Network Working Group J. Manner, Ed. Request for Comments: 3753 M. Kojo, Ed. Category: Informational June 2004
Network Working Group J. Manner, Ed. Request for Comments: 3753 M. Kojo, Ed. Category: Informational June 2004
Mobility Related Terminology
流动性相关术语
Status of this Memo
本备忘录的状况
This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.
本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2004).
版权所有(C)互联网协会(2004年)。
Abstract
摘要
There is a need for common definitions of terminology in the work to be done around IP mobility. This document defines terms for mobility related terminology. The document originated out of work done in the Seamoby Working Group but has broader applicability for terminology used in IETF-wide discourse on technology for mobility and IP networks. Other working groups dealing with mobility may want to take advantage of this terminology.
在围绕IP移动性开展的工作中,需要对术语进行通用定义。本文件定义了与移动性相关的术语。该文件源于Seamoby工作组的工作,但对于IETF范围内关于移动性和IP网络技术的讨论中使用的术语具有更广泛的适用性。处理流动问题的其他工作组可能希望利用这一术语。
Table of Contents
目录
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 2 2. General Terms . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Mobile Access Networks and Mobile Networks. . . . . . . . . . 10 4. Handover Terminology. . . . . . . . . . . . . . . . . . . . . 15 4.1. Scope of Handover . . . . . . . . . . . . . . . . . . . 16 4.2. Handover Control. . . . . . . . . . . . . . . . . . . . 17 4.3. Simultaneous connectivity to Access Routers . . . . . . 19 4.4. Performance and Functional Aspects. . . . . . . . . . . 19 4.5. Micro Diversity, Macro Diversity, and IP Diversity. . . 21 4.6. Paging, and Mobile Node States and Modes. . . . . . . . 22 4.7. Context Transfer. . . . . . . . . . . . . . . . . . . . 24 4.8. Candidate Access Router Discovery . . . . . . . . . . . 24 4.9. Types of Mobility . . . . . . . . . . . . . . . . . . . 25 5. Specific Terminology for Mobile Ad-Hoc Networking . . . . . . 26 6. Security-related Terminology. . . . . . . . . . . . . . . . . 27 7. Security Considerations . . . . . . . . . . . . . . . . . . . 28 8. Contributors. . . . . . . . . . . . . . . . . . . . . . . . . 28 9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 29 10. Informative References. . . . . . . . . . . . . . . . . . . . 29
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 2 2. General Terms . . . . . . . . . . . . . . . . . . . . . . . . 2 3. Mobile Access Networks and Mobile Networks. . . . . . . . . . 10 4. Handover Terminology. . . . . . . . . . . . . . . . . . . . . 15 4.1. Scope of Handover . . . . . . . . . . . . . . . . . . . 16 4.2. Handover Control. . . . . . . . . . . . . . . . . . . . 17 4.3. Simultaneous connectivity to Access Routers . . . . . . 19 4.4. Performance and Functional Aspects. . . . . . . . . . . 19 4.5. Micro Diversity, Macro Diversity, and IP Diversity. . . 21 4.6. Paging, and Mobile Node States and Modes. . . . . . . . 22 4.7. Context Transfer. . . . . . . . . . . . . . . . . . . . 24 4.8. Candidate Access Router Discovery . . . . . . . . . . . 24 4.9. Types of Mobility . . . . . . . . . . . . . . . . . . . 25 5. Specific Terminology for Mobile Ad-Hoc Networking . . . . . . 26 6. Security-related Terminology. . . . . . . . . . . . . . . . . 27 7. Security Considerations . . . . . . . . . . . . . . . . . . . 28 8. Contributors. . . . . . . . . . . . . . . . . . . . . . . . . 28 9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 29 10. Informative References. . . . . . . . . . . . . . . . . . . . 29
11. Appendix A - Index of Terms . . . . . . . . . . . . . . . . . 31 12. Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . 35 13. Full Copyright Statement. . . . . . . . . . . . . . . . . . . 36
11. Appendix A - Index of Terms . . . . . . . . . . . . . . . . . 31 12. Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . 35 13. Full Copyright Statement. . . . . . . . . . . . . . . . . . . 36
This document presents terminology to be used for documents and discussions within the Seamoby Working Group. Other mobility related working groups could take advantage of this terminology, in order to create a common terminology for the area of mobility in IP networks.
本文件介绍了Seamoby工作组内用于文件和讨论的术语。其他与移动相关的工作组可以利用这一术语,为IP网络中的移动领域创建一个通用术语。
Some terms and their definitions that are not directly related to the IP world are included for the purpose of harmonizing the terminology. For example, 'Access Point' and 'base station' refer to the same component, from the point of view of IP, but 'Access Router' has a very different meaning. The presented terminology may also, it is hoped, be adequate to cover mobile ad-hoc networks.
为了统一术语,纳入了一些与知识产权领域没有直接关系的术语及其定义。例如,从IP的角度来看,“接入点”和“基站”指的是同一个组件,但“接入路由器”的含义截然不同。希望所提出的术语也足以涵盖移动自组织网络。
The proposed terminology is not meant to assert any new terminology. Rather the authors would welcome discussion on more exact definitions as well as missing or unnecessary terms. This work is a collaborative enterprise between people from many different engineering backgrounds and so already presents a first step in harmonizing the terminology.
拟议的术语并不意味着主张任何新的术语。相反,作者欢迎讨论更准确的定义以及遗漏或不必要的术语。这项工作是来自许多不同工程背景的人之间的协作企业,因此已经为协调术语迈出了第一步。
The terminology in this document is divided into several sections. First, there is a list of terms for general use and mobile access networks followed by terms related to handovers, and finally some terms used within the MANET and NEMO working groups.
本文件中的术语分为几个部分。首先,有一个通用和移动接入网络的术语列表,后面是与切换相关的术语,最后是MANET和NEMO工作组中使用的一些术语。
Bandwidth
带宽
The total width of the frequency band available to or used by a communications channel. Usually measured in Hertz (Hz). The bandwidth of a channel limits the available channel capacity.
通信信道可用或使用的频带总宽度。通常以赫兹(Hz)为单位测量。信道带宽限制了可用信道容量。
Bandwidth utilization
带宽利用率
The actual rate of information transfer achieved over a link, expressed as a percentage of the theoretical maximum channel capacity on that link, according to Shannon's Law.
根据香农定律,通过链路实现的实际信息传输速率,表示为该链路上理论最大信道容量的百分比。
Beacon
信标
A control message broadcast by a node (especially, a base station) informing all the other nodes in its neighborhood of the continuing presence of the broadcasting node, possibly along with additional status or configuration information.
由节点(特别是基站)广播的一种控制消息,通知其附近的所有其他节点广播节点的继续存在,可能还有附加的状态或配置信息。
Binding Update (BU)
绑定更新(BU)
A message indicating a mobile node's current mobility binding, and in particular its care-of address.
一种消息,指示移动节点的当前移动绑定,特别是其转交地址。
Care-of-Address (CoA)
转交地址(CoA)
An IP address associated with a mobile node while visiting a foreign link; the subnet prefix of this IP address is a foreign subnet prefix. A packet addressed to the mobile node which arrives at the mobile node's home network when the mobile node is away from home and has registered a Care-of Address will be forwarded to that address by the Home Agent in the home network.
在访问外部链路时与移动节点相关联的IP地址;此IP地址的子网前缀是外部子网前缀。当移动节点离家时到达移动节点的家庭网络且已注册转交地址的、寻址到移动节点的分组将由家庭网络中的家庭代理转发到该地址。
Channel
频道
A subdivision of the physical medium allowing possibly shared independent uses of the medium. Channels may be made available by subdividing the medium into distinct time slots, or distinct spectral bands, or decorrelated coding sequences.
物理介质的一种细分,允许介质的可能共享的独立使用。信道可以通过将介质细分为不同的时隙、不同的谱带或解相关编码序列而可用。
Channel access protocol
信道访问协议
A protocol for mediating access to, and possibly allocation of, the various channels available within the physical communications medium. Nodes participating in the channel access protocol agree to communicate only when they have uncontested access to one of the channels, so that there will be no interference.
一种协议,用于调解对物理通信介质中可用的各种信道的访问和可能的分配。参与信道访问协议的节点同意仅当它们对其中一个信道具有无竞争的访问时才进行通信,这样就不会有干扰。
Channel capacity
信道容量
The total capacity of a link to carry information (typically bits) per unit time. With a given bandwidth, the theoretical maximum channel capacity is given by Shannon's Law. The actual channel capacity of a channel is determined by the channel bandwidth, the coding system used, and the signal to noise ratio.
链路每单位时间承载信息(通常为位)的总容量。在给定带宽下,理论最大信道容量由香农定律给出。信道的实际信道容量由信道带宽、使用的编码系统和信噪比决定。
Control message
控制信息
Information passed between two or more network nodes for maintaining protocol state, which may be unrelated to any specific application.
在两个或多个网络节点之间传递的用于维护协议状态的信息,该信息可能与任何特定应用程序无关。
Distance vector
距离向量
A characteristic of some routing protocols in which, for each desired destination, a node maintains information about the distance to that destination, and a vector (next hop) towards that destination.
某些路由协议的一种特性,其中,对于每个所需的目的地,一个节点维护有关到该目的地的距离的信息,以及指向该目的地的向量(下一跳)。
Fairness
公平
A property of channel access protocols whereby a medium is made fairly available to all eligible nodes on the link. Fairness does not strictly imply equality, especially in cases where nodes are given link access according to unequal priority or classification.
信道访问协议的一种属性,通过该属性,链路上的所有合格节点都可以公平地使用介质。公平性并不严格地意味着平等,特别是在根据不平等的优先级或分类为节点提供链路访问的情况下。
Flooding
泛滥的
The process of delivering data or control messages to every node within the network under consideration.
向所考虑的网络中的每个节点传送数据或控制消息的过程。
Foreign subnet prefix
外部子网前缀
A bit string that consists of some number of initial bits of an IP address which identifies a node's foreign link within the Internet topology.
一种位字符串,由IP地址的一些初始位组成,用于标识Internet拓扑中节点的外部链路。
Forwarding node
转发节点
A node which performs the function of forwarding datagrams from one of its neighbors to another.
执行将数据报从一个邻居转发到另一个邻居的功能的节点。
Home Address (HoA)
家庭住址(HoA)
An IP address assigned to a mobile node, used as the permanent address of the mobile node. This address is within the mobile node's home link. Standard IP routing mechanisms will deliver packets destined for a mobile node's home address to its home link [9].
