Network Working Group                                        H. Khosravi
Request for Comments: 3604                                         Intel
Category: Informational                                      G. Kullgren
                                                                 S. Shew
                                                         Nortel Networks
                                                               J. Sadler
                                                                 Tellabs
                                                             A. Watanabe
                                                                     NTT
                                                            October 2003
        
Network Working Group                                        H. Khosravi
Request for Comments: 3604                                         Intel
Category: Informational                                      G. Kullgren
                                                                 S. Shew
                                                         Nortel Networks
                                                               J. Sadler
                                                                 Tellabs
                                                             A. Watanabe
                                                                     NTT
                                                            October 2003
        

Requirements for Adding Optical Support to the General Switch Management Protocol version 3 (GSMPv3)

向通用交换机管理协议版本3(GSMPv3)添加光学支持的要求

Status of this Memo

本备忘录的状况

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

本备忘录为互联网社区提供信息。它没有规定任何类型的互联网标准。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2003). All Rights Reserved.

版权所有(C)互联网协会(2003年)。版权所有。

Abstract

摘要

This memo provides requirements for adding optical switching support to the General Switch Management Protocol (GSMP). It also contains clarifications and suggested changes to the GSMPv3 specification.

本备忘录提供了向通用交换机管理协议(GSMP)添加光交换支持的要求。它还包含对GSMPv3规范的澄清和建议更改。

Conventions used in this document

本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [1].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照BCP 14、RFC 2119[1]中的描述进行解释。

1. Overview
1. 概述

This document details the changes to GSMP necessary for the support of optical (non-transparent and all optical), SONET/SDH, and spatial switching of IP packets, Layer 2 (L2) frames and TDM data. When implemented, GSMP controllers will then be able to control: photonic cross-connects (optical-optical), transparent optical cross connects (optical-electrical-optical, frame independent), opaque cross connects (optical-electrical-optical, SONET/SDH frames), and

本文件详细说明了支持光(非透明和全光)、SONET/SDH和IP数据包、第2层(L2)帧和TDM数据的空间交换所需的GSMP变更。实施后,GSMP控制器将能够控制:光子交叉连接(光学)、透明光学交叉连接(光电、帧独立)、不透明交叉连接(光电、SONET/SDH帧)和

traditional TDM switches (all electrical). The resulting systems could form IP based optical routers, optical label switches, wavelength routers, and dynamic optical cross connects.

传统的TDM开关(全电动)。由此产生的系统可以形成基于IP的光路由器、光标签交换机、波长路由器和动态光交叉连接。

Several different generic models exist defining how to provide control plane functionality in an optical network [2], [3], [4]. This document takes no position on which model is most appropriate (e.g., single or multiple routing plane instances). The only assumption is that the ability to separate the control mechanisms from the data switching is as useful for the signaling of optical paths (e.g., GMPLS) as it is for the signaling of L2 paths (e.g., MPLS). Therefore, the requirements contained within are focused only on the separation of control functions from data functions in order to provide a more flexible network architecture.

有几种不同的通用模型定义了如何在光网络中提供控制平面功能[2]、[3]、[4]。本文件不确定哪种模型最合适(例如,单个或多个布线平面实例)。唯一的假设是,将控制机制与数据交换分离的能力对于光路径(例如,GMPLS)的信令与对于L2路径(例如,MPLS)的信令一样有用。因此,其中包含的要求仅侧重于控制功能与数据功能的分离,以提供更灵活的网络体系结构。

GSMPv3 [5] is well suited for providing the control interface necessary for allowing an IP based controller to direct the activities of an optical switch. In order for GSMP to operate between controllers and optical switches and cross connects, support for optical labels and service and resource abstractions must be added to GSMP.

GSMPv3[5]非常适合提供允许基于IP的控制器指导光交换机活动所需的控制接口。为了使GSMP在控制器和光交换机之间以及交叉连接之间运行,必须向GSMP中添加对光标签以及服务和资源抽象的支持。

This document also includes changes recommended by implementers that will facilitate easier development of a GSMP implementation. These changes consist of rearranging PDU formats, clarification of flags, transaction identifiers, and response codes.

本文档还包括实施者建议的更改,这些更改将有助于更轻松地开发GSMP实施。这些更改包括重新排列PDU格式、澄清标志、事务标识符和响应代码。

2. Requirements for Optical Support
2. 光学支架的要求
2.1. Label
2.1. 标签
2.1.1. Label Types
2.1.1. 标签类型

New labels are needed to identify the entities that are to be switched in the optical fabric. These are longer than the labels defined in GSMPv3 as they have physical and structural context. As GMPLS [2], [3] has had very similar requirements for label formats, alignment with GMPLS is proposed. This includes support for:

需要新的标签来识别光学结构中要交换的实体。这些标签比GSMPv3中定义的标签长,因为它们具有物理和结构上下文。由于GMPLS[2]、[3]对标签格式的要求非常相似,因此建议与GMPLS保持一致。这包括支持:

- Digital Carrier Hierarchy (e.g., DS-1, E1) - SONET and SDH Hierarchy (e.g., OC-3, STM-1, VT1.5, VC-12) - Plesiochronous Data Hierarchy (PDH) labels [6] - OTN G.709 labels - Lambdas - Fibers

- 数字载波层次结构(如DS-1、E1)-SONET和SDH层次结构(如OC-3、STM-1、VT1.5、VC-12)-准同步数据层次结构(PDH)标签[6]-OTN g.709标签-Lambdas-光纤

GSMP MUST include support for all label types list above, as well as for label hierarchies and label lists as defined by GMPLS. Therefore, the ability to perform operations on groups of the above labels MUST also be supported (e.g., 5 OC-3s, contiguous wavebands).

