} is the VRRP Virtual Router Identifier. This mapping provides for up to 255 VRRP routers on a network.

前三个八位组来自IANA的OUI。接下来的两个八位字节(00-01)表示分配给VRRP协议的地址块。{VRID}是VRRP虚拟路由器标识符。此映射在网络上提供多达255个VRRP路由器。

8. Operational Issues
8. 业务问题
8.1. ICMP Redirects
8.1. ICMP重定向

ICMP Redirects may be used normally when VRRP is running between a group of routers. This allows VRRP to be used in environments where the topology is not symmetric.

当VRRP在一组路由器之间运行时,通常可以使用ICMP重定向。这允许VRRP在拓扑结构不对称的环境中使用。

The IP source address of an ICMP redirect should be the address the end host used when making its next hop routing decision. If a VRRP router is acting as Master for virtual router(s) containing addresses it does not own, then it must determine which virtual router the packet was sent to when selecting the redirect source address. One method to deduce the virtual router used is to examine the destination MAC address in the packet that triggered the redirect.

ICMP重定向的IP源地址应该是终端主机在做出下一跳路由决策时使用的地址。如果VRRP路由器充当包含其不拥有的地址的虚拟路由器的主路由器,则它必须在选择重定向源地址时确定数据包发送到哪个虚拟路由器。推断使用的虚拟路由器的一种方法是检查触发重定向的数据包中的目标MAC地址。

It may be useful to disable Redirects for specific cases where VRRP is being used to load share traffic between a number of routers in a symmetric topology.

在VRRP用于在对称拓扑中的多个路由器之间加载共享流量的特定情况下,禁用重定向可能很有用。

8.2. Host ARP Requests
8.2. 主机ARP请求

When a host sends an ARP request for one of the virtual router IP addresses, the Master virtual router MUST respond to the ARP request with the virtual MAC address for the virtual router. The Master virtual router MUST NOT respond with its physical MAC address. This allows the client to always use the same MAC address regardless of the current Master router.

当主机为其中一个虚拟路由器IP地址发送ARP请求时,主虚拟路由器必须使用虚拟路由器的虚拟MAC地址响应ARP请求。主虚拟路由器不得使用其物理MAC地址进行响应。这允许客户端始终使用相同的MAC地址,而不考虑当前的主路由器。

When a VRRP router restarts or boots, it SHOULD not send any ARP messages with its physical MAC address for the IP address it owns, it should only send ARP messages that include Virtual MAC addresses. This may entail:

当VRRP路由器重新启动或引导时,它不应该发送任何带有物理MAC地址的ARP消息,对于它拥有的IP地址,它应该只发送包含虚拟MAC地址的ARP消息。这可能需要:

- When configuring an interface, VRRP routers should broadcast a gratuitous ARP request containing the virtual router MAC address for each IP address on that interface.

- 配置接口时,VRRP路由器应广播一个免费的ARP请求,其中包含该接口上每个IP地址的虚拟路由器MAC地址。

- At system boot, when initializing interfaces for VRRP operation; delay gratuitous ARP requests and ARP responses until both the IP address and the virtual router MAC address are configured.

- 系统启动时,初始化VRRP操作接口时;延迟免费的ARP请求和ARP响应,直到配置了IP地址和虚拟路由器MAC地址。

8.3. Proxy ARP
8.3. 代理ARP

If Proxy ARP is to be used on a VRRP router, then the VRRP router must advertise the Virtual Router MAC address in the Proxy ARP message. Doing otherwise could cause hosts to learn the real MAC address of the VRRP router.

如果要在VRRP路由器上使用代理ARP,则VRRP路由器必须在代理ARP消息中公布虚拟路由器MAC地址。否则会导致主机了解VRRP路由器的真实MAC地址。

8.4. Potential Forwarding Loop
8.4. 潜在转发环路

A VRRP router SHOULD not forward packets addressed to the IP Address(es) it becomes Master for if it is not the owner. Forwarding these packets would result in unnecessary traffic. Also in the case of LANs that receive packets they transmit (e.g., token ring) this can result in a forwarding loop that is only terminated when the IP TTL expires.