分配给移动节点的IP地址,用作移动节点的永久地址。此地址位于移动节点的主链接内。标准IP路由机制将发送到移动节点的家庭地址的数据包发送到其家庭链路[9]。
Home Agent (HA)
房屋署(房委会)
A router on a mobile node's home link with which the mobile node has registered its current care-of address. While the mobile node is away from home, the home agent intercepts packets on the home link destined to the mobile node's home address, encapsulates them, and tunnels them to the mobile node's registered care-of address.
移动节点的主链路上的路由器,移动节点已向其注册其当前转交地址。当移动节点不在家时,归属代理截获目的地为移动节点的归属地址的归属链路上的数据包,封装它们,并通过隧道将它们传输到移动节点的注册转交地址。
Home subnet prefix
主子网前缀
A bit string that consists of some number of initial bits of an IP address which identifies a node's home link within the Internet topology (i.e., the IP subnet prefix corresponding to the mobile node's home address, as defined in [9]).
由IP地址的一些初始位组成的位字符串,该IP地址在互联网拓扑中标识节点的归属链路(即,与移动节点的归属地址相对应的IP子网前缀,如[9]中所定义)。
Interface
界面
A node's point of attachment to a link.
节点与链接的连接点。
IP access address
IP访问地址
An IP address (often dynamically allocated) which a node uses to designate its current point of attachment to the local network. The IP access address is typically to be distinguished from the mobile node's home address; in fact, while visiting a foreign network the IP access address may be considered unsuitable for use as an end-point address by any but the most short-lived applications. Instead, the IP access address is typically used as the care-of address of the node.
一种IP地址(通常是动态分配的),节点使用该地址来指定其与本地网络的当前连接点。IP接入地址通常与移动节点的归属地址区分开来;事实上,在访问外部网络时,IP访问地址可能会被认为不适合作为终结点地址,但寿命最短的应用程序除外。相反,IP访问地址通常用作节点的转交地址。
Link
链接
A communication facility or physical medium that can sustain data communications between multiple network nodes, such as an Ethernet (simple or bridged). A link is the layer immediately below IP. In a layered network stack model, the Link Layer (Layer 2) is normally below the Network (IP) Layer (Layer 3), and above the Physical Layer (Layer 1).
一种通信设施或物理介质,可维持多个网络节点之间的数据通信,如以太网(简单或桥接)。链路是IP下的一层。在分层网络堆栈模型中,链路层(第2层)通常低于网络(IP)层(第3层),高于物理层(第1层)。
Asymmetric link
不对称链路
A link with transmission characteristics which are different depending upon the relative position or design characteristics of the transmitter and the receiver of data on the link. For instance, the range of one transmitter may be much higher than the range of another transmitter on the same medium.
一种传输特性不同的链路,其传输特性取决于链路上数据的发送器和接收器的相对位置或设计特性。例如,一个发射机的范围可能远高于同一介质上另一个发射机的范围。
Link establishment
链接建立
The process of establishing a link between the mobile node and the local network. This may involve allocating a channel, or other local wireless resources, possibly including a minimum level of service or bandwidth.
在移动节点和本地网络之间建立链路的过程。这可能涉及分配信道或其他本地无线资源,可能包括最低服务水平或带宽。
Link-layer trigger (L2 Trigger)
链路层触发器(L2触发器)
Information from the link layer that informs the network layer of the detailed events involved in handover sequencing at the link layer. L2 triggers are not specific to any particular link layer, but rather represent generalizations of link layer information available from a wide variety of link layer protocols [4].
来自链路层的信息,通知网络层在链路层的切换顺序中涉及的详细事件。L2触发器并不特定于任何特定的链路层,而是表示从各种链路层协议中获得的链路层信息的一般化[4]。
Link state
链接状态
A characterization of some routing protocols in which every node within the network is expected to maintain information about every link within the network topology.
某些路由协议的一种特征,其中网络中的每个节点都需要维护有关网络拓扑中每个链路的信息。
Link-level acknowledgment
链路级确认
A protocol strategy, typically employed over wireless media, requiring neighbors to acknowledge receipt of packets (typically unicast only) from the transmitter. Such strategies aim to avoid packet loss or delay resulting from lack of, or unwanted characteristics of, higher level protocols. Link-layer acknowledgments are often used as part of Automatic Repeat-Request (ARQ) algorithms for increasing link reliability.
一种协议策略,通常在无线媒体上使用,要求邻居确认从发射机接收到数据包(通常仅单播)。此类策略旨在避免由于缺少更高级别协议或更高级别协议的不必要特性而导致的数据包丢失或延迟。链路层确认通常用作自动重复请求(ARQ)算法的一部分,以提高链路可靠性。
Local broadcast
本地广播
The delivery of data to every node within range of the transmitter.
将数据传送到发射机范围内的每个节点。
Loop-free
无环
A property of routing protocols whereby the path taken by a data packet from source to destination never traverses through the same intermediate node twice before arrival at the destination.
路由协议的一种特性,其中数据包从源到目的地的路径在到达目的地之前决不会两次穿过同一中间节点。
Medium Access Protocol (MAC)
媒体访问协议(MAC)
A protocol for mediating access to, and possibly allocation of, the physical communications medium. Nodes participating in the medium access protocol can communicate only when they have uncontested access to the medium, so that there will be no interference. When the physical medium is a radio channel, the MAC is the same as the Channel Access Protocol.
一种协议,用于调解对物理通信介质的访问和可能的分配。参与介质访问协议的节点只有在对介质进行无竞争访问时才能进行通信,因此不会产生干扰。当物理介质是无线信道时,MAC与信道访问协议相同。
Mobile network prefix
移动网络前缀
A bit string that consists of some number of initial bits of an IP address which identifies the entire mobile network within the Internet topology. All nodes in a mobile network necessarily have an address containing this prefix.
由IP地址的一些初始位组成的位字符串,用于标识Internet拓扑中的整个移动网络。移动网络中的所有节点都必须具有包含此前缀的地址。
Mobility factor
流动系数
The relative frequency of node movement, compared to the frequency of application initiation.
与应用程序启动频率相比,节点移动的相对频率。
Multipoint relay (MPR)
多点继电器(MPR)
A node which is selected by its one-hop neighbor to re-transmit all broadcast messages that it receives. The message must be new and the time-to-live field of the message must be greater than one. Multipoint relaying is a technique to reduce the number of redundant re-transmissions while diffusing a broadcast message in the network.
一种节点,由它的单跳邻居选择重新发送它接收到的所有广播消息。消息必须是新的,并且消息的生存时间字段必须大于1。多点中继是一种在网络中传播广播消息的同时减少冗余重传次数的技术。
Neighbor
邻居
A "neighbor" is any other node to which data may be propagated directly over the communications medium without relying on the assistance of any other forwarding node.
“邻居”是数据可以直接通过通信介质传播到的任何其他节点,而不依赖于任何其他转发节点的协助。
Neighborhood
邻里
All the nodes which can receive data on the same link from one node whenever it transmits data.
当一个节点传输数据时,可以在同一链路上从该节点接收数据的所有节点。
Next hop
下一跳
A neighbor which has been selected to forward packets along the way to a particular destination.
一种邻居,它被选为沿着一条路将数据包转发到一个特定的目的地。
Payload
有效载荷
The actual data within a packet, not including network protocol headers which were not inserted by an application. Note that payloads are different between layers: application data is the payload of TCP, which are the payload of IP, which three are the payload of link layer protocols etc. Thus, it is important to identify the scope when talking about payloads.
数据包中的实际数据,不包括应用程序未插入的网络协议头。请注意,各层之间的有效负载是不同的:应用程序数据是TCP的有效负载,这是IP的有效负载,这三个是链路层协议等的有效负载。因此,在讨论有效负载时,确定范围很重要。
Prefix
前缀
A bit string that consists of some number of initial bits of an address.
由地址的一些初始位组成的一种位字符串。
Routing table
路由表
The table where forwarding nodes keep information (including next hop) for various destinations.
转发节点保存不同目的地信息(包括下一跳)的表。
Route entry
进路入口
An entry for a specific destination (unicast or multicast) in the routing table.
路由表中特定目的地(单播或多播)的条目。
Route establishment
航路建立
The process of determining a route between a source and a destination.
确定源和目的地之间的路由的过程。
Route activation
路由激活
The process of putting a route into use after it has been determined.
确定路线后将其投入使用的过程。
Routing proxy
路由代理
A node that routes packets by overlays, e.g., by tunneling, between communicating partners. The Home Agent and Foreign Agent are examples of routing proxies, in that they receive packets destined for the mobile node and tunnel them to the current address of the mobile node.
在通信伙伴之间通过覆盖(例如通过隧道)路由数据包的一种节点。归属代理和外部代理是路由代理的示例,因为它们接收目的地为移动节点的分组并通过隧道将其传送到移动节点的当前地址。
Shannon's Law
香农定律
A statement defining the theoretical maximum rate at which error-free digits can be transmitted over a bandwidth-limited channel in the presence of noise. No practical error correction coding system exists that can closely approach the theoretical performance limit given by Shannon's law.
定义在有噪声的情况下,在带宽有限的信道上传输无差错数字的理论最大速率的一种语句。没有一种实用的纠错编码系统能够接近香农定律给出的理论性能极限。
Signal strength
信号强度
The detectable power of the signal carrying the data bits, as seen by the receiver of the signal.
信号接收器看到的携带数据位的信号的可检测功率。
Source route
源路由
A source route from node A to node B is an ordered list of IP addresses, starting with the IP address of node A and ending with the IP address of the node B. Between A and B, the source route includes an ordered list of intermediate hops between A and B, as well as the interface index of the interface through which the packet should be transmitted to reach the next hop. The list of intermediate hops might not include all visited nodes, some hops might be omitted for a reason or another.
从节点A到节点B的源路由是IP地址的有序列表,从节点A的IP地址开始,以节点B的IP地址结束。在A和B之间,源路由包括A和B之间的中间跃点的有序列表,以及数据包传输到下一跳所需的接口的接口索引。中间跃点列表可能不包括所有访问的节点,某些跃点可能由于某种原因而被忽略。
Spatial re-use
空间再利用
Simultaneous use of channels with identical or close physical characteristics, but located spatially far enough apart to avoid interference (i.e., co-channel interference)
同时使用具有相同或相近物理特性的信道,但在空间上距离足够远以避免干扰(即同信道干扰)
System-wide broadcast
全系统广播
Same as flooding, but used in contrast to local broadcast.