GSMP必须支持上述所有标签类型列表,以及GMPLS定义的标签层次结构和标签列表。因此,还必须支持对上述标签组执行操作的能力(例如,5 OC-3,连续波段)。

2.1.2. Label Management Issues
2.1.2. 标签管理问题

An updated label range message MUST be provided. There MUST also be support of multiplexing (e.g., no multiplexing, SONET, Gigabit Ethernet multiplexing etc).

必须提供更新的标签范围信息。还必须支持多路复用(例如,无多路复用、SONET、千兆以太网多路复用等)。

2.2. Statistics messages
2.2. 统计信息

Optical switches have a number of different statistics which are not in common with ATM, or Frame Relay switches. Consequently, the statistics messages SHOULD be updated to report Performance Monitoring statistics defined for all new optical transport technologies added to GSMP.

光交换机有许多不同的统计数据,与ATM或帧中继交换机不同。因此,应更新统计信息,以报告为GSMP中添加的所有新光传输技术定义的性能监控统计信息。

2.3. Configuration Issues
2.3. 配置问题
2.3.1. Switch Configuration
2.3.1. 交换机配置
2.3.1.1. Layer Switching Identification
2.3.1.1. 层交换识别

Since an Optical Switch may be able to provide connection services at multiple transport layers (i.e., STS-3c, STS-1, VT-1.5, DS3, DS1), and not all switches are expected to support the same transport layers, the switch will need to notify the controller of the specific layers it can support.

由于光交换机可能能够在多个传输层(即STS-3c、STS-1、VT-1.5、DS3、DS1)上提供连接服务,并且并非所有交换机都支持相同的传输层,因此交换机将需要通知控制器它可以支持的特定层。

Therefore, the Switch Configuration message MUST be extended to provide a list of the transport layers for which an optical switch can perform switching.

因此,必须扩展交换机配置消息,以提供光交换机可以为其执行交换的传输层的列表。

2.3.2. Port Configuration
2.3.2. 端口配置

The port configuration message supplies the controller with the configuration information related to a single port. Consequently, extensive additions will need to be made to this command.

端口配置消息向控制器提供与单个端口相关的配置信息。因此,需要对该命令进行大量添加。

2.3.2.1. Port Type extensions
2.3.2.1. 端口类型扩展

Port types MUST be added to support the mix of optical signals that can operate over a single fiber.

必须添加端口类型,以支持可在单个光纤上运行的光信号的混合。

The port information that MAY need to be conveyed includes [7]:

可能需要传送的端口信息包括[7]:

- wavelengths available per interface - bit rate per wavelength - type of fiber

- 每个接口可用的波长-每个波长的比特率-光纤类型

2.3.2.2. Supported Signal Type extensions
2.3.2.2. 支持的信号类型扩展

Since a port on an optical switch may support signals at multiple transport layers, it is necessary to understand the signals supported, as well as the possible ways that one signal can be transported within another.

由于光交换机上的端口可以支持多个传输层上的信号,因此有必要了解支持的信号,以及一个信号可以在另一个信号中传输的可能方式。

For OTN, SONET/SDH and PDH optical switches, the Port configuration message MUST be extended to detail the different transport layer signals that are supported by a port. Furthermore, this extension MUST detail which signals may be transported by another signal.

对于OTN、SONET/SDH和PDH光交换机,必须扩展端口配置消息,以详细说明端口支持的不同传输层信号。此外,该扩展必须详细说明哪些信号可以由另一个信号传输。

This mechanism MUST also provide information about optional capabilities (such as virtual concatenation and arbitrary concatenation for SONET/SDH) available on a port.

该机制还必须提供关于端口上可用的可选功能(例如SONET/SDH的虚拟连接和任意连接)的信息。

2.3.2.3. Trace Mechanism support Identification
2.3.2.3. 跟踪机制支持识别

A number of transport layer signals include overhead channels that can be used to identify the source of a signal. Since they are embedded in the signal, only the network element has access to the signals. However, not all network elements have the capability to set or read the messages in these channels on every port. Consequently, this port attribute needs to be reported to the controller.

许多传输层信号包括可用于识别信号源的开销信道。由于它们嵌入在信号中,因此只有网元可以访问信号。但是,并非所有网络元件都能够在每个端口上设置或读取这些通道中的消息。因此,需要向控制器报告此端口属性。

The Port Configuration message MUST be extended to report which trace mechanisms are supported by a port.

