Network Working Group C. Groves Request for Comments: 3525 M. Pantaleo Obsoletes: 3015 LM Ericsson Category: Standards Track T. Anderson Consultant T. Taylor Nortel Networks Editors June 2003
Network Working Group C. Groves Request for Comments: 3525 M. Pantaleo Obsoletes: 3015 LM Ericsson Category: Standards Track T. Anderson Consultant T. Taylor Nortel Networks Editors June 2003
Gateway Control Protocol Version 1
网关控制协议版本1
Status of this Memo
本备忘录的状况
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2003). All Rights Reserved.
版权所有(C)互联网协会(2003年)。版权所有。
Abstract
摘要
This document defines the protocol used between elements of a physically decomposed multimedia gateway, i.e., a Media Gateway and a Media Gateway Controller. The protocol presented in this document meets the requirements for a media gateway control protocol as presented in RFC 2805.
本文档定义了物理分解的多媒体网关(即媒体网关和媒体网关控制器)元素之间使用的协议。本文件中的协议符合RFC 2805中提出的媒体网关控制协议的要求。
This document replaces RFC 3015. It is the result of continued cooperation between the IETF Megaco Working Group and ITU-T Study Group 16. It incorporates the original text of RFC 3015, modified by corrections and clarifications discussed on the Megaco E-mail list and incorporated into the Study Group 16 Implementor's Guide for Recommendation H.248. The present version of this document underwent ITU-T Last Call as Recommendation H.248 Amendment 1. Because of ITU-T renumbering, it was published by the ITU-T as Recommendation H.248.1 (03/2002), Gateway Control Protocol Version 1.
本文件取代RFC 3015。这是IETF Megaco工作组和ITU-T研究组16之间持续合作的结果。它包含了RFC 3015的原始文本,通过Megaco电子邮件列表上讨论的更正和澄清进行了修改,并纳入了研究组16建议H.248的实施者指南。本文件的当前版本作为建议H.248修改件1进行了ITU-T最后一次调用。由于ITU-T重新编号,ITU-T将其发布为建议H.248.1(03/2002),网关控制协议版本1。
Users of this specification are advised to consult the H.248 Sub-series Implementors' Guide at http://www.itu.int/itudoc/itu-t/com16/implgd for additional corrections and clarifications.
建议本规范的用户参考H.248子系列实施者指南,网址为http://www.itu.int/itudoc/itu-t/com16/implgd 以获取更多更正和澄清。
Conventions used in this document
本文件中使用的公约
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。
Table of Contents
目录
1 Scope.........................................................5 1.1 Changes From RFC 3015.....................................5 1.2 Differences From ITU-T Recommendation H.248.1 (03/2002)...5 2 References....................................................6 2.1 Normative references......................................6 2.2 Informative references....................................9 3 Definitions..................................................10 4 Abbreviations................................................11 5 Conventions..................................................12 6 Connection model.............................................13 6.1 Contexts.................................................16 6.2 Terminations.............................................17 6.2.1 Termination dynamics.................................21 6.2.2 TerminationIDs.......................................21 6.2.3 Packages.............................................22 6.2.4 Termination properties and descriptors...............23 6.2.5 Root Termination.....................................25 7 Commands.....................................................26 7.1 Descriptors..............................................27 7.1.1 Specifying parameters................................27 7.1.2 Modem descriptor.....................................28 7.1.3 Multiplex descriptor.................................28 7.1.4 Media descriptor.....................................29 7.1.5 TerminationState descriptor..........................29 7.1.6 Stream descriptor....................................30 7.1.7 LocalControl descriptor..............................31 7.1.8 Local and Remote descriptors.........................32 7.1.9 Events descriptor....................................35 7.1.10 EventBuffer descriptor..............................38 7.1.11 Signals descriptor..................................38 7.1.12 Audit descriptor....................................40 7.1.13 ServiceChange descriptor............................41 7.1.14 DigitMap descriptor.................................41 7.1.15 Statistics descriptor...............................46 7.1.16 Packages descriptor.................................47 7.1.17 ObservedEvents descriptor...........................47 7.1.18 Topology descriptor.................................47 7.1.19 Error Descriptor....................................50 7.2 Command Application Programming Interface................50 7.2.1 Add..................................................51
1 Scope.........................................................5 1.1 Changes From RFC 3015.....................................5 1.2 Differences From ITU-T Recommendation H.248.1 (03/2002)...5 2 References....................................................6 2.1 Normative references......................................6 2.2 Informative references....................................9 3 Definitions..................................................10 4 Abbreviations................................................11 5 Conventions..................................................12 6 Connection model.............................................13 6.1 Contexts.................................................16 6.2 Terminations.............................................17 6.2.1 Termination dynamics.................................21 6.2.2 TerminationIDs.......................................21 6.2.3 Packages.............................................22 6.2.4 Termination properties and descriptors...............23 6.2.5 Root Termination.....................................25 7 Commands.....................................................26 7.1 Descriptors..............................................27 7.1.1 Specifying parameters................................27 7.1.2 Modem descriptor.....................................28 7.1.3 Multiplex descriptor.................................28 7.1.4 Media descriptor.....................................29 7.1.5 TerminationState descriptor..........................29 7.1.6 Stream descriptor....................................30 7.1.7 LocalControl descriptor..............................31 7.1.8 Local and Remote descriptors.........................32 7.1.9 Events descriptor....................................35 7.1.10 EventBuffer descriptor..............................38 7.1.11 Signals descriptor..................................38 7.1.12 Audit descriptor....................................40 7.1.13 ServiceChange descriptor............................41 7.1.14 DigitMap descriptor.................................41 7.1.15 Statistics descriptor...............................46 7.1.16 Packages descriptor.................................47 7.1.17 ObservedEvents descriptor...........................47 7.1.18 Topology descriptor.................................47 7.1.19 Error Descriptor....................................50 7.2 Command Application Programming Interface................50 7.2.1 Add..................................................51