与洪水相同,但与本地广播不同。
Subnet
子网
A subnet is a logical group of connected network nodes. In IP networks, nodes in a subnet share a common network mask (in IPV4) or a network prefix (in IPv6).
子网是连接的网络节点的逻辑组。在IP网络中,子网中的节点共享公共网络掩码(在IPV4中)或网络前缀(在IPv6中)。
Topology (Network Topology)
拓扑(网络拓扑)
The interconnection structure of a network: which nodes are directly connected to each other, and through which links they are connected. Some simple topologies have been given names, such as for instance 'bus topology', 'mesh topology', 'ring topology', 'star topology' and 'tree topology'.
网络的互连结构:哪些节点彼此直接连接,通过哪些链路连接。一些简单的拓扑已被命名,例如“总线拓扑”、“网状拓扑”、“环形拓扑”、“星形拓扑”和“树拓扑”。
Triggered update
触发更新
A solicited route update transmitted by a router along a path to a destination.
由路由器沿路径发送到目的地的请求路由更新。
In order to support host mobility a set of nodes towards the network edge may need to have specific functions. Such a set of nodes forms a mobile access network that may or may not be part of the global Internet. Figure 1 presents two examples of such access network topologies. The figure depicts a reference architecture which illustrates an IP network with components defined in this section.
为了支持主机移动性,朝向网络边缘的一组节点可能需要具有特定功能。这样一组节点形成移动接入网络,该网络可能是也可能不是全球互联网的一部分。图1给出了这类接入网络拓扑的两个示例。该图描述了一个参考体系结构,该体系结构说明了具有本节中定义的组件的IP网络。
We intend to define the concept of the Access Network (AN) which may also support enhanced mobility. It is possible that to support routing and QoS for mobile nodes, existing routing protocols (e.g., Open Shortest Path First (OSPF) [14]) may not be appropriate to maintain forwarding information for these mobile nodes as they change their points of attachment to the Access Network. These new functions are implemented in routers with additional capabilities. We can distinguish three types of Access Network components: Access Routers (AR) which handle the last hop to the mobile, typically over a wireless link; Access Network Gateways (ANG) which form the boundary on the fixed network side and shield the fixed network from the specialized routing protocols; and (optionally) other internal Access Network Routers which may also be needed in some cases to support the functions. The Access Network consists of the equipment needed to support this specialized routing, i.e., AR or ANG. AR and ANG may be the same physical nodes.
我们打算定义接入网(AN)的概念,它也可以支持增强的移动性。为了支持移动节点的路由和QoS,现有路由协议(例如,开放最短路径优先(OSPF)[14])可能不适合在这些移动节点改变其接入网络的连接点时维护这些移动节点的转发信息。这些新功能在具有附加功能的路由器中实现。我们可以区分三种类型的接入网络组件:接入路由器(AR),通常通过无线链路处理移动设备的最后一跳;接入网网关(ANG),在固定网络侧形成边界,并保护固定网络不受专用路由协议的影响;以及(可选)在某些情况下可能需要的其他内部接入网络路由器,以支持这些功能。接入网络由支持这种专用路由所需的设备组成,即AR或ANG。AR和ANG可以是相同的物理节点。
In addition, we present a few basic terms on mobile networks, that is, mobile network, mobile router (MR), and mobile network node (MNN). More terminology for discussing mobile networks can be found in [13]. A more thorough discussion of mobile networks can be found in the working group documents of the NEMO Working Group.
此外,我们还介绍了移动网络的几个基本术语,即移动网络、移动路由器(MR)和移动网络节点(MNN)。更多讨论移动网络的术语见[13]。在NEMO工作组的工作组文件中可以找到关于移动网络的更全面的讨论。
Note: this reference architecture is not well suited for people dealing with Mobile Ad-hoc Networks (MANET).
注:此参考体系结构不适合处理移动自组织网络(MANET)的人员。
| | --- ------ ------- | --- | <--> | | -------| AR | -------------------| | | | |--[] --- /------ \ /| ANG |--| --- AP / \ / | | | MH / \ / ------- | (with wireless ___ / ------- | device) | |---- | ANR | | --- ------- | AP / \ | / \ ------- | --- ------ / \| | | | |-------| AR |---------------------| ANG |--| --- ------ | | | AP ------- | | Access Network (AN) 1 | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -| Access Network (AN) 2 | | | --- ------ ------- | --- | <--> | | -------| AR | -------------------| | | | |--[] --- /------ /| ANG |--| --- AP / / | | | MH / / ------- | (with wireless ___ / / | device) | |---- / | --- / | AP / | / | | --- ------ ------- | --- | | <->| |-------| AR |---------| ANR | | | |-| [] --- \ ------ ------- | --- | -----| AP \ / | MNN |--i MR e \ / | | ------ --- \ ------ / | --- | (with | |-------| AR |------- | | |-| wireless --- ------ | --- | device) AP | MNN 'i': MR ingress interface | 'e': MR egress interface | |
| | --- ------ ------- | --- | <--> | | -------| AR | -------------------| | | | |--[] --- /------ \ /| ANG |--| --- AP / \ / | | | MH / \ / ------- | (with wireless ___ / ------- | device) | |---- | ANR | | --- ------- | AP / \ | / \ ------- | --- ------ / \| | | | |-------| AR |---------------------| ANG |--| --- ------ | | | AP ------- | | Access Network (AN) 1 | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -| Access Network (AN) 2 | | | --- ------ ------- | --- | <--> | | -------| AR | -------------------| | | | |--[] --- /------ /| ANG |--| --- AP / / | | | MH / / ------- | (with wireless ___ / / | device) | |---- / | --- / | AP / | / | | --- ------ ------- | --- | | <->| |-------| AR |---------| ANR | | | |-| [] --- \ ------ ------- | --- | -----| AP \ / | MNN |--i MR e \ / | | ------ --- \ ------ / | --- | (with | |-------| AR |------- | | |-| wireless --- ------ | --- | device) AP | MNN 'i': MR ingress interface | 'e': MR egress interface | |
Figure 1: Reference Network Architecture
图1:参考网络架构
Mobile Node (MN)
移动节点(MN)
An IP node capable of changing its point of attachment to the network. A Mobile Node may either be a Mobile Host (no forwarding functionality) or a Mobile Router (forwarding functionality).
能够改变其网络连接点的IP节点。移动节点可以是移动主机(无转发功能)或移动路由器(转发功能)。
Mobile Host (MH)
移动主机(MH)
A mobile node that is an end host and not a router. A Mobile Host is capable of sending and receiving packets, that is, being a source or destination of traffic, but not a forwarder of it.
作为终端主机而不是路由器的移动节点。移动主机能够发送和接收数据包,也就是说,它是流量的来源或目的地,而不是流量的转发器。
Fixed Node (FN)
固定节点(FN)
A node, either a host or a router, unable to change its point of attachment to the network and its IP address without breaking open sessions.
节点(主机或路由器)在不中断打开的会话的情况下无法更改其与网络的连接点及其IP地址。
Mobile network
移动网络
An entire network, moving as a unit, which dynamically changes its point of attachment to the Internet and thus its reachability in the topology. The mobile network is composed of one or more IP-subnets and is connected to the global Internet via one or more Mobile Routers (MR). The internal configuration of the mobile network is assumed to be relatively stable with respect to the MR.
作为一个单元移动的整个网络,动态地改变其与Internet的连接点,从而改变其在拓扑中的可达性。移动网络由一个或多个IP子网组成,并通过一个或多个移动路由器(MR)连接到全球互联网。假设移动网络的内部配置相对于MR相对稳定。
Mobile Router (MR)
移动路由器(MR)
A router capable of changing its point of attachment to the network, moving from one link to another link. The MR is capable of forwarding packets between two or more interfaces, and possibly running a dynamic routing protocol modifying the state by which it does packet forwarding.
一种路由器,能够改变其与网络的连接点,从一条链路移动到另一条链路。MR能够在两个或多个接口之间转发数据包,并且可能运行动态路由协议,修改其进行数据包转发的状态。
A MR acting as a gateway between an entire mobile network and the rest of the Internet has one or more egress interface(s) and one or more ingress interface(s). Packets forwarded upstream to the rest of the Internet are transmitted through one of the MR's egress interface; packets forwarded downstream to the mobile network are transmitted through one of the MR's ingress interface.
充当整个移动网络和因特网其余部分之间的网关的MR具有一个或多个出口接口和一个或多个入口接口。向上游转发到因特网其余部分的分组通过MR的出口接口之一传输;向下游转发到移动网络的分组通过MR的一个入口接口传输。
Ingress interface
入口接口
The interface of a MR attached to a link inside the mobile network.
连接到移动网络内链路的MR接口。
Egress interface
出口接口
The interface of a MR attached to the home link if the MR is at home, or attached to a foreign link if the MR is in a foreign network.
如果MR在家中,则连接到家庭链路的MR接口;如果MR在外部网络中,则连接到外部链路的MR接口。
Mobile Network Node (MNN)
移动网络节点(MNN)
Any node (host or router) located within a mobile network, either permanently or temporarily. A Mobile Network Node may either be a mobile node or a fixed node.
永久或临时位于移动网络中的任何节点(主机或路由器)。移动网络节点可以是移动节点或固定节点。
Access Link (AL)
接入链路(AL)
A last-hop link between a Mobile Node and an Access Point. That is, a facility or medium over which an Access Point and the Mobile Node can communicate at the link layer, i.e., the layer immediately below IP.
移动节点和接入点之间的最后一跳链路。也就是说,接入点和移动节点可以在链路层(即,IP正下方的层)上进行通信的设施或介质。
Access Point (AP)
接入点(AP)
An Access Point is a layer 2 device which is connected to one or more Access Routers and offers the wireless link connection to the Mobile Node. Access Points are sometimes called base stations or access point transceivers. An Access Point may be a separate entity or co-located with an Access Router.
接入点是连接到一个或多个接入路由器并提供到移动节点的无线链路连接的第2层设备。接入点有时被称为基站或接入点收发器。接入点可以是单独的实体或与接入路由器共存。
Radio Cell
无线电池
The geographical area within which an Access Point provides radio coverage, i.e., where radio communication between a Mobile Node and the specific Access Point is possible.