端口配置消息必须扩展以报告端口支持哪些跟踪机制。

2.3.2.4. Port Location Identification
2.3.2.4. 港口位置识别

Since contemporary Optical switches have the ability to support tens of thousands of ports in hundreds of shelves located in as potentially as many bays, the current "Slot/Port" location identifier is inadequate.

由于现代光纤交换机能够支持数百个机架中的上万个端口,这些机架可能位于尽可能多的机架中,因此当前的“插槽/端口”位置标识符是不够的。

The Slot/Port Location Identifier MUST be extended to encode Bay/Shelf/Slot/Port.

插槽/端口位置标识符必须扩展为对托架/托架/插槽/端口进行编码。

2.3.2.5. Port-related Partitioning Extensions
2.3.2.5. 与端口相关的分区扩展

Partitioning can be done for any resource that exists in the network element. The GSMP partitioning draft currently defines ports and switching resources as partitionable resources. Since optical switches may support multiple transport network layers, an additional resource type is introduced: the transport layer signal.

可以对网元中存在的任何资源进行分区。GSMP分区草案目前将端口和交换资源定义为可分区资源。由于光交换机可能支持多个传输网络层,因此引入了另一种资源类型:传输层信号。

The point where a transport layer signal is inserted into a lower layer signal (called an "access point" by the ITU [8]), is very similar to a port. Therefore, when partitioning is done on a transport layer signal basis, the partition that is the user of the access point MUST have a port that associated with the access point. Labels will then be used in the to describe the subordinate signals.

传输层信号插入下层信号的点(ITU称为“接入点”[8])与端口非常相似。因此,当在传输层信号的基础上进行分区时,作为接入点用户的分区必须具有与接入点关联的端口。然后,将在中使用标签来描述从属信号。

2.3.3. Service Configuration
2.3.3. 服务配置

While new capability sets MUST be added to support quality parameters in optical switches, no changes are foreseen to the service configuration message as its role to carry the service information as defined in the applicable service model.

虽然必须添加新的功能集以支持光交换机中的质量参数,但服务配置消息作为其承载适用服务模型中定义的服务信息的角色不会发生变化。

2.4. Service Model Issues
2.4. 服务模型问题

While one assumption of using optical media is that bandwidth is plentiful, it should be expected that traffic engineering will be necessary in any case [5]. GSMP provides the means for each connection to be created with specific attributes. Therefore, service parameters will need to be defined for each of the Different Optical technologies.

虽然使用光媒体的一个假设是带宽充足,但可以预期,在任何情况下都需要流量工程[5]。GSMP提供了使用特定属性创建每个连接的方法。因此,需要为每种不同的光学技术定义服务参数。

2.4.1. Transparent Optical
2.4.1. 透明光学

Capability to control re-timing and re-shaping on a per port level MUST be added.

必须增加在每个端口级别上控制重定时和重成形的能力。

2.4.2. SONET/SDH and OTN
2.4.2. SONET/SDH和OTN

The capability to control the adaptation parameters used when a transport signal is inserted into another transport signal MUST be added. These parameters SHOULD be modifiable at times other than adding a branch so that functions such as Tandem Connection Monitoring can be configured. Currently, the default set of service models in GSMP are all based on the services models defined elsewhere, e.g., the Intserv model [9], [10], the Diffserv [11]

必须增加控制传输信号插入另一传输信号时使用的自适应参数的能力。除添加分支外,这些参数应可随时修改,以便配置串联连接监控等功能。目前,GSMP中的默认服务模型集都基于其他地方定义的服务模型,例如Intserv模型[9]、[10]、Diffserv[11]

model, ATM QoS models and the Frame relay forum QoS models. A determination needs to be made of the applicable service models for optical channel trails. These models MUST then be mapped to the GSMP capability set mechanism.

atmqos模型和帧中继论坛QoS模型。需要确定光信道跟踪的适用服务模型。然后,这些模型必须映射到GSMP能力集机制。

2.5. Encapsulation issues
2.5. 封装问题

The working group needs to decide whether a new encapsulation is required. In other words, will all optical switches used in either the MPLS over Optics and the IP over optics applications require that IP be implemented on the control channel connecting the GSMP controller and Optical switch (the GSMP target).

工作组需要决定是否需要新的封装。换句话说,MPLS over Optics和IP over Optics应用中使用的所有光交换机是否要求在连接GSMP控制器和光交换机(GSMP目标)的控制通道上实现IP。

A new encapsulation SHOULD be defined allowing the use of a non-IP raw wavelength control connection.

应定义新的封装,允许使用非IP原始波长控制连接。

Likewise, a new encapsulation SHOULD be defined allowing GSMP to be used in legacy Data Communication Network (DCN) environments that use OSI CLNP.

同样,应该定义一个新的封装,允许GSMP在使用OSI CLNP的传统数据通信网络(DCN)环境中使用。

The security risks of additional non-IP encapsulations MUST be described, since the mandatory to implement mechanism of IPsec is not available for these control channels, as in the RFC 3293 Ethernet and ATM cases. It is in scope to perform risk analysis and describe if mechanisms for link-level security mitigate the risk.