VRRP路由器不应转发地址为其成为主控IP地址(如果不是所有者)的数据包。转发这些数据包将导致不必要的通信量。同样,如果LAN接收它们发送的数据包(例如,令牌环),这可能导致转发循环,该循环仅在IP TTL过期时终止。

One such mechanism for VRRP routers is to add/delete a reject host route for each adopted IP address when transitioning to/from MASTER state.

VRRP路由器的一种机制是在转换到主状态或从主状态转换到主状态时,为每个采用的IP地址添加/删除拒绝主机路由。

9. Operation over FDDI, Token Ring, and ATM LANE
9. 通过FDDI、令牌环和ATM通道的操作
9.1. Operation over FDDI
9.1. FDDI上的操作

FDDI interfaces remove from the FDDI ring frames that have a source MAC address matching the device's hardware address. Under some conditions, such as router isolations, ring failures, protocol transitions, etc., VRRP may cause there to be more than one Master router. If a Master router installs the virtual router MAC address as the hardware address on a FDDI device, then other Masters' ADVERTISEMENTS will be removed from the ring during the Master convergence, and convergence will fail.

FDDI接口从具有与设备硬件地址匹配的源MAC地址的FDDI环帧中移除。在某些情况下,例如路由器隔离、环故障、协议转换等,VRRP可能会导致存在多个主路由器。如果主路由器将虚拟路由器MAC地址安装为FDDI设备上的硬件地址,则在主汇聚期间,其他主路由器的播发将从环中删除,并且汇聚将失败。

To avoid this an implementation SHOULD configure the virtual router MAC address by adding a unicast MAC filter in the FDDI device, rather than changing its hardware MAC address. This will prevent a Master router from removing any ADVERTISEMENTS it did not originate.

为了避免这种情况,实现应该通过在FDDI设备中添加单播MAC过滤器来配置虚拟路由器MAC地址,而不是更改其硬件MAC地址。这将阻止主路由器删除其未发起的任何播发。

9.2. Operation over Token Ring
9.2. 令牌环上的操作

Token ring has several characteristics that make running VRRP difficult. These include:

令牌环有几个特性使得运行VRRP变得困难。这些措施包括:

- In order to switch to a new master located on a different bridge token ring segment from the previous master when using source route bridges, a mechanism is required to update cached source route information.

- 在使用源路由网桥时,为了切换到位于与前一个主机不同的网桥令牌环段上的新主机,需要一种机制来更新缓存的源路由信息。

- No general multicast mechanism supported across old and new token ring adapter implementations. While many newer token ring adapters support group addresses, token ring functional address support is the only generally available multicast mechanism. Due to the limited number of token ring functional addresses these may collide with other usage of the same token ring functional addresses.

- 新旧令牌环适配器实现之间不支持通用多播机制。虽然许多较新的令牌环适配器支持组地址,但令牌环功能地址支持是唯一普遍可用的多播机制。由于令牌环功能地址的数量有限,这些地址可能会与相同令牌环功能地址的其他用途发生冲突。

Due to these difficulties, the preferred mode of operation over token ring will be to use a token ring functional address for the VRID virtual MAC address. Token ring functional addresses have the two high order bits in the first MAC address octet set to B'1'. They range from 03-00-00-00-00-80 to 03-00-02-00-00-00 (canonical format). However, unlike multicast addresses, there is only one unique functional address per bit position. The functional addresses 03-00-00-10-00-00 through 03-00-02-00-00-00 are reserved by the Token Ring Architecture [TKARCH] for user-defined applications. However, since there are only 12 user-defined token ring functional addresses, there may be other non-IP protocols using the same functional address. Since the Novell IPX [IPX] protocol uses the 03-00-00-10-00-00 functional address, operation of VRRP over token ring will avoid use of this functional address. In general, token ring VRRP users will be responsible for resolution of other user-defined token ring functional address conflicts.