接入点提供无线电覆盖的地理区域,即移动节点和特定接入点之间的无线电通信是可能的。
Access Network Router (ANR)
接入网路由器(ANR)
An IP router in the Access Network. An Access Network Router may include Access Network specific functionalities, for example, related to mobility and/or QoS. This is to distinguish between ordinary routers and routers that have Access Network-related special functionality.
接入网中的IP路由器。接入网络路由器可包括接入网络特定功能,例如,与移动性和/或QoS相关。这是为了区分普通路由器和具有接入网络相关特殊功能的路由器。
Access Router (AR)
接入路由器(AR)
An Access Network Router residing on the edge of an Access Network and connected to one or more Access Points. The Access Points may be of different technology. An Access Router offers IP connectivity to Mobile Nodes, acting as a default router to the Mobile Nodes it is currently serving. The Access Router may include intelligence beyond a simple forwarding service offered by ordinary IP routers.
位于接入网络边缘并连接到一个或多个接入点的接入网络路由器。接入点可以是不同的技术。接入路由器为移动节点提供IP连接,充当其当前服务的移动节点的默认路由器。接入路由器可以包括超出普通IP路由器提供的简单转发服务的智能。
Access Network Gateway (ANG)
接入网网关(ANG)
An Access Network Router that separates an Access Network from other IP networks, much in the same way as an ordinary gateway router. The Access Network Gateway looks to the other IP networks like a standard IP router. In a small network, an ANG may also offer the services of an AR, namely offer the IP connectivity to the mobile nodes.
一种接入网路由器,它将接入网与其他IP网络分开,其方式与普通网关路由器大致相同。接入网网关像标准IP路由器一样面向其他IP网络。在小型网络中,ANG还可以提供AR的服务,即提供到移动节点的IP连接。
Access Network (AN)
接入网(AN)
An IP network which includes one or more Access Network Routers.
包括一个或多个接入网路由器的IP网络。
Administrative Domain (AD)
管理域(AD)
A collection of networks under the same administrative control and grouped together for administrative purposes [5].
在同一管理控制下,为管理目的而分组在一起的网络集合[5]。
Serving Access Router (SAR)
服务接入路由器(SAR)
The Access Router currently offering the connectivity to the MN. This is usually the point of departure for the MN as it makes its way towards a new Access Router (at which time the Serving Access Router takes the role of the Previous Access Router). There may be several Serving Access Routers serving the Mobile Node at the same time.
访问路由器当前提供到MN的连接。这通常是MN的出发点,因为它正朝着一个新的接入路由器前进(此时,服务接入路由器扮演先前接入路由器的角色)。可以有多个服务接入路由器同时服务于移动节点。
New Access Router (NAR)
新接入路由器(NAR)
The Access Router that offers connectivity to the Mobile Node after a handover.
在切换后提供到移动节点的连接的接入路由器。
Previous Access Router (PAR)
先前访问路由器(PAR)
An Access Router that offered connectivity to the Mobile Node prior to a handover. This is the Serving Access Router that will cease or has ceased to offer connectivity to the Mobile Node. Often also called Old Access Router (OAR).
一种接入路由器,在切换之前提供与移动节点的连接。这是将停止或已停止向移动节点提供连接的服务接入路由器。通常也称为旧访问路由器(OAR)。
Candidate Access Router (CAR)
候选接入路由器(CAR)
An Access Router to which the Mobile Node may do a handoff. See Section 4.8.
一种接入路由器,移动节点可向其进行切换。见第4.8节。
These terms refer to different perspectives and approaches to supporting different aspects of mobility. Distinctions can be made according to the scope, range overlap, performance characteristics, diversity characteristics, state transitions, mobility types, and control modes of handover techniques.
这些术语指的是支持移动性不同方面的不同视角和方法。可以根据切换技术的范围、范围重叠、性能特征、分集特征、状态转换、移动性类型和控制模式进行区分。
Roaming
漫游
An operator-based term involving formal agreements between operators that allows a mobile to get connectivity from a foreign network. Roaming (a particular aspect of user mobility) includes, for example, the functionality by which users can communicate their identity to the local AN so that inter-AN agreements can be activated and service and applications in the MN's home network can be made available to the user locally.
一个基于运营商的术语,涉及运营商之间的正式协议,允许移动设备从外部网络获得连接。漫游(用户移动性的一个特定方面)包括,例如,用户可以通过该功能向本地AN传送其身份,以便可以激活AN间协议,并且可以向本地用户提供MN的归属网络中的服务和应用。
Handover
移交
The process by which an active MN (in the Active State, see section 4.6) changes its point of attachment to the network, or when such a change is attempted. The access network may provide features to minimize the interruption to sessions in progress. Also called handoff.
活动MN(处于活动状态,请参见第4.6节)更改其网络连接点的过程,或尝试进行此类更改时的过程。接入网络可以提供使正在进行的会话的中断最小化的特性。也称为切换。
There are different types of handover classified according to different aspects involved in the handover. Some of this terminology follows the description in [4].
根据切换涉及的不同方面,有不同类型的切换。其中一些术语遵循[4]中的描述。
Layer 2 handover
第二层移交
A handover where the MN changes APs (or some other aspect of the radio channel) connected to the same AR's interface. This type of handover is transparent to the routing at the IP layer (or it appears simply as a link layer reconfiguration without any mobility implications).
一种切换,其中MN改变连接到同一AR接口的AP(或无线信道的某些其他方面)。这种类型的切换对IP层的路由是透明的(或者它看起来只是一种链路层重新配置,没有任何移动性影响)。
Intra-AR handover
AR内切换
A handover which changes the AR's network interface to the mobile. That is, the Serving AR remains the same but routing changes internal to the AR take place.
将AR的网络接口更改为移动设备的切换。也就是说,服务AR保持不变,但是AR内部发生路由变化。
Intra-AN handover
内部切换
A handover where the MN changes ARs inside the same AN. Such a handover is not necessarily visible outside the AN. In case the ANG serving the MN changes, this handover is seen outside the AN due to a change in the routing paths. Note that the ANG may change for only some of the MN's data flows.
MN在同一AN内更改ARs的切换。这种移交不一定在AN外部可见。在服务于MN的ANG改变的情况下,由于路由路径的改变,该切换在AN之外被看到。注意,对于MN的一些数据流,ANG可能会改变。
Inter-AN handover
内部切换
A handover where the MN moves to a new AN. This requires support for macro mobility. Note that this would have to involve the assignment of a new IP access address (e.g., a new care-of address) to the MN.
MN移动到新AN的切换。这需要对宏移动性的支持。注意,这必须涉及向MN分配新的IP访问地址(例如,新的转交地址)。
Intra-technology handover
技术内切换
A handover between equipment of the same technology.
相同技术的设备之间的交接。
Inter-technology handover
技术间切换
A handover between equipment of different technologies.
不同技术设备之间的切换。
Horizontal handover
水平移交
This involves MNs moving between access points of the same type (in terms of coverage, data rate and mobility), such as, UMTS to UMTS, or WLAN to WLAN.
这涉及MN在相同类型的接入点之间移动(在覆盖范围、数据速率和移动性方面),例如UMTS到UMTS或WLAN到WLAN。
Vertical handover
垂直移交
This involves MNs moving between access points of different type, such as, UMTS to WLAN.
这涉及MN在不同类型的接入点之间移动,例如UMTS到WLAN。
Note that the difference between a horizontal and vertical handover is vague. For example, a handover from an AP with 802.11b WLAN link to an AP with 802.11g WLAN link may be considered as either a vertical or a horizontal handover, depending on an individual's point of view.
请注意,水平移交和垂直移交之间的区别是模糊的。例如,从具有802.11b WLAN链路的AP到具有802.11g WLAN链路的AP的切换可被视为垂直或水平切换,这取决于个人的观点。
Note also that the IP layer sees network interfaces and IP addresses, rather than specific technologies used by those interfaces. Thus, horizontal and vertical handovers may or may not be noticed at the IP layer. Usually a handover can be noticed if the IP address assigned to the interface changes, the network interface itself changes (which can also change the IP address), or there is a link outage, for example, when the mobile node moves out of coverage for a while. For example, in a GPRS network a horizontal handover happens usually unnoticed by the IP layer. Similarly, a WLAN horizontal handover may be noticed if the IP address of the interface changes. On the other hand, vertical handovers often change the network interface and are, therefore, noticed on the IP layer. Still, some specific network cards may be able to switch between access technologies (e.g., GPRS to UMTS) without changing the network interface. Moreover, either of the two handovers may or may not result in changing the AR. For example, an AR could control WLAN and Bluetooth access points, and the mobile node could do horizontal and vertical handovers under the same AR without changing its IP address or even the network interface.
还要注意,IP层看到的是网络接口和IP地址,而不是这些接口使用的特定技术。因此,在IP层可以注意到也可以不注意到水平和垂直切换。通常,如果分配给接口的IP地址发生变化、网络接口本身发生变化(这也会改变IP地址)或者存在链路中断(例如,当移动节点移出覆盖范围一段时间时),则可以注意到切换。例如,在GPRS网络中,IP层通常不会注意到水平切换。类似地,如果接口的IP地址改变,则可以注意到WLAN水平切换。另一方面,垂直切换通常会改变网络接口,因此在IP层会引起注意。尽管如此,某些特定网卡可能能够在接入技术(如GPRS到UMTS)之间切换,而无需更改网络接口。此外,两个切换中的任何一个都可能导致或可能不导致AR的改变。例如,AR可以控制WLAN和蓝牙接入点,并且移动节点可以在相同AR下进行水平和垂直切换,而不改变其IP地址甚至网络接口。
A handover must be one of the following two types (a):
移交必须是以下两种类型之一(A):
Mobile-initiated handover
移动发起的切换
The MN is the one that makes the initial decision to initiate the handover.
MN是做出初始决定以发起切换的MN。
Network-initiated handover
网络发起的切换
The network makes the initial decision to initiate the handover.
网络做出发起切换的初始决定。
A handover is also one of the following two types (b):
移交也是以下两种类型之一(b):
Mobile-controlled handover
移动控制切换
The MN has the primary control over the handover process.
MN主要控制切换过程。
Network-controlled handover
网络控制切换
The network has the primary control over the handover process.
网络对切换过程具有主要控制权。
A handover decision usually involves some sort of measurements about when and where to handover to. Therefore, a handover is also either of these three types (c):
移交决策通常涉及有关何时何地移交的某种度量。因此,切换也是以下三种类型之一(c):
Mobile-assisted handover
移动辅助切换
Information and measurement from the MN are used by the AR to decide on the execution of a handover.