必须说明附加非IP封装的安全风险,因为强制实施IPsec机制不适用于这些控制通道,如RFC 3293以太网和ATM情况。执行风险分析和描述链路级安全机制是否降低风险属于范围。

2.6. MIB Issues
2.6. MIB问题

If a new encapsulation is defined, then the encapsulation group SHOULD be updated. No other changes should be required.

如果定义了新的封装,则应更新封装组。不需要进行其他更改。

2.7. OXC Transaction Model
2.7. OXC事务模型
2.7.1. Serial Transactions
2.7.1. 连续交易

Many existing OXCs use a command interface which assumes a serial transaction model. That is, a new command cannot be issued or processed until the existing command is completed. Under provisioning control via a network management application, and with non-dynamic path setup, this model has been adequate.

许多现有的OXC使用命令接口,该接口采用串行事务模型。也就是说,在现有命令完成之前,无法发出或处理新命令。在通过网络管理应用程序进行资源调配控制的情况下,以及在非动态路径设置的情况下,此模型已经足够了。

Moving to a dynamic path setup capability with a distributed control plane, a parallel transaction model is likely required for performance. This is particularly helpful when the performance of setting up a TDM style connection is much slower than setting up an L2 connection table. If the OXC is not able to support a parallel transaction model, a GSMP controller MUST be informed of this and adopt serial transaction behavior.

移动到具有分布式控制平面的动态路径设置功能,性能可能需要并行事务模型。当设置TDM样式连接的性能比设置L2连接表慢得多时,这尤其有用。如果OXC不能支持并行事务模型,则必须通知GSMP控制器并采用串行事务行为。

2.7.2. Bulk Transactions
2.7.2. 批量交易

Again due to the time it may take some OXCs to setup TDM connections relative to L2 fabrics (e.g., VC-4/STS-1 SPE fabric in an HOVC/STS switch), support for sending multiple transactions in the same message is a useful optimization. When an OXC receives a bulk message, the individual transactions are acted upon and a single reply is sent. If parallel transactions are not supported, bulk messages can improve performance by reducing transaction overhead. Bulk transactions SHOULD be supported.

同样,由于一些OXC可能需要花费一些时间来设置与L2结构(例如,HOVC/STS交换机中的VC-4/STS-1 SPE结构)相关的TDM连接,因此支持在同一消息中发送多个事务是一个有用的优化。当OXC接收到批量消息时,将对单个事务执行操作,并发送单个回复。如果不支持并行事务,则批量消息可以通过减少事务开销来提高性能。应支持批量事务。

2.8. OXC Protection Capabilities
2.8. OXC保护能力

To achieve good link protection performance (e.g., 50 ms after failure detection), SONET/SDH and some OXC systems use hardware based protection schemes (e.g., ring protection). Achieving this level of performance solely using a data control plane such as GMPLS is a serious challenge. An alternate approach is to utilize protection capabilities of an OXC with a dynamic control plane. An implication of this hybrid approach is that extensions are needed to GSMP to provision the behavior of an OXC in anticipation of a link failure.

为了实现良好的链路保护性能(例如,故障检测后50毫秒),SONET/SDH和一些OXC系统使用基于硬件的保护方案(例如,环保护)。仅使用数据控制平面(如GMPLS)来实现这一性能水平是一个严峻的挑战。另一种方法是利用具有动态控制平面的OXC的保护能力。这种混合方法的一个含义是,GSMP需要扩展来提供OXC在预期链路故障时的行为。

This differs from the strict master-slave relationship in GSMP for Layer 2 switches in that here the OXC is capable of taking an action independent of the GSMP controller and then informing the controller afterwards. Consequently, the GSMP port configuration command MUST be extended to allow autonomous protection behaviors to be provisioned into the Network Element.

这与第2层交换机的GSMP中严格的主从关系不同,在这里,OXC能够独立于GSMP控制器采取行动,然后通知控制器。因此,必须扩展GSMP port configuration命令,以允许在网元中提供自主保护行为。

Furthermore, the controller MUST be able to provide the parameters for when reversion from a backup link to the original link is allowed. This may take the form of hold-off timers, BER parameters, or the requirement for controller directed reversion.

此外,控制器必须能够提供允许从备份链路恢复到原始链路的参数。这可能采取延迟定时器、误码率参数或控制器定向恢复要求的形式。

2.8.1. Non-Reserved Protection Links
2.8.1. 非保留保护链路

An example of protection OXC behavior is that when a link fails, a backup link may be used to protect traffic on. This backup link could be selected from a set of links, none of which are pre-reserved. A backup link could be shared with one or more "working" links which is a form of 1:n shared protection. Specifying the set of possible backup links SHOULD be done as an option to the Add-Branch message.