7.2.2 Modify...............................................52 7.2.3 Subtract.............................................53 7.2.4 Move.................................................55 7.2.5 AuditValue...........................................56 7.2.6 AuditCapabilities....................................59 7.2.7 Notify...............................................60 7.2.8 ServiceChange........................................61 7.2.9 Manipulating and Auditing Context Attributes.........65 7.2.10 Generic Command Syntax..............................66 7.3 Command Error Codes......................................66 8 Transactions.................................................66 8.1 Common parameters........................................68 8.1.1 Transaction Identifiers..............................68 8.1.2 Context Identifiers..................................68 8.2 Transaction Application Programming Interface............69 8.2.1 TransactionRequest...................................69 8.2.2 TransactionReply.....................................69 8.2.3 TransactionPending...................................71 8.3 Messages.................................................72 9 Transport....................................................72 9.1 Ordering of Commands.....................................73 9.2 Protection against Restart Avalanche.....................74 10 Security Considerations.....................................75 10.1 Protection of Protocol Connections......................75 10.2 Interim AH scheme.......................................76 10.3 Protection of Media Connections.........................77 11 MG-MGC Control Interface....................................78 11.1 Multiple Virtual MGs....................................78 11.2 Cold start..............................................79 11.3 Negotiation of protocol version.........................79 11.4 Failure of a MG.........................................80 11.5 Failure of an MGC.......................................81 12 Package definition..........................................82 12.1 Guidelines for defining packages........................82 12.1.1 Package.............................................83 12.1.2 Properties..........................................84 12.1.3 Events..............................................85 12.1.4 Signals.............................................85 12.1.5 Statistics..........................................86 12.1.6 Procedures..........................................86 12.2 Guidelines to defining Parameters to Events and Signals.86 12.3 Lists...................................................87 12.4 Identifiers.............................................87 12.5 Package registration....................................88 13 IANA Considerations.........................................88 13.1 Packages................................................88 13.2 Error codes.............................................89 13.3 ServiceChange reasons...................................89
7.2.2 Modify...............................................52 7.2.3 Subtract.............................................53 7.2.4 Move.................................................55 7.2.5 AuditValue...........................................56 7.2.6 AuditCapabilities....................................59 7.2.7 Notify...............................................60 7.2.8 ServiceChange........................................61 7.2.9 Manipulating and Auditing Context Attributes.........65 7.2.10 Generic Command Syntax..............................66 7.3 Command Error Codes......................................66 8 Transactions.................................................66 8.1 Common parameters........................................68 8.1.1 Transaction Identifiers..............................68 8.1.2 Context Identifiers..................................68 8.2 Transaction Application Programming Interface............69 8.2.1 TransactionRequest...................................69 8.2.2 TransactionReply.....................................69 8.2.3 TransactionPending...................................71 8.3 Messages.................................................72 9 Transport....................................................72 9.1 Ordering of Commands.....................................73 9.2 Protection against Restart Avalanche.....................74 10 Security Considerations.....................................75 10.1 Protection of Protocol Connections......................75 10.2 Interim AH scheme.......................................76 10.3 Protection of Media Connections.........................77 11 MG-MGC Control Interface....................................78 11.1 Multiple Virtual MGs....................................78 11.2 Cold start..............................................79 11.3 Negotiation of protocol version.........................79 11.4 Failure of a MG.........................................80 11.5 Failure of an MGC.......................................81 12 Package definition..........................................82 12.1 Guidelines for defining packages........................82 12.1.1 Package.............................................83 12.1.2 Properties..........................................84 12.1.3 Events..............................................85 12.1.4 Signals.............................................85 12.1.5 Statistics..........................................86 12.1.6 Procedures..........................................86 12.2 Guidelines to defining Parameters to Events and Signals.86 12.3 Lists...................................................87 12.4 Identifiers.............................................87 12.5 Package registration....................................88 13 IANA Considerations.........................................88 13.1 Packages................................................88 13.2 Error codes.............................................89 13.3 ServiceChange reasons...................................89