AR使用来自MN的信息和测量来决定切换的执行。
Network-assisted handover
网络辅助切换
A handover where the AN collects information that can be used by the MN in a handover decision.
一种切换,其中AN收集可由MN在切换决策中使用的信息。
Unassisted handover
无人协助移交
A handover where no assistance is provided by the MN or the AR to each other.
MN或AR互不提供协助的切换。
Note that it is possible that the MN and the AR both do measurements and decide on the handover.
注意,MN和AR都可能进行测量并决定切换。
A handover is also one of the following two types (d):
移交也是以下两种类型(d)之一:
Push handover
推送移交
A handover either initiated by the PAR, or where the MN initiates a handover via the PAR.
由PAR发起的切换,或者MN通过PAR发起切换。
Pull handover
拉式移交
A handover either initiated by the NAR, or where the MN initiates a handover via the NAR.
由NAR发起的切换,或者MN通过NAR发起切换。
The handover is also either proactive or reactive (e):
移交也是主动或被动的(e):
Planned handover
计划移交
A proactive (expected) handover where some signaling can be done in advance of the MN getting connected to the new AR, e.g., building a temporary tunnel from the previous AR to the new AR.
一种主动(预期)切换,其中一些信令可以在MN连接到新AR之前完成,例如,构建从先前AR到新AR的临时隧道。
Unplanned handover
计划外移交
A reactive (unexpected) handover where no signaling is done in advance of the MN's move from the previous AR to the new AR.
在MN从先前AR移动到新AR之前没有进行信令的反应(意外)切换。
The five handover types (a-e) are mostly independent, and every handover should be classifiable according to each of these types.
五种移交类型(a-e)基本上是独立的,每个移交都应该根据这些类型中的每一种进行分类。
Make-before-break (MBB)
先通后断(MBB)
During a MBB handover the MN makes the new connection before the old one is broken. Thus, the MN can communicate simultaneously with the old and new AR during the handover. This should not be confused with "soft handover" which relies on macro diversity, described in Section 4.5.
在MBB切换期间,MN在旧连接断开之前建立新连接。因此,MN可以在切换期间与新旧AR同时通信。这不应与第4.5节中描述的依赖于宏分集的“软切换”相混淆。
Break-before-make (BBM)
先断后接(BBM)
During a BBM handover the MN breaks the old connection before the new connection is made. Thus, the MN cannot communicate simultaneously with the old and the new AR.
在BBM切换期间,MN在建立新连接之前断开旧连接。因此,MN不能与新旧AR同时通信。
Handover latency
切换延迟
Handover latency is the difference between the time a MN is last able to send and/or receive an IP packet by way of the PAR, and the time the MN is able to send and/or receive an IP packet through the NAR. Adapted from [4].
切换延迟是MN最后能够通过PAR发送和/或接收IP分组的时间和MN能够通过NAR发送和/或接收IP分组的时间之间的差异。改编自[4]。
Smooth handover
顺利交接
A handover that aims primarily to minimize packet loss, with no explicit concern for additional delays in packet forwarding.
一种切换,其主要目的是最小化数据包丢失,而不明显关心数据包转发中的额外延迟。
Fast handover
快速切换
A handover that aims primarily to minimize handover latency, with no explicit interest in packet loss.
一种切换,其主要目的是最小化切换延迟,对数据包丢失没有明显的兴趣。
Seamless handover
无缝切换
A handover in which there is no change in service capability, security, or quality. In practice, some degradation in service is to be expected. The definition of a seamless handover in the practical case should be that other protocols, applications, or end users do not detect any change in service capability, security or quality, which would have a bearing on their (normal) operation. As a consequence, what would be a seamless handover for one less demanding application might not be seamless for another more demanding application. See [7] for more discussion on the topic.
服务能力、安全性或质量没有变化的移交。在实践中,预期服务会有所下降。在实际情况下,无缝切换的定义应该是,其他协议、应用程序或最终用户不会检测到服务能力、安全性或质量方面的任何变化,这将对其(正常)操作产生影响。因此,对于一个要求较低的应用程序来说,无缝切换对于另一个要求较高的应用程序来说可能不是无缝切换。有关此主题的更多讨论,请参见[7]。
Throughput
吞吐量
The amount of data from a source to a destination processed by the protocol for which throughput is to be measured, for instance, IP, TCP, or the MAC protocol. The throughput differs between protocol layers.
由要测量吞吐量的协议(例如IP、TCP或MAC协议)处理的从源到目标的数据量。协议层之间的吞吐量不同。
Goodput
实际吞吐量
The total bandwidth used, less the volume of control messages, protocol overhead from the data packets, and packets dropped due to CRC errors.
使用的总带宽,减去控制消息量、数据包的协议开销以及由于CRC错误而丢弃的数据包。
Pathloss
路径损失
A reduction in signal strength caused by traversing the physical medium constituting the link.
通过构成链路的物理介质而引起的信号强度的降低。
Hidden-terminal problem
隐藏终端问题
The problem whereby a transmitting node can fail in its attempt to transmit data because of destructive interference which is only detectable at the receiving node, not the transmitting node.
一种问题,即发送节点在尝试发送数据时,由于只能在接收节点而不是发送节点检测到的破坏性干扰而失败。
Exposed terminal problem
暴露终端问题
The problem whereby a transmitting node A prevents another node B from transmitting, although node B could have safely transmitted to anyone else but the transmitting node A.
发送节点a阻止另一节点B发送的问题,尽管节点B可以安全地发送给发送节点a以外的任何其他节点。
Certain air interfaces (e.g., the Universal Mobile Telephone System (UMTS) Terrestrial Radio Access Network (UTRAN) running in Frequency Division Duplex (FDD) mode) require or at least support macro diversity combining. Essentially, this refers to the fact that a single MN is able to send and receive over two independent radio channels ('diversity branches') at the same time; the information received over different branches is compared and that from the better branch passed to the upper layers. This can be used both to improve overall performance, and to provide a seamless type of handover at layer 2, since a new branch can be added before the old is deleted. See also [6].
某些空中接口(例如,在频分双工(FDD)模式下运行的通用移动电话系统(UMTS)地面无线接入网络(UTRAN))需要或至少支持宏分集组合。本质上,这是指单个MN能够同时通过两个独立的无线信道(“分集分支”)发送和接收;比较通过不同分支接收到的信息,并将来自更好分支的信息传递给上层。这既可用于提高总体性能,也可用于在第2层提供无缝切换,因为可以在删除旧分支之前添加新分支。另见[6]。
It is necessary to differentiate between combining/diversity that occurs at the physical and radio link layers, where the relevant unit of data is the radio frame, and that which occurs at layer 3, the network layer, where what is considered is the IP packet itself.
有必要区分发生在物理层和无线链路层的组合/分集,其中相关数据单元是无线帧,以及发生在第3层网络层的组合/分集,其中所考虑的是IP分组本身。
In the following definitions micro- and macro diversity refer to protocol layers below the network layer, and IP diversity refers to the network layer.
在以下定义中,微观和宏观分集是指网络层下的协议层,而IP分集是指网络层。
Micro diversity
微多样性
For example, two antennas on the same transmitter send the same signal to a receiver over a slightly different path to overcome fading.
例如,同一发射机上的两个天线通过略微不同的路径向接收机发送相同的信号,以克服衰落。
Macro diversity
宏观多样性
Duplicating or combining actions taking place over multiple APs, possibly attached to different ARs. This may require support from the network layer to move the radio frames between the base stations and a central combining point.
复制或组合在多个AP上发生的动作,可能连接到不同的AR。这可能需要来自网络层的支持以在基站和中央组合点之间移动无线电帧。
IP diversity
IP多样性
Refers to the process of duplicating IP packets and sending them to the receiver through more than one point of attachment. This is semantically allowed by IP because it does not guarantee packet uniqueness, and higher level protocols are assumed to eliminate duplicates whenever that is important for the application.
指复制IP数据包并通过多个连接点将其发送给接收方的过程。这在语义上是IP所允许的,因为它不保证数据包的唯一性,并且假设更高级别的协议在对应用程序很重要的时候消除重复。
Mobile systems may employ the use of MN states in order to operate more efficiently without degrading the performance of the system. The term 'mode' is also common and means the same as 'state'.
移动系统可以使用MN状态,以便在不降低系统性能的情况下更有效地操作。术语“模式”也很常见,其含义与“状态”相同。
A MN is always in one of the following three states:
MN始终处于以下三种状态之一:
Active state
活动状态
When the AN knows the MN's SAR and the MN can send and receive IP packets. The access link may not be active, but the radio layer is able to establish one without assistance from the network layer. The MN has an IP address assigned.
当AN知道MN的SAR时,MN可以发送和接收IP数据包。接入链路可能不处于活动状态,但无线电层能够在没有网络层协助的情况下建立一个接入链路。MN分配了一个IP地址。
Dormant state
休眠状态
A state in which the mobile restricts its ability to receive normal IP traffic by reducing its monitoring of radio channels. The AN knows the MN's Paging Area, but the MN has no SAR and so packets cannot be delivered to the MN without the AN initiating paging. Often also called Idle state.
移动设备通过减少对无线信道的监控来限制其接收正常IP通信的能力的一种状态。AN知道MN的寻呼区域,但MN并没有SAR,所以在并没有发起寻呼的情况下无法将数据包发送到MN。通常也称为空闲状态。
Time-slotted dormant mode
时隙休眠模式
A dormant mode implementation in which the mobile alternates between periods of not listening for any radio traffic and listening for traffic. Time-slotted dormant mode implementations are typically synchronized with the network so the network can deliver paging messages to the mobile during listening periods.
一种休眠模式实现,移动设备在不监听任何无线电通信和监听通信之间交替进行。时隙休眠模式实现通常与网络同步,因此网络可以在侦听期间向移动设备发送寻呼消息。
Inactive state
非活动状态
the MN is in neither the Active nor Dormant State. The MN is no longer listening for any packets, not even periodically, and not sending packets. The MN may be in a powered off state, it may have shut down all interfaces to drastically conserve power, or it may be out of range of a radio access point. The MN does not necessarily have an IP access address from the AN.
MN既不处于活动状态,也不处于休眠状态。MN不再监听任何数据包,甚至不定期监听,也不再发送数据包。MN可能处于断电状态,可能已关闭所有接口以大幅节省电源,或者可能超出无线电接入点的范围。MN不一定具有来自an的IP访问地址。
Note: in fact, as well as the MN being in one of these three states, the AN also stores which state it believes the MN is in. Normally these are consistent; the definitions above assume so.