保护OXC行为的一个示例是,当链路发生故障时,可以使用备份链路来保护网络上的通信量。可以从一组链接中选择此备份链接,这些链接都不是预先保留的。备份链路可以与一个或多个“工作”链路共享,这是1:n共享保护的一种形式。指定可能的备份链接集应作为添加分支消息的一个选项。

When a backup link is used or the OXC reverts back to the original link, the control plane (i.e., signaling) may need to know about the new path state in order to notify the operator, or take some other OAM action (e.g., billing, SLA monitoring). An additional GSMP message to inform the controller SHOULD be added to do this.

当使用备份链路或OXC恢复到原始链路时,控制平面(即信令)可能需要了解新路径状态,以便通知操作员,或采取一些其他OAM操作(例如计费、SLA监控)。为此,应添加一条额外的GSMP消息来通知控制器。

2.8.2. Dedicated Protection Links
2.8.2. 专用保护链路

A more specialized form of restoration called "1+1" defines a (usually node disjoint) protection path in a transport/optical network for a given working path. At the ingress node to the path, the traffic signal is sent simultaneously along both working and protection paths. Under non-failure conditions at the egress node, only the last link of the working path is connected to the client. When any link in the working path fails, traffic on the working path ceases to be received at end of the path. The egress OXC detects this condition and then switches to use the last link of the protection path without the controller having to issue a Move-Input-Branch message. At no time is the ingress node aware which link the egress node is using. Selection of the protection path and all of its links is outside the scope of GSMP.

一种称为“1+1”的更专门的恢复形式为给定的工作路径定义了传输/光网络中的(通常是节点不相交的)保护路径。在路径的入口节点处,沿工作路径和保护路径同时发送交通信号。在出口节点处的非故障条件下,只有工作路径的最后一条链路连接到客户端。当工作路径中的任何链路发生故障时,工作路径上的通信量在路径末端停止接收。出口OXC检测到这种情况,然后切换到使用保护路径的最后一条链路,而无需控制器发出移动输入分支消息。入口节点在任何时候都不知道出口节点正在使用哪个链路。保护路径及其所有链路的选择不在GSMP的范围内。

Specification of the two output branches at the ingress node can be done with the usual Add-Branch semantics. The ingress node protection link is not shared with any other working link.

入口节点的两个输出分支的规范可以使用通常的Add分支语义来完成。入口节点保护链路不与任何其他工作链路共享。

Specification of the two input branches at the egress node should be done when the Add-Branch message is sent. This SHOULD be an option to that message. The egress node protection link is not shared with any other working link.

在发送Add Branch消息时,应该指定出口节点上的两个输入分支。这应该是该消息的一个选项。出口节点保护链路不与任何其他工作链路共享。

When a protection link is used or the OXC reverts back to the working link, the control plane (i.e., signaling) may need to know about the new path state in order to notify the operator, or take some other OAM action (e.g., billing, SLA monitoring). An additional GSMP message to inform the controller SHOULD be added to do this.

当使用保护链路或OXC恢复到工作链路时,控制平面(即信令)可能需要了解新路径状态,以便通知操作员,或采取一些其他OAM操作(例如计费、SLA监控)。为此,应添加一条额外的GSMP消息来通知控制器。

If an alternate input port is not specified with an original Add-Branch message, it MAY be specified in a subsequent Add-Branch message. In this case, it is useful to include information about existing users of the output port in that Add-Branch message. This helps the OXC immediately learn of the association between the new input port and an existing one. The association is used to enable OXC protection procedures. This capability MUST be added to the add-branch message.

如果未在原始添加分支消息中指定备用输入端口,则可以在后续添加分支消息中指定该端口。在这种情况下,在Add分支消息中包含关于输出端口的现有用户的信息非常有用。这有助于OXC立即了解新输入端口和现有端口之间的关联。关联用于启用OXC保护程序。必须将此功能添加到添加分支消息中。

Similar contextual information is needed for a Delete-Branch message so that the OXC can determine if a path becomes unprotected. This capability MUST be added to the Delete-branch message.

删除分支消息需要类似的上下文信息,以便OXC可以确定路径是否变得不受保护。必须将此功能添加到删除分支消息中。

2.8.3. Protection Triggers
2.8.3. 保护触发器

Aside from link or equipment failures, there are a variety of maintenance conditions that could cause the backup/protection link(s) to be used. These may include:

除了链路或设备故障外,还有各种维护条件可能导致使用备份/保护链路。这些措施可能包括:

- Scheduled maintenance of the working link. Here the network operator deliberately takes a link out of service to perform maintenance. - Reconfiguration of fiber/node/network which causes temporary need to use backup links.

- 工作链路的计划维护。在这里,网络运营商故意中断一条链路以进行维护。-重新配置光纤/节点/网络,导致临时需要使用备份链路。

It may be useful to specify these triggers when the backup/protection links are defined with the Add-Branch message. This depends on how the OXC is implemented to be aware of such triggers. This is for further study.

当使用添加分支消息定义备份/保护链接时,指定这些触发器可能会很有用。这取决于如何实现OXC以了解此类触发器。这是为了进一步研究。

2.8.4. Protection Link Capabilities
2.8.4. 保护链路能力

When an OXC has the capability to perform protection switching independently from the Optical Call Controller (OCC), it may be useful for the OCC to be informed of these capabilities at switch and/or port configuration. Applications in the GSMP controller could use this information. For example, signaling clients could define a path protection scheme over multiple GSMP enabled OXCs. This is for further study.