由于这些困难,令牌环上的首选操作模式将是为VRID虚拟MAC地址使用令牌环功能地址。令牌环功能地址将第一个MAC地址八位字节中的两个高位设置为B'1'。它们的范围从03-00-00-00-00-80到03-00-02-00-00-00(标准格式)。但是,与多播地址不同,每个位位置只有一个唯一的功能地址。令牌环体系结构[TKARCH]为用户定义的应用程序保留了功能地址03-00-00-10-00-00至03-00-02-00-00-00。然而,由于只有12个用户定义的令牌环功能地址,因此可能存在使用相同功能地址的其他非IP协议。由于Novell IPX[IPX]协议使用03-00-00-10-00-00功能地址,通过令牌环操作VRRP将避免使用此功能地址。通常,令牌环VRRP用户将负责解决其他用户定义的令牌环功能地址冲突。

VRIDs are mapped directly to token ring functional addresses. In order to decrease the likelihood of functional address conflicts, allocation will begin with the largest functional address. Most non-IP protocols use the first or first couple user-defined functional addresses and it is expected that VRRP users will choose VRIDs sequentially starting with 1.

VRID直接映射到令牌环功能地址。为了减少功能地址冲突的可能性,分配将从最大的功能地址开始。大多数非IP协议使用第一个或第一对用户定义的功能地址,预计VRRP用户将从1开始依次选择VRID。

      VRID      Token Ring Functional Address
      ----      -----------------------------
         1             03-00-02-00-00-00
         2             03-00-04-00-00-00
         3             03-00-08-00-00-00
         4             03-00-10-00-00-00
         5             03-00-20-00-00-00
         6             03-00-40-00-00-00
         7             03-00-80-00-00-00
         8             03-00-00-01-00-00
         9             03-00-00-02-00-00
        10             03-00-00-04-00-00
        11             03-00-00-08-00-00
        
      VRID      Token Ring Functional Address
      ----      -----------------------------
         1             03-00-02-00-00-00
         2             03-00-04-00-00-00
         3             03-00-08-00-00-00
         4             03-00-10-00-00-00
         5             03-00-20-00-00-00
         6             03-00-40-00-00-00
         7             03-00-80-00-00-00
         8             03-00-00-01-00-00
         9             03-00-00-02-00-00
        10             03-00-00-04-00-00
        11             03-00-00-08-00-00
        

Or more succinctly, octets 3 and 4 of the functional address are equal to (0x4000 >> (VRID - 1)) in non-canonical format.

或者更简洁地说,功能地址的八位字节3和4在非规范格式中等于(0x4000>>(VRID-1))。

Since a functional address cannot be used as a MAC level source address, the real MAC address is used as the MAC source address in VRRP advertisements. This is not a problem for bridges since packets addressed to functional addresses will be sent on the spanning-tree explorer path [802.1D].

由于功能地址不能用作MAC级源地址,因此实际MAC地址在VRRP广告中用作MAC源地址。这对于网桥来说不是问题,因为发往功能地址的数据包将在生成树资源管理器路径[802.1D]上发送。

The functional address mode of operation MUST be implemented by routers supporting VRRP on token ring.

功能地址操作模式必须由在令牌环上支持VRRP的路由器实现。

Additionally, routers MAY support unicast mode of operation to take advantage of newer token ring adapter implementations that support non-promiscuous reception for multiple unicast MAC addresses and to avoid both the multicast traffic and usage conflicts associated with the use of token ring functional addresses. Unicast mode uses the same mapping of VRIDs to virtual MAC addresses as Ethernet. However, one important difference exists. ARP request/reply packets contain the virtual MAC address as the source MAC address. The reason for this is that some token ring driver implementations keep a cache of MAC address/source routing information independent of the ARP cache. Hence, these implementations need to receive a packet with the virtual MAC address as the source address in order to transmit to that MAC address in a source-route bridged network.