注意:事实上,除了MN处于这三种状态之一之外,AN还存储它认为MN处于的状态。通常这些是一致的;上述定义假设是这样的。
Here are some additional definitions for paging, taking into account the above state definitions.
考虑到上述状态定义,下面是一些分页的附加定义。
Paging
寻呼
A procedure initiated by the Access Network to move a Dormant MN into the Active State. As a result of paging, the MN establishes a SAR and the IP routes are set up.
由接入网络发起的将休眠MN移动到活动状态的过程。作为寻呼的结果,MN建立了SAR,并建立了IP路由。
Location updating
位置更新
A procedure initiated by the MN, by which it informs the AN that it has moved into a new paging area.
由MN启动的一种过程,通过该过程,MN通知AN它已移动到一个新的分页区域。
Paging area
寻呼区
A part of the Access Network, typically containing a number of ARs/APs, which corresponds to some geographical area. The AN keeps and updates a list of all the Dormant MNs present in the area. If the MN is within the radio coverage of the area it will be able to receive paging messages sent within that Paging Area.
接入网的一部分,通常包含多个AR/AP,对应于某个地理区域。AN保留并更新区域中存在的所有休眠MN的列表。如果MN在该区域的无线电覆盖范围内,它将能够接收在该寻呼区域内发送的寻呼消息。
Paging area registrations
寻呼区登记
Signaling from a dormant mode mobile node to the network, by which it establishes its presence in a new paging area. Paging Area Registrations thus enable the network to maintain a rough idea of where the mobile is located.
从休眠模式移动节点到网络的信令,通过该信令在新的寻呼区域中建立其存在。因此,寻呼区域注册使网络能够大致了解移动设备的位置。
Paging channel
寻呼信道
A radio channel dedicated to signaling dormant mode mobiles for paging purposes. By current practice, the paging channel carries only control traffic necessary for the radio link, although some paging protocols have provision for carrying arbitrary traffic (and thus could potentially be used to carry IP).
一种专用于向处于休眠状态的移动台发送寻呼信号的无线信道。根据目前的实践,寻呼信道仅承载无线电链路所需的控制通信量,尽管某些寻呼协议具有承载任意通信量的规定(因此可能被用于承载IP)。
Traffic channel
交通通道
The radio channel on which IP traffic to an active mobile is typically sent. This channel is used by a mobile that is actively sending and receiving IP traffic, and is not continuously active in a dormant mode mobile. For some radio link protocols, this may be the only channel available.
通常向活动移动设备发送IP通信的无线信道。此信道由主动发送和接收IP流量的移动设备使用,并且在休眠移动模式下不连续活动。对于某些无线链路协议,这可能是唯一可用的信道。
Context
上下文
The information on the current state of a routing-related service required to re-establish the routing-related service on a new subnet without having to perform the entire protocol exchange with the MN from scratch.
有关路由相关服务的当前状态的信息,需要在新子网上重新建立路由相关服务,而不必从头开始执行与MN的整个协议交换。
Feature context
特征上下文
The collection of information representing the context for a given feature. The full context associated with a MN is the collection of one or more feature contexts.
表示给定特征的上下文的信息集合。与MN关联的完整上下文是一个或多个要素上下文的集合。
Context transfer
上下文转移
The movement of context from one router or other network entity to another as a means of re-establishing routing-related services on a new subnet or collection of subnets.
将上下文从一个路由器或其他网络实体移动到另一个路由器或其他网络实体,作为在新的子网或子网集合上重新建立路由相关服务的一种手段。
Routing-related service
路由相关服务
A modification to the default routing treatment of packets to and from the MN. Initially establishing routing-related services usually requires a protocol exchange with the MN. An example of a routing-related service is header compression. The service may also be indirectly related to routing, for example, security. Security may not affect the forwarding decision of all intermediate routers, but a packet may be dropped if it fails a security check (can't be encrypted, authentication failed, etc.). Dropping the packet is basically a routing decision.
对进出MN的数据包的默认路由处理的修改。最初建立路由相关服务通常需要和MN进行协议交换。路由相关服务的一个例子是报头压缩。该服务还可以间接地与路由相关,例如,安全性。安全性可能不会影响所有中间路由器的转发决策,但如果数据包未通过安全检查(无法加密、身份验证失败等),则可能会丢弃数据包。丢弃数据包基本上是一个路由决定。
Capability of an AR
AR的能力
A characteristic of the service offered by an AR that may be of interest to an MN when the AR is being considered as a handoff candidate.
当AR被视为切换候选时,MN可能感兴趣的AR提供的服务的特征。
Candidate AR (CAR)
候选人AR(汽车)
An AR to which MN has a choice of performing IP-level handoff. This means that MN has the right radio interface to connect to an AP that is served by this AR, as well as the coverage of this AR overlaps with that of the AR to which MN is currently attached.
An AR to which MN has a choice of performing IP-level handoff. This means that MN has the right radio interface to connect to an AP that is served by this AR, as well as the coverage of this AR overlaps with that of the AR to which MN is currently attached.translate error, please retry
Target AR (TAR)
目标AR(焦油)
An AR with which the procedures for the MN's IP-level handoff are initiated. TAR is selected after running a TAR Selection Algorithm that takes into account the capabilities of CARs, preferences of MN and any local policies.
用于启动MN的IP级切换过程的AR。TAR是在运行TAR选择算法之后选择的,该算法考虑了汽车的性能、MN的偏好和任何本地策略。
We can differentiate between host and network mobility, and various types of network mobility. Terminology related more to applications such as the Session Initiation Protocol, such as personal mobility, is out of scope for this document.
我们可以区分主机和网络移动性,以及各种类型的网络移动性。与会话启动协议(如个人移动)等应用程序相关的术语超出了本文档的范围。
Host mobility support
主机移动性支持
Refers to the function of allowing a mobile node to change its point of attachment to the network, without interrupting IP packet delivery to/from that node. There may be different sub-functions depending on what the current level of service is being provided; in particular, support for host mobility usually implies active and dormant modes of operation, depending on whether the node has any current sessions or not. Access Network procedures are required to keep track of the current point of attachment of all the MNs or establish it at will. Accurate location and routing procedures are required in order to maintain the integrity of the communication. Host mobility is often called 'terminal mobility'.
指允许移动节点改变其与网络的连接点的功能,而不中断与该节点之间的IP数据包传送。根据当前提供的服务水平,可能有不同的子功能;特别是,对主机移动性的支持通常意味着活动和休眠操作模式,这取决于节点是否具有任何当前会话。需要接入网络程序来跟踪所有MN的当前连接点或随意建立连接点。为了保持通信的完整性,需要准确的位置和路由程序。主机移动性通常被称为“终端移动性”。
Network mobility support
网络移动性支持
Refers to the function of allowing an entire network to change its point of attachment to the Internet, and, thus, its reachability in the topology, without interrupting IP packet delivery to/from that mobile network.
指允许整个网络改变其与互联网的连接点,从而改变其在拓扑中的可达性,而不中断向该移动网络/从该移动网络传送IP数据包的功能。
Two subcategories of mobility can be identified within both host mobility and network mobility:
在主机移动性和网络移动性中可以识别出两个子类移动性:
Global mobility
全球流动性
Same as Macro mobility.
与宏观流动性相同。
Local mobility
本地流动性
Same as Micro mobility.
与微流动性相同。
Macro mobility
宏观流动性
Mobility over a large area. This includes mobility support and associated address registration procedures that are needed when a MN moves between IP domains. Inter-AN handovers typically involve macro-mobility protocols. Mobile-IP can be seen as a means to provide macro mobility.
在大范围内的机动性。这包括移动支持和当MN在IP域之间移动时所需的相关地址注册过程。AN间切换通常涉及宏移动协议。移动IP可以被看作是提供宏观移动性的一种手段。
Micro mobility
微流动性
Mobility over a small area. Usually this means mobility within an IP domain with an emphasis on support for active mode using handover, although it may include idle mode procedures also. Micro-mobility protocols exploit the locality of movement by confining movement related changes and signaling to the access network.
在小范围内移动。通常这意味着IP域内的移动性,重点是支持使用切换的主动模式,尽管它也可能包括空闲模式过程。微移动协议通过限制移动相关的变化和向接入网络发送信号来利用移动的局部性。
Local mobility management
本地移动性管理
Local mobility management (LMM) is a generic term for protocols dealing with IP mobility management confined within the access network. LMM messages are not routed outside the access network, although a handover may trigger Mobile IP messages to be sent to correspondent nodes and home agents.
本地移动性管理(LMM)是一个通用术语,用于处理限制在接入网络内的IP移动性管理的协议。LMM消息不会路由到接入网络之外,尽管切换可能会触发移动IP消息被发送到对应节点和归属代理。
Cluster
簇
A group of nodes located within close physical proximity, typically all within range of one another, which can be grouped together for the purpose of limiting the production and propagation of routing information.
位于物理上非常接近的一组节点,通常都在彼此的范围内,为了限制路由信息的产生和传播,可以将这些节点分组在一起。
Cluster head
簇头
A cluster head is a node (often elected in the cluster formation process) that has complete knowledge about group membership and link state information in the cluster. Each cluster should have one and only one cluster head.
簇头是一个节点(通常在簇形成过程中选择),它完全了解簇中的组成员和链接状态信息。每个集群应具有且仅具有一个集群头。
Cluster member
集群成员
All nodes within a cluster except the cluster head are called members of that cluster.
群集中除簇头以外的所有节点都称为该群集中的成员。
Convergence
汇聚
The process of approaching a state of equilibrium in which all nodes in the network agree on a consistent collection of state about the topology of the network, and in which no further control messages are needed to establish the consistency of the network topology.
接近平衡状态的过程,在此过程中,网络中的所有节点都同意关于网络拓扑的一致状态集合,并且不需要进一步的控制消息来建立网络拓扑的一致性。
Convergence time
收敛时间
The time which is required for a network to reach convergence after an event (typically, the movement of a mobile node) which changes the network topology.
在改变网络拓扑的事件(通常是移动节点的移动)之后,网络达到收敛所需的时间。
Laydown
搁置
The relative physical location of the nodes within the ad hoc network.
自组织网络中节点的相对物理位置。
Pathloss matrix
路径损失矩阵
A matrix of coefficients describing the pathloss between any two nodes in an ad hoc network. When the links are asymmetric, the matrix is also asymmetric.