当OXC具有独立于光呼叫控制器(OCC)执行保护交换的能力时,OCC在交换机和/或端口配置中被告知这些能力可能是有用的。GSMP控制器中的应用程序可以使用此信息。例如,信令客户端可以在多个支持GSMP的OXC上定义路径保护方案。这是为了进一步研究。

2.9. Controller directed restoration
2.9. 控制器定向恢复

Bi-directional Connection Replacement

双向连接更换

Connections in the transport network are inherently point-to-point bi-directional. Unfortunately, GSMPv3 currently does not allow for the B and R flags to be set on an add branch message. This means that it is not possible to do an atomic replacement of a bi-directional connection -- an action that is desirable for controller directed restoration. Consequently, the protocol MUST be changed to allow these flags to be used at the same time.

传输网络中的连接本质上是点对点双向的。不幸的是,GSMPv3目前不允许在添加分支消息上设置B和R标志。这意味着不可能对双向连接进行原子替换——这是控制器定向恢复所需要的操作。因此,必须更改协议以允许同时使用这些标志。

2.10. Support for optical burst switching
2.10. 支持光突发交换

GSMP for Optical Switching should also support optical burst switching. As described in [12], [13], and [14], part of burst switching connection setup includes reserving time on the transport medium for the client.

用于光交换的GSMP还应支持光突发交换。如[12]、[13]和[14]中所述,突发交换连接设置的一部分包括在传输介质上为客户端保留时间。

This time is characterized by two parameters: a start time and the duration. These values MAY define a one-time reservation or a repeating reservation. Upon a request for setup of a burst connection, the GSMP controller MUST perform appropriate Connection Admission Control for the time and duration specified and, if the connection is allowed, MUST signal these parameters to the burst switching device to reserve the exact bandwidth required [12], [14]. The burst switch MUST perform the switching operation autonomously, using the synchronization methods prescribed for the burst network it is operating in.

此时间有两个参数:开始时间和持续时间。这些值可以定义一次性保留或重复保留。在请求设置突发连接时,GSMP控制器必须在指定的时间和持续时间内执行适当的连接许可控制,如果允许连接,则必须向突发交换设备发送这些参数的信号,以保留所需的确切带宽[12],[14]。突发交换机必须使用为其运行的突发网络规定的同步方法,自主执行切换操作。

3. Requirements from Implementers
3. 实施者的需求

This section describes requirements to GSMP v3 based on some implementation experience. They address areas of ambiguity, missing semantics, and configuration recommendations.

本节根据一些实施经验描述对GSMP v3的要求。它们解决了歧义、语义缺失和配置建议方面的问题。

3.1. GSMP Packet Format
3.1. GSMP数据包格式

The Basic GSMP Message Format in chapter 3.1.1 in [5] describes the common fields present in all GSMP messages except for the Adjacency protocol.

[5]第3.1.1章中的基本GSMP消息格式描述了除邻接协议外的所有GSMP消息中的公共字段。

3.1.1. Message segmentation
3.1.1. 消息分段

If a message exceeds the MTU of the link layer it has to be segmented. This was originally done with the "More" value in the Result field. The addition of the I flag and the SubMessage Number to the header has made the "More" value obsolete.

如果消息超过链接层的MTU,则必须对其进行分段。这最初是使用结果字段中的“更多”值完成的。在标题中添加I标志和子消息编号使“更多”值过时。

The I flag and SubMessage numbers should be used in all messages that can be segmented.

I标志和子消息编号应在所有可分段的消息中使用。

3.1.1.1. SubMessage Number and I flag
3.1.1.1. 子消息编号和I标志

It should be specified if the SubMessage Number starts on 0 or 1 in a segmented message and what value the I flag should have in an message that is not segmented.

应指定分段消息中的子消息编号是否从0或1开始,以及未分段消息中的I标志应具有的值。

3.1.1.2. Message Length
3.1.1.2. 消息长度

Clarification of what value should be used in the Length field for segmented messages. Specifically, does the Length field contain the total length of the message or the length of the current segment.

澄清分段消息的长度字段中应使用的值。具体来说,长度字段是否包含消息的总长度或当前段的长度。

3.1.1.3. Message Segmentation example
3.1.1.3. 消息分段示例

To avoid all ambiguity an example of message segmentation should be provided.

为避免所有歧义,应提供消息分段示例。

3.1.2. Transaction Identifier
3.1.2. 事务标识符

The Transaction Identifier in [5] does not distinguish between replies from a request with "AckAll" and "NoSuccessAck". It also does not provide any information about how to handle replies where the Transaction ID doesn't match a Transaction ID from a previously sent request.

[5]中的事务标识符不区分带有“AckAll”和“NoSuccessAck”的请求的响应。它也没有提供关于如何处理事务ID与以前发送的请求中的事务ID不匹配的回复的任何信息。

If multiple controllers are connected to a single switch and the switch sends an event message with "ReturnReceipt" set to all of them, there is no way for the switch to identify which controller the receipt is coming from.