此外,路由器可支持单播操作模式,以利用支持多个单播MAC地址的非混杂接收的较新令牌环适配器实现,并避免与令牌环功能地址的使用相关联的多播通信量和使用冲突。单播模式使用与以太网相同的VRID到虚拟MAC地址的映射。然而,存在一个重要的区别。ARP请求/应答数据包包含虚拟MAC地址作为源MAC地址。原因是,一些令牌环驱动程序实现将MAC地址/源路由信息的缓存与ARP缓存保持独立。因此,这些实现需要接收具有虚拟MAC地址作为源地址的分组,以便在源路由桥接网络中传输到该MAC地址。

Unicast mode on token ring has one limitation that should be considered. If there are VRID routers on different source-route bridge segments and there are host implementations that keep their source-route information in the ARP cache and do not listen to gratuitous ARPs, these hosts will not update their ARP source-route information correctly when a switch-over occurs. The only possible solution is to put all routers with the same VRID on the same source-bridge segment and use techniques to prevent that bridge segment from being a single point of failure. These techniques are beyond the scope this document.

令牌环上的单播模式有一个应考虑的限制。如果在不同的源路由网桥段上有VRID路由器,并且有主机实现将其源路由信息保留在ARP缓存中,并且不侦听免费的ARP,则在发生切换时,这些主机将无法正确更新其ARP源路由信息。唯一可能的解决方案是将具有相同VRID的所有路由器放在同一源网桥段上,并使用技术防止网桥段成为单一故障点。这些技术超出了本文档的范围。

For both the multicast and unicast mode of operation, VRRP advertisements sent to 224.0.0.18 should be encapsulated as described in [RFC1469].

对于多播和单播操作模式,发送至224.0.0.18的VRRP广告应按照[RFC1469]中所述进行封装。

9.3. Operation over ATM LANE
9.3. ATM通道上的操作

Operation of VRRP over ATM LANE on routers with ATM LANE interfaces and/or routers behind proxy LEC's are beyond the scope of this document.

在具有ATM通道接口的路由器和/或代理LEC后面的路由器上通过ATM通道操作VRRP不在本文件的范围内。

10. Security Considerations
10. 安全考虑

VRRP does not currently include any type of authentication. Earlier versions of the VRRP specification included several types of authentication ranging from none to strong. Operational experience and further analysis determined that these did not provide any real measure of security. Due to the nature of the VRRP protocol, even if VRRP messages are cryptographically protected, it does not prevent hostile routers from behaving as if they are a VRRP master, creating multiple masters. Authentication of VRRP messages could have

VRRP目前不包括任何类型的身份验证。VRRP规范的早期版本包括从无到强的多种身份验证类型。运行经验和进一步分析确定,这些措施没有提供任何真正的安全措施。由于VRRP协议的性质,即使VRRP消息受到加密保护,也不能防止恶意路由器像VRRP主机一样运行,从而创建多个主机。VRRP消息的身份验证可能会导致

prevented a hostile router from causing all properly functioning routers from going into backup state. However, having multiple masters can cause as much disruption as no routers, which authentication cannot prevent. Also, even if a hostile router could not disrupt VRRP, it can disrupt ARP and create the same effect as having all routers go into backup.

防止恶意路由器导致所有正常运行的路由器进入备份状态。然而,拥有多个主设备可能会造成与没有路由器一样多的中断,而身份验证无法防止这种情况。此外,即使恶意路由器无法中断VRRP,也会中断ARP,并产生与所有路由器进入备份相同的效果。

It should be noted that these attacks are not worse and are a subset of the attacks that any node attached to a LAN can do independently of VRRP. The kind of attacks a malicious node on a LAN can do include promiscuously receiving packets for any routers MAC address, sending packets with the routers MAC address as the source MAC addresses in the L2 header to tell the L2 switches to send packets addressed to the router to the malicious node instead of the router, send redirects to tell the hosts to send their traffic somewhere else, send unsolicited ARP replies, answer ARP requests, etc., etc. All of this can be done independently of implementing VRRP. VRRP does not add to these vulnerabilities.

应该注意的是,这些攻击并不更严重,而是连接到LAN的任何节点都可以独立于VRRP进行的攻击的子集。LAN上的恶意节点可以进行的攻击类型包括任意接收路由器MAC地址的数据包,在L2报头中发送以路由器MAC地址作为源MAC地址的数据包,以告知L2交换机将发送到路由器的数据包发送到恶意节点,而不是路由器,发送重定向以通知主机将其流量发送到其他地方,发送未经请求的ARP回复,回答ARP请求等。所有这些都可以独立于实施VRRP来完成。VRRP不会增加这些漏洞。

Independent of any authentication type VRRP includes a mechanism (setting TTL=255, checking on receipt) that protects against VRRP packets being injected from another remote network. This limits most vulnerabilities to local attacks.