描述adhoc网络中任意两个节点之间路径损失的系数矩阵。当链路不对称时,矩阵也是不对称的。
Scenario
脚本
The tuple <laydown, pathloss matrix, mobility factor, traffic> characterizing a class of ad hoc networks.
描述一类adhoc网络的元组<laydown,pathloss matrix,mobility factor,traffic>。
This section includes terminology commonly used around mobile and wireless networking. Only a mobility-related subset of the entire security terminology is presented.
本节包括移动和无线网络中常用的术语。仅给出了整个安全术语中与移动性相关的子集。
Authorization-enabling extension
授权启用扩展
An authentication which makes a (registration) message acceptable to the ultimate recipient of the registration message. An authorization-enabling extension must contain an SPI (see below) [10].
使(注册)消息为注册消息的最终接收者所接受的一种身份验证。授权启用扩展必须包含SPI(见下文)[10]。
Mobility security association
移动安全协会
A collection of security contexts, between a pair of nodes, which may be applied to mobility-related protocol messages exchanged between them. In Mobile IP, each context indicates
一对节点之间的安全上下文集合,可应用于它们之间交换的与移动性相关的协议消息。在移动IP中,每个上下文表示
an authentication algorithm and mode, a secret (a shared key, or appropriate public/private key pair), and a style of replay protection in use. Mobility security associations may be stored separately from the node's IPsec Security Policy Database (SPD) [10].
身份验证算法和模式、密钥(共享密钥或适当的公钥/私钥对)以及使用中的重播保护类型。移动安全关联可以与节点的IPsec安全策略数据库(SPD)分开存储[10]。
Registration key
注册密钥
A key used in the Mobility Security Association between a mobile node and a foreign agent. A registration key is typically only used once or a very few times, and only for the purposes of verifying a small volume of Authentication data [12].
在移动节点和外部代理之间的移动安全关联中使用的密钥。注册密钥通常只使用一次或几次,并且仅用于验证少量身份验证数据[12]。
Security context
安全上下文
A security context between two nodes defines the manner in which two nodes choose to mutually authenticate each other, and indicates an authentication algorithm and mode.
两个节点之间的安全上下文定义了两个节点选择相互认证的方式,并指示认证算法和模式。
Security Parameter Index (SPI)
安全参数索引(SPI)
An index identifying a security context between a pair of routers among the contexts available in the mobility security association.
标识移动安全关联中可用上下文中的一对路由器之间的安全上下文的索引。
The Mobile IPv6 specification includes more security terminology related to MIPv6 bindings [9]. Terminology about the MIP challenge/response mechanism can be found in [11].
移动IPv6规范包含更多与MIPv6绑定相关的安全术语[9]。关于MIP质询/响应机制的术语见[11]。
This document presents only terminology. There are no security issues in this document.
本文件仅介绍术语。本文档中没有安全问题。
This document was initially based on the work of Tapio Suihko, Phil Eardley, Dave Wisely, Robert Hancock, Nikos Georganopoulos, Markku Kojo, and Jukka Manner.
本文件最初基于Tapio Suikko、Phil Eardley、Dave Wisely、Robert Hancock、Nikos Georganopoulos、Markku Kojo和Jukka的工作。
Charles Perkins has provided input terminology related to ad-hoc networks.
Charles Perkins提供了与ad-hoc网络相关的输入术语。
Thierry Ernst has provided the terminology for discussing mobile networks.
蒂埃里·恩斯特(Thierry Ernst)为讨论移动网络提供了术语。
Henrik Levkowetz did a final check of the definitions in revision -05 and suggested a number of changes.
Henrik Levkowetz对修订版05中的定义进行了最后检查,并提出了一些修改建议。
This work has been partially performed in the framework of the IST project IST-2000-28584 MIND, which is partly funded by the European Union. Some of the authors would like to acknowledge the help of their colleagues in preparing this document.
这项工作部分是在IST项目IST-2000-28584 MIND的框架内进行的,该项目部分由欧盟资助。一些作者希望感谢他们的同事在编写本文件时提供的帮助。
Randy Presuhn did a very thorough and helpful review of the -02 version of the terminology.
Randy Presohn对术语的-02版本进行了非常彻底和有益的审查。
Some definitions of terminology have been adapted from [1], [2], [3], [4], [7], [8], [9] and [10].
一些术语的定义已从[1]、[2]、[3]、[4]、[7]、[8]、[9]和[10]中改编。
[1] Blair, D., Tweedly, A., Thomas, M., Trostle, J. and M. Ramalho, "Realtime Mobile IPv6 Framework", Work in Progress.
[1] Blair,D.,Tweedy,A.,Thomas,M.,Trostle,J.和M.Ramalho,“实时移动IPv6框架”,正在进行中。
[2] Calhoun, P., Montenegro, G. and C. Perkins, "Mobile IP Regionalized Tunnel Management", Work in Progress.
[2] Calhoun,P.,黑山,G.和C.Perkins,“移动IP区域化隧道管理”,正在进行中。
[3] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[3] Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,RFC 2460,1998年12月。
[4] Koodli, R., Ed., "Fast Handovers for Mobile IPv6", Work in Progress.
[4] Koodli,R.,Ed.,“移动IPv6的快速切换”,正在进行中。
[5] Yavatkar, R., Pendarakis, D. and R. Guerin, "A Framework for Policy-based Admission Control", RFC 2753, January 2000.
[5] Yavatkar,R.,Pendarakis,D.和R.Guerin,“基于政策的准入控制框架”,RFC 2753,2000年1月。
[6] Kempf, J., McCann, P. and P. Roberts, "IP Mobility and the CDMA Radio Access Network: Applicability Statement for Soft Handoff", Work in Progress.
[6] Kempf,J.,McCann,P.和P.Roberts,“IP移动性和CDMA无线接入网络:软切换的适用性声明”,正在进行的工作。
[7] Kempf, J., Ed., "Problem Description: Reasons For Performing Context Transfers Between Nodes in an IP Access Network", RFC 3374, September 2002.
[7] Kempf,J.,Ed.,“问题描述:在IP接入网络中的节点之间执行上下文传输的原因”,RFC 3374,2002年9月。
[8] Trossen, D., Krishnamurthi, G., Chaskar, H. and J. Kempf, "Issues in candidate access router discovery for seamless IP-level handoffs", Work in Progress.
[8] Trossen,D.,Krishnamurthi,G.,Chaskar,H.和J.Kempf,“无缝IP级切换的候选接入路由器发现问题”,正在进行中。
[9] Johnson, D., Perkins, C. and J. Arkko, "Mobility Support in IPv6", RFC 3775, June 2004.
[9] Johnson,D.,Perkins,C.和J.Arkko,“IPv6中的移动支持”,RFC 37752004年6月。
[10] Perkins, C., Ed., "IP Mobility Support for IPv4", RFC 3344, August 2002.
[10] Perkins,C.,编辑,“IPv4的IP移动支持”,RFC 3344,2002年8月。
[11] Perkins, C., Calhoun, P. and J. Bharatia, "Mobile IPv4 Challenge/Response Extensions (revised)", Work in Progress.
[11] Perkins,C.,Calhoun,P.和J.Bharatia,“移动IPv4挑战/响应扩展(修订版)”,正在进行中。
[12] Perkins, C. and P. Calhoun, "AAA Registration Keys for Mobile IP", Work in Progress.
[12] Perkins,C.和P.Calhoun,“移动IP的AAA注册密钥”,正在进行中。
[13] Ernst, T. and H. Lach, "Network Mobility Support Terminology", Work in Progress.