如果多个控制器连接到单个交换机,并且交换机发送一条事件消息,并将“ReturnReceipt”设置为所有控制器,则交换机无法识别收据来自哪个控制器。

The "ReturnReceipt" value should not be permitted for Events.

事件不允许使用“ReturnReceipt”值。

3.2. Window Size
3.2. 窗口大小

The Switch Configuration Message defined in chapter 8.1 in [5] defines a Window size to be used by the controller when sending messages to the switch. It is not stated if this window should apply to all messages or only to messages that will always generate a reply.

[5]中第8.1章定义的交换机配置消息定义了控制器向交换机发送消息时使用的窗口大小。未说明此窗口应应用于所有邮件还是仅应用于始终生成回复的邮件。

If messages that may not generate a reply should be counted against the window a time-out period when they are to be removed from the window should be defined.

如果可能不生成回复的消息应计入窗口,则应定义从窗口中删除这些消息的超时时间。

It is not defined if the window should be cleared when the adjacency is lost and later recovered.

未定义在邻接丢失并随后恢复时是否应清除窗口。

3.3. Retransmission
3.3. 重传

A retransmission policy with a well-designed exponential backoff should be used if no reply is received for a message with "AckAll" set.

如果设置了“AckAll”的消息未收到回复,则应使用具有精心设计的指数退避的重传策略。

3.4. Delete Branches Message
3.4. 删除分支消息

The "Delete Branch Element" has a 4 bit Error field that should be redefined to match the size of the "Failure Response Codes".

“删除分支元素”有一个4位错误字段,应重新定义该字段以匹配“故障响应代码”的大小。

3.5. Adjacency
3.5. 邻接

The chapter about how to handle a new adjacency and re-established adjacencies should be clarified.

关于如何处理新邻接和重新建立的邻接的章节应该澄清。

3.5.1. Loss of Synchronization
3.5.1. 同步丢失

The switch must not reset the connection states if another adjacency has already been established since this would destroy an already valid state.

如果已经建立了另一个邻接,则交换机不得重置连接状态,因为这将破坏已经有效的状态。

4. Security Considerations
4. 安全考虑

The security of GSMP's TCP/IP control channel has been addressed in [15]. Any potential remaining security considerations are not addressed in this requirements document.

GSMP的TCP/IP控制通道的安全性已在[15]中说明。本需求文件中未提及任何潜在的剩余安全注意事项。

5. Acknowledgements
5. 致谢

The list of authors provided with this document is a reduction of the original list. Currently listed authors wish to acknowledge that a substantial amount was also contributed to this work by: Avri Doria and Kenneth Sundell

随本文件提供的作者列表是原始列表的缩减。目前列出的作者希望承认,阿夫里·多里亚和肯尼斯·桑德尔也为这项工作做出了大量贡献

The authors would like to acknowledge the careful review and comments of Dimitri Papadimitriou, Torbjorn Hedqvist, Satoru Okamoto, and Kohei Shiomoto.

作者要感谢Dimitri Papadimitriou、Torbjorn Hedqvist、Satoru Okamoto和Kohei Shiomoto的仔细审查和评论。

6. References
6. 工具书类
6.1. Normative References
6.1. 规范性引用文件

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[1] Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

6.2. Informative References
6.2. 资料性引用

[2] Berger, L., Ed., "Generalized MPLS - Signaling Functional Description", RFC 3471, January 2003.

[2] Berger,L.,Ed.“通用MPLS-信令功能描述”,RFC 3471,2003年1月。

[3] Mannie, E., et al., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", Work in Progress, May 2003.

[3] Mannie,E.等人,“通用多协议标签交换(GMPLS)体系结构”,正在进行的工作,2003年5月。

[4] ITU-T Recommendation, "Architecture for the Automatically Switched Optical Network (ASON)", G.8080/Y.1304, January 2003

[4] ITU-T建议,“自动交换光网络(ASON)的体系结构”,G.8080/Y.13042003年1月

[5] Doria, A., Sundell, K., Hellstrand, F. and T. Worster, "General Switch Management Protocol V3", RFC 3292, June 2002.

[5] Doria,A.,Sundell,K.,Hellstrand,F.和T.Worster,“通用交换机管理协议V3”,RFC 3292,2002年6月。

[6] Sadler, J., Mack-Crane, B., "TDM Labels for GSMP", Work in Progress, February 2001.

[6] Sadler,J.,Mack Crane,B.,“GSMP的TDM标签”,正在进行的工作,2001年2月。

[7] Rajagopalan, B., et al., "IP over Optical Networks: A Framework", Work in Progress, September 2003.

[7] Rajagopalan,B.等人,“光网络IP:框架”,正在进行的工作,2003年9月。

[8] ITU-T Recommendation, "Generic functional architecture of transport networks", G.805, March 2000.

[8] ITU-T建议,“传输网络的通用功能架构”,G.8052000年3月。

[9] Braden, R., Clark, D. and S. Shenker, "Integrated Services in the Internet Architecture: An Overview", RFC 1633, June 1994.