独立于任何身份验证类型,VRRP包括一种机制(设置TTL=255,接收时检查),可防止从另一远程网络注入VRRP数据包。这限制了大多数易受本地攻击的漏洞。

VRRP does not provide any confidentiality. Confidentiality is not necessary for the correct operation of VRRP and there is no information in the VRRP messages that must be kept secret from other nodes on the LAN.

VRRP不提供任何保密信息。VRRP的正确操作不需要保密,并且VRRP消息中没有必须对LAN上的其他节点保密的信息。

11. Acknowledgements
11. 致谢

The authors would like to thank Glen Zorn, and Michael Lane, Clark Bremer, Hal Peterson, Tony Li, Barbara Denny, Joel Halpern, Steve Bellovin, Thomas Narten, Rob Montgomery, Rob Coltun, Radia Perlman, Russ Housley, Harald Alvestrand, Steve Bellovin, Ned Freed, Ted Hardie, Russ Housley, Bert Wijnen, Bill Fenner, and Alex Zinin for their comments and suggestions.

作者要感谢格伦·佐恩、迈克尔·莱恩、克拉克·布雷默、哈尔·彼得森、托尼·李、芭芭拉·丹尼、乔尔·哈尔潘、史蒂夫·贝洛文、托马斯·纳滕、罗布·蒙哥马利、罗布·科尔顿、拉迪亚·帕尔曼、罗斯·霍斯利、哈拉尔德·阿尔维斯特兰、史蒂夫·贝洛文、内德·弗里德、特德·哈迪、罗斯·霍斯利、伯特·维恩、比尔·芬纳、,以及Alex Zinin的评论和建议。

12. References
12. 工具书类
12.1. Normative References
12.1. 规范性引用文件

[802.1D] International Standard ISO/IEC 10038: 1993, ANSI/IEEE Std 802.1D, 1993 edition.

[802.1D]国际标准ISO/IEC 10038:1993,ANSI/IEEE标准802.1D,1993年版。

[CKSM] Braden, R., Borman, D. and C. Partridge, "Computing the Internet checksum", RFC 1071, September 1988.

[CKSM]Braden,R.,Borman,D.和C.Partridge,“计算互联网校验和”,RFC 10711988年9月。

[HSRP] Li, T., Cole, B., Morton, P. and D. Li, "Cisco Hot Standby Router Protocol (HSRP)", RFC 2281, March 1998.

[HSRP]Li,T.,Cole,B.,Morton,P.和D.Li,“思科热备用路由器协议(HSRP)”,RFC 2281,1998年3月。

[IPSTB] Higginson, P. and M. Shand, "Development of Router Clusters to Provide Fast Failover in IP Networks", Digital Technical Journal, Volume 9 Number 3, Winter 1997.

[IPSTB]Higginson,P.和M.Shand,“在IP网络中提供快速故障切换的路由器集群的开发”,数字技术期刊,第9卷第3期,1997年冬季。

[IPX] Novell Incorporated., "IPX Router Specification", Version 1.10, October 1992.

[IPX]Novell Incorporated.,“IPX路由器规范”,版本1.10,1992年10月。

[RFC1469] Pusateri, T., "IP Multicast over Token Ring Local Area Networks", RFC 1469, June 1993.

[RFC1469]Pusateri,T.,“令牌环局域网上的IP多播”,RFC 1469,1993年6月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC2338] Knight, S., Weaver, D., Whipple, D., Hinden, R., Mitzel, D., Hunt, P., Higginson, P., Shand, M. and A. Lindem, "Virtual Router Redundancy Protocol", RFC 2338, April 1998.