[13] Ernst,T.和H.Lach,“网络移动支持术语”,正在进行中。
[14] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[14] Moy,J.,“OSPF版本2”,STD 54,RFC 23281998年4月。
AD ............................................................. 14 AL ............................................................. 13 AN ............................................................. 14 ANG ............................................................ 14 ANR ............................................................ 13 AP ............................................................. 13 AR ............................................................. 14 Access Link .................................................... 13 Access Network ................................................. 14 Access Network Gateway ......................................... 14 Access Network Router .......................................... 13 Access Point ................................................... 13 Access Router .................................................. 14 Active state ................................................... 22 Administrative Domain .......................................... 14 Asymmetric link ................................................. 5 Authorization-enabling extension ............................... 27 BBM ............................................................ 19 BU .............................................................. 3 Bandwidth ....................................................... 2 Bandwidth utilization ........................................... 2 Beacon .......................................................... 3 Binding Update .................................................. 3 Break-before-make .............................................. 19 CAR ............................................................ 15 CAR ............................................................ 24 Candidate AR ................................................... 24 Candidate Access Router ........................................ 15 Capability of an AR ............................................ 24 Care-of-Address ................................................. 3 Channel ......................................................... 3 Channel access protocol ......................................... 3 Channel capacity ................................................ 3 Cluster ........................................................ 26 Cluster head ................................................... 26 Cluster member ................................................. 26 CoA ............................................................. 3 Context ........................................................ 24 Context transfer ............................................... 24 Control message ................................................. 4 Convergence .................................................... 27 Convergence time ............................................... 27 Distance vector ................................................. 4 Dormant state .................................................. 22 Egress interface ............................................... 13 Exposed terminal problem ....................................... 20
AD ............................................................. 14 AL ............................................................. 13 AN ............................................................. 14 ANG ............................................................ 14 ANR ............................................................ 13 AP ............................................................. 13 AR ............................................................. 14 Access Link .................................................... 13 Access Network ................................................. 14 Access Network Gateway ......................................... 14 Access Network Router .......................................... 13 Access Point ................................................... 13 Access Router .................................................. 14 Active state ................................................... 22 Administrative Domain .......................................... 14 Asymmetric link ................................................. 5 Authorization-enabling extension ............................... 27 BBM ............................................................ 19 BU .............................................................. 3 Bandwidth ....................................................... 2 Bandwidth utilization ........................................... 2 Beacon .......................................................... 3 Binding Update .................................................. 3 Break-before-make .............................................. 19 CAR ............................................................ 15 CAR ............................................................ 24 Candidate AR ................................................... 24 Candidate Access Router ........................................ 15 Capability of an AR ............................................ 24 Care-of-Address ................................................. 3 Channel ......................................................... 3 Channel access protocol ......................................... 3 Channel capacity ................................................ 3 Cluster ........................................................ 26 Cluster head ................................................... 26 Cluster member ................................................. 26 CoA ............................................................. 3 Context ........................................................ 24 Context transfer ............................................... 24 Control message ................................................. 4 Convergence .................................................... 27 Convergence time ............................................... 27 Distance vector ................................................. 4 Dormant state .................................................. 22 Egress interface ............................................... 13 Exposed terminal problem ....................................... 20
FN ............................................................. 12 Fairness ........................................................ 4 Fast handover .................................................. 20 Feature context ................................................ 24 Fixed Node ..................................................... 12 Flooding ........................................................ 4 Foreign subnet prefix ........................................... 4 Forwarding node ................................................. 4 Global mobility ................................................ 25 Goodput ........................................................ 20 HA .............................................................. 5 Handoff ........................................................ 15 Handover ....................................................... 15 Handover latency ............................................... 19 Hidden-terminal problem ........................................ 20 HoA ............................................................. 4 Home Address .................................................... 4 Home Agent ...................................................... 5 Home subnet prefix .............................................. 5 Horizontal Handover ............................................ 16 Host mobility support .......................................... 25 IP access address ............................................... 5 IP diversity ................................................... 21 Inactive state ................................................. 22 Ingress interface .............................................. 12 Inter-AN handover .............................................. 16 Inter-technology handover ...................................... 16 Interface ....................................................... 5 Intra-AN handover .............................................. 16 Intra-AR handover .............................................. 16 Intra-technology handover ...................................... 16 L2 Trigger ...................................................... 6 Laydown ........................................................ 27 Layer 2 handover ............................................... 16 Link ............................................................ 5 Link establishment .............................................. 6 Link state ...................................................... 6 Link-layer trigger .............................................. 6 Link-level acknowledgment ....................................... 6 Local broadcast ................................................. 6 Local mobility ................................................. 25 Local mobility management ...................................... 26 Location updating .............................................. 23 Loop-free ....................................................... 6 MAC ............................................................. 7 MBB ............................................................ 19 MH ............................................................. 12 MN ............................................................. 12
FN ............................................................. 12 Fairness ........................................................ 4 Fast handover .................................................. 20 Feature context ................................................ 24 Fixed Node ..................................................... 12 Flooding ........................................................ 4 Foreign subnet prefix ........................................... 4 Forwarding node ................................................. 4 Global mobility ................................................ 25 Goodput ........................................................ 20 HA .............................................................. 5 Handoff ........................................................ 15 Handover ....................................................... 15 Handover latency ............................................... 19 Hidden-terminal problem ........................................ 20 HoA ............................................................. 4 Home Address .................................................... 4 Home Agent ...................................................... 5 Home subnet prefix .............................................. 5 Horizontal Handover ............................................ 16 Host mobility support .......................................... 25 IP access address ............................................... 5 IP diversity ................................................... 21 Inactive state ................................................. 22 Ingress interface .............................................. 12 Inter-AN handover .............................................. 16 Inter-technology handover ...................................... 16 Interface ....................................................... 5 Intra-AN handover .............................................. 16 Intra-AR handover .............................................. 16 Intra-technology handover ...................................... 16 L2 Trigger ...................................................... 6 Laydown ........................................................ 27 Layer 2 handover ............................................... 16 Link ............................................................ 5 Link establishment .............................................. 6 Link state ...................................................... 6 Link-layer trigger .............................................. 6 Link-level acknowledgment ....................................... 6 Local broadcast ................................................. 6 Local mobility ................................................. 25 Local mobility management ...................................... 26 Location updating .............................................. 23 Loop-free ....................................................... 6 MAC ............................................................. 7 MBB ............................................................ 19 MH ............................................................. 12 MN ............................................................. 12
MNN ............................................................ 13 MPR ............................................................. 7 MR ............................................................. 12 Macro diversity ................................................ 21 Macro mobility ................................................. 26 Make-before-break .............................................. 19 Medium Access Protocol .......................................... 7 Micro diversity ................................................ 21 Micro mobility ................................................. 26 Mobile Host .................................................... 12 Mobile Network Node ............................................ 13 Mobile Node .................................................... 12 Mobile Router .................................................. 12 Mobile network ................................................. 12 Mobile network prefix ........................................... 7 Mobile-assisted handover ....................................... 18 Mobile-controlled handover ..................................... 18 Mobile-initiated handover ...................................... 17 Mobility factor ................................................. 7 Mobility security association .................................. 27 Multipoint relay ................................................ 7 NAR ............................................................ 14 Neighbor ........................................................ 7 Neighborhood .................................................... 7 Network mobility support ....................................... 25 Network-assisted handover ...................................... 18 Network-controlled handover .................................... 18 Network-initiated handover ..................................... 17 New Access Router .............................................. 14 Next hop ........................................................ 7 PAR ............................................................ 15 Paging ......................................................... 23 Paging area .................................................... 23 Paging area registrations ...................................... 23 Paging channel ................................................. 23 Pathloss ....................................................... 20 Pathloss matrix ................................................ 27 Payload ......................................................... 8 Planned handover ............................................... 19 Prefix .......................................................... 8 Previous Access Router ......................................... 15 Pull handover .................................................. 18 Push handover .................................................. 18 Radio Cell ..................................................... 13 Registration key ............................................... 28 Roaming ........................................................ 15 Route activation ................................................ 8 Route entry ..................................................... 8
MNN ............................................................ 13 MPR ............................................................. 7 MR ............................................................. 12 Macro diversity ................................................ 21 Macro mobility ................................................. 26 Make-before-break .............................................. 19 Medium Access Protocol .......................................... 7 Micro diversity ................................................ 21 Micro mobility ................................................. 26 Mobile Host .................................................... 12 Mobile Network Node ............................................ 13 Mobile Node .................................................... 12 Mobile Router .................................................. 12 Mobile network ................................................. 12 Mobile network prefix ........................................... 7 Mobile-assisted handover ....................................... 18 Mobile-controlled handover ..................................... 18 Mobile-initiated handover ...................................... 17 Mobility factor ................................................. 7 Mobility security association .................................. 27 Multipoint relay ................................................ 7 NAR ............................................................ 14 Neighbor ........................................................ 7 Neighborhood .................................................... 7 Network mobility support ....................................... 25 Network-assisted handover ...................................... 18 Network-controlled handover .................................... 18 Network-initiated handover ..................................... 17 New Access Router .............................................. 14 Next hop ........................................................ 7 PAR ............................................................ 15 Paging ......................................................... 23 Paging area .................................................... 23 Paging area registrations ...................................... 23 Paging channel ................................................. 23 Pathloss ....................................................... 20 Pathloss matrix ................................................ 27 Payload ......................................................... 8 Planned handover ............................................... 19 Prefix .......................................................... 8 Previous Access Router ......................................... 15 Pull handover .................................................. 18 Push handover .................................................. 18 Radio Cell ..................................................... 13 Registration key ............................................... 28 Roaming ........................................................ 15 Route activation ................................................ 8 Route entry ..................................................... 8
Route establishment ............................................. 8 Routing table ................................................... 8 Routing proxy ................................................... 8 Routing-related service ........................................ 24 SAR ............................................................ 14 SPI ............................................................ 28 Scenario ....................................................... 27 Seamless handover .............................................. 19 Security Parameter Index ....................................... 28 Security context ............................................... 28 Serving Access Router .......................................... 14 Shannon's Law ................................................... 9 Signal strength ................................................. 9 Smooth handover ................................................ 19 Source route .................................................... 9 Spatial re-use .................................................. 9 Subnet .......................................................... 9 System-wide broadcast ........................................... 9 TAR ............................................................ 25 Target AR ...................................................... 25 Throughput ..................................................... 20 Time-slotted dormant mode ...................................... 22 Topology ........................................................ 9 Traffic channel ................................................ 23 Triggered update ................................................10 Unassisted handover ............................................ 18 Unplanned handover ............................................. 19 Vertical handover .............................................. 17
Route establishment ............................................. 8 Routing table ................................................... 8 Routing proxy ................................................... 8 Routing-related service ........................................ 24 SAR ............................................................ 14 SPI ............................................................ 28 Scenario ....................................................... 27 Seamless handover .............................................. 19 Security Parameter Index ....................................... 28 Security context ............................................... 28 Serving Access Router .......................................... 14 Shannon's Law ................................................... 9 Signal strength ................................................. 9 Smooth handover ................................................ 19 Source route .................................................... 9 Spatial re-use .................................................. 9 Subnet .......................................................... 9 System-wide broadcast ........................................... 9 TAR ............................................................ 25 Target AR ...................................................... 25 Throughput ..................................................... 20 Time-slotted dormant mode ...................................... 22 Topology ........................................................ 9 Traffic channel ................................................ 23 Triggered update ................................................10 Unassisted handover ............................................ 18 Unplanned handover ............................................. 19 Vertical handover .............................................. 17
Jukka Manner Department of Computer Science University of Helsinki P.O. Box 26 (Teollisuuskatu 23) FIN-00014 HELSINKI Finland
尤卡态度赫尔辛基大学计算机科学系P.O盒26(TeulLuuukkutu 23)FIF-000 014赫尔辛基芬兰
Phone: +358-9-191-44210 Fax: +358-9-191-44441 EMail: jmanner@cs.helsinki.fi
Phone: +358-9-191-44210 Fax: +358-9-191-44441 EMail: jmanner@cs.helsinki.fi
Markku Kojo Department of Computer Science University of Helsinki P.O. Box 26 (Teollisuuskatu 23) FIN-00014 HELSINKI Finland
马尔库科乔赫尔辛基大学计算机科学系P.O盒26(TeulLuuukkutu 23)FIF-000 014赫尔辛基芬兰
Phone: +358-9-191-44179 Fax: +358-9-191-44441 EMail: kojo@cs.helsinki.fi
Phone: +358-9-191-44179 Fax: +358-9-191-44441 EMail: kojo@cs.helsinki.fi
Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
版权所有(C)互联网协会(2004年)。本文件受BCP 78中包含的权利、许可和限制的约束,除其中规定外,作者保留其所有权利。
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件及其包含的信息是按“原样”提供的,贡献者、他/她所代表或赞助的组织(如有)、互联网协会和互联网工程任务组不承担任何明示或暗示的担保,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Intellectual Property
知识产权
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何独立努力来确定任何此类权利。有关RFC文件中权利的程序信息,请参见BCP 78和BCP 79。
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
向IETF秘书处披露的知识产权副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果,可从IETF在线知识产权存储库获取,网址为http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
IETF邀请任何相关方提请其注意任何版权、专利或专利申请,或其他可能涵盖实施本标准所需技术的专有权利。请将信息发送至IETF的IETF-ipr@ietf.org.
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。