[9] Braden,R.,Clark,D.和S.Shenker,“互联网体系结构中的综合服务:概述”,RFC16331994年6月。

[10] Wroclawski, J., "Specification of the Controlled-Load Network Element Service", RFC 2211, September 1997.

[10] Wroclawski,J.,“受控负荷网元服务规范”,RFC2211,1997年9月。

[11] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z. and W. Weiss, _"An Architecture for Differentiated Services", RFC 2475, December 1998.

[11] Blake,S.,Black,D.,Carlson,M.,Davies,E.,Wang,Z.和W.Weiss,“差异化服务的架构”,RFC 24751998年12月。

[12] C. Qiao, M. Yoo, "Choice, and Feature and Issues in Optical Burst Switching", Optical Net. Mag., vol.1, No.2, Apr.2000, pp.36-44.

[12] 乔,M.Yoo,“光突发交换的选择、特点和问题”,光网络。杂志,第一卷,第二期,2000年4月,第36-44页。

[13] Ilia Baldine, George N. Rouskas, Harry G. Perros, Dan Stevension, "JumpStart: A Just-in-time Signaling Architecture for WDM Burst-Switching Networks", IEEE Comm. Mag., Fab. 2002.

[13] Ilia Baldine,George N.Rouskas,Harry G.Perros,Dan Stevension,“JumpStart:WDM突发交换网络的即时信令架构”,IEEE Comm.Mag.,Fab。2002

[14] Sanjeev Verma, et al. "Optical burst switching: a viable solution for terabit IP backbone", IEEE network, pp. 48-53, Nov/Dec 2000.

[14] Sanjeev Verma,等人,“光突发交换:一种适用于太比特IP主干网的可行解决方案”,IEEE网络,第48-53页,2000年11月/12月。

[15] Worster, T., Doria, A. and J. Buerkle, "GSMP Packet Encapsulations for ATM, Ethernet and TCP", RFC 3293, June 2002.

[15] Worster,T.,Doria,A.和J.Buerkle,“ATM、以太网和TCP的GSMP数据包封装”,RFC 3293,2002年6月。

7. Authors' Addresses
7. 作者地址

Hormuzd Khosravi Intel 2111 NE 25th Avenue Hillsboro, OR 97124 USA

美国希尔斯伯勒第25大道东北2111号霍尔木兹德科斯拉维英特尔公司,邮编:97124

   Phone: +1 503 264 0334
   EMail: hormuzd.m.khosravi@intel.com
        
   Phone: +1 503 264 0334
   EMail: hormuzd.m.khosravi@intel.com
        

Georg Kullgren Nortel Networks AB S:t Eriksgatan 115 A P.O. Box 6701 SE-113 85 Stockholm Sweden

格奥尔格·库尔格伦北电网络股份有限公司S:t埃里克斯加坦115 A信箱6701 SE-113 85瑞典斯德哥尔摩

   EMail: geku@nortelnetworks.com
        
   EMail: geku@nortelnetworks.com
        

Jonathan Sadler Tellabs Operations, Inc. 1415 West Diehl Road Naperville, IL 60563

Jonathan Sadler Tellabs Operations,Inc.伊利诺伊州纳珀维尔西迪尔路1415号,邮编60563

   Phone: +1 630-798-6182
   EMail: Jonathan.Sadler@tellabs.com
        
   Phone: +1 630-798-6182
   EMail: Jonathan.Sadler@tellabs.com
        

Stephen Shew Nortel Networks PO Box 3511 Station C Ottawa, ON K1Y 4H7

Stephen Shew Nortel Networks邮政信箱3511,渥太华C站,K1Y 4H7

   EMail: sdshew@nortelnetworks.com
        
   EMail: sdshew@nortelnetworks.com
        

Kohei Shiomoto

大本高海

   EMail: Shiomoto.Kohei@lab.ntt.co.jp
        
   EMail: Shiomoto.Kohei@lab.ntt.co.jp
        

Atsushi Watanabe Nippon Telegraph and Telephone Corporation 807A 1-1 Hikari-no-oka, Yokosuka-shi Kanagawa 239-0847, Japan

渡边阿特寿日本电报电话公司807A 1-1 Hikari no oka,横须贺市神奈川239-0847,日本

   EMail: atsushi@exa.onlab.ntt.co.jp
        
   EMail: atsushi@exa.onlab.ntt.co.jp
        

Satoru Okamoto Nippon Telegraph and Telephone Corporation 9-11 Midori-cho 3-chome, Musashino-shi Tokyo 180-8585, Japan

冈本佐藤日本电报电话公司9-11 Midori cho 3-chome,武藏县,东京180-8585

   EMail: okamoto@exa.onlab.ntt.co.jp
        
   EMail: okamoto@exa.onlab.ntt.co.jp
        
8. Full Copyright Statement
8. 完整版权声明

Copyright (C) The Internet Society (2003). All Rights Reserved.

版权所有(C)互联网协会(2003年)。版权所有。

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees.

上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。