[RFC2338]奈特,S.,韦弗,D.,惠普尔,D.,辛登,R.,米特泽尔,D.,亨特,P.,希金森,P.,尚德,M.和A.林登,“虚拟路由器冗余协议”,RFC 2338,1998年4月。

[TKARCH] IBM Token-Ring Network, Architecture Reference, Publication SC30-3374-02, Third Edition, (September, 1989).

[TKARCH]IBM令牌环网,体系结构参考,出版物SC30-3374-02,第三版(1989年9月)。

12.2. Informative References
12.2. 资料性引用

[DISC] Deering, S., Ed., "ICMP Router Discovery Messages", RFC 1256, September 1991.

[光盘]迪林,S.,编辑,“ICMP路由器发现消息”,RFC 12561991年9月。

[DHCP] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997.

[DHCP]Droms,R.,“动态主机配置协议”,RFC 21311997年3月。

[OSPF] Moy, J., "OSPF version 2", STD 54, RFC 2328, April 1998.

[OSPF]Moy,J.,“OSPF版本2”,STD 54,RFC 23281998年4月。

[RIP] Malkin, G., "RIP Version 2", STD 56, RFC 2453, November 1998.

[RIP]Malkin,G.,“RIP版本2”,STD 56,RFC 2453,1998年11月。

13. Changes from RFC 2338
13. RFC 2338的变更

- Moved authors of RFC 2338 to new Contributers section to comply with RFC editor policy and listed R. Hinden as Editor. - Removed authentication methods from VRRP. Changes included: o Removed the values for password and IPSEC based authentication. The fields and values are retained to keep backwards compatibility with RFC 2338. o Removed section on extensible security o Updated security consideration section to remove discussion of different authentication methods and added new text explaining motivation for change and describe vulnerabilities.

- 将RFC 2338的作者移至新的贡献者部分,以遵守RFC编辑政策,并将R.Hinden列为编辑。-已从VRRP中删除身份验证方法。更改包括:o删除了密码和基于IPSEC的身份验证的值。保留字段和值以保持与RFC 2338的向后兼容性。o删除了关于可扩展安全性的部分o更新了安全注意事项部分,删除了对不同身份验证方法的讨论,并添加了解释更改动机和描述漏洞的新文本。

- Revised the section 4 examples text with a clearer description of mapping of IP address owner, priorities, etc. - Clarify the section 7.1 text describing address list validation. - Corrected text in Preempt_Mode definition. - Changed authentication to be per Virtual Router instead of per Interface. - Added new subsection (9.3) stating that VRRP over ATM LANE is beyond the scope of this document. - Clarified text describing received packet length check. - Clarified text describing received authentication check. - Clarified text describing VRID verification check. - Added new subsection (8.4) describing need to not forward packets for adopted IP addresses. - Added clarification to the security considerations section. - Added reference for computing the internet checksum. - Updated references and author information. - Various small editorial changes.

- 修订了第4节示例文本,更清晰地描述了IP地址所有者、优先级等的映射。澄清了第7.1节描述地址列表验证的文本。-已更正抢占模式定义中的文本。-将身份验证更改为每个虚拟路由器,而不是每个接口。-增加了新的第(9.3)小节,说明ATM通道上的VRRP超出了本文件的范围。-澄清了描述接收到的数据包长度检查的文本。-澄清了描述收到的身份验证检查的文本。-澄清描述VRID验证检查的文本。-增加了新的小节(8.4),描述了不需要为采用的IP地址转发数据包。-增加了对安全注意事项部分的澄清。-增加了计算internet校验和的参考。-更新参考文献和作者信息。-各种小的编辑变化。

14. Editor's Address
14. 编辑地址

Robert Hinden Nokia 313 Fairchild Drive Mountain View, CA 94043 US

Robert Hinden诺基亚313飞兆半导体山景大道,加利福尼亚州94043美国

   Phone: +1 650 625-2004
   EMail: bob.hinden@nokia.com
        
   Phone: +1 650 625-2004
   EMail: bob.hinden@nokia.com
        
15. Full Copyright Statement
15. 完整版权声明

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

版权所有(C)互联网协会(2004年)。本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Intellectual Property

知识产权

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。