ANNEX A Binary encoding of the protocol.......................90 A.1 Coding of wildcards......................................90 A.2 ASN.1 syntax specification...............................92 A.3 Digit maps and path names...............................111 ANNEX B Text encoding of the protocol.........................113 B.1 Coding of wildcards.....................................113 B.2 ABNF specification......................................113 B.3 Hexadecimal octet coding................................127 B.4 Hexadecimal octet sequence..............................127 ANNEX C Tags for media stream properties......................128 C.1 General media attributes................................128 C.2 Mux properties..........................................130 C.3 General bearer properties...............................130 C.4 General ATM properties..................................130 C.5 Frame Relay.............................................134 C.6 IP......................................................134 C.7 ATM AAL2................................................134 C.8 ATM AAL1................................................136 C.9 Bearer capabilities.....................................137 C.10 AAL5 properties........................................147 C.11 SDP equivalents........................................148 C.12 H.245..................................................149 ANNEX D Transport over IP.....................................150 D.1 Transport over IP/UDP using Application Level Framing ..150 D.1.1 Providing At-Most-Once functionality................150 D.1.2 Transaction identifiers and three-way handshake.....151 D.1.3 Computing retransmission timers.....................152 D.1.4 Provisional responses...............................153 D.1.5 Repeating Requests, Responses and Acknowledgements..153 D.2 Using TCP...............................................155 D.2.1 Providing the At-Most-Once functionality............155 D.2.2 Transaction identifiers and three-way handshake.....155 D.2.3 Computing retransmission timers.....................156 D.2.4 Provisional responses...............................156 D.2.5 Ordering of commands................................156 ANNEX E Basic packages.......................................157 E.1 Generic.................................................157 E.2 Base Root Package.......................................159 E.3 Tone Generator Package..................................161 E.4 Tone Detection Package..................................163 E.5 Basic DTMF Generator Package............................166 E.6 DTMF detection Package..................................167 E.7 Call Progress Tones Generator Package...................169 E.8 Call Progress Tones Detection Package...................171 E.9 Analog Line Supervision Package.........................172 E.10 Basic Continuity Package...............................175 E.11 Network Package........................................178 E.12 RTP Package............................................180
ANNEX A Binary encoding of the protocol.......................90 A.1 Coding of wildcards......................................90 A.2 ASN.1 syntax specification...............................92 A.3 Digit maps and path names...............................111 ANNEX B Text encoding of the protocol.........................113 B.1 Coding of wildcards.....................................113 B.2 ABNF specification......................................113 B.3 Hexadecimal octet coding................................127 B.4 Hexadecimal octet sequence..............................127 ANNEX C Tags for media stream properties......................128 C.1 General media attributes................................128 C.2 Mux properties..........................................130 C.3 General bearer properties...............................130 C.4 General ATM properties..................................130 C.5 Frame Relay.............................................134 C.6 IP......................................................134 C.7 ATM AAL2................................................134 C.8 ATM AAL1................................................136 C.9 Bearer capabilities.....................................137 C.10 AAL5 properties........................................147 C.11 SDP equivalents........................................148 C.12 H.245..................................................149 ANNEX D Transport over IP.....................................150 D.1 Transport over IP/UDP using Application Level Framing ..150 D.1.1 Providing At-Most-Once functionality................150 D.1.2 Transaction identifiers and three-way handshake.....151 D.1.3 Computing retransmission timers.....................152 D.1.4 Provisional responses...............................153 D.1.5 Repeating Requests, Responses and Acknowledgements..153 D.2 Using TCP...............................................155 D.2.1 Providing the At-Most-Once functionality............155 D.2.2 Transaction identifiers and three-way handshake.....155 D.2.3 Computing retransmission timers.....................156 D.2.4 Provisional responses...............................156 D.2.5 Ordering of commands................................156 ANNEX E Basic packages.......................................157 E.1 Generic.................................................157 E.2 Base Root Package.......................................159 E.3 Tone Generator Package..................................161 E.4 Tone Detection Package..................................163 E.5 Basic DTMF Generator Package............................166 E.6 DTMF detection Package..................................167 E.7 Call Progress Tones Generator Package...................169 E.8 Call Progress Tones Detection Package...................171 E.9 Analog Line Supervision Package.........................172 E.10 Basic Continuity Package...............................175 E.11 Network Package........................................178 E.12 RTP Package............................................180
E.13 TDM Circuit Package....................................182 APPENDIX I EXAMPLE CALL FLOWS (INFORMATIVE)...................184 A.1 Residential Gateway to Residential Gateway Call.........184 A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior...................................184 A.1.2 Collecting Originator Digits and Initiating Termination.........................................186 APPENDIX II Changes From RFC 3015............................195 Intellectual Property Rights..................................210 Acknowledgments...............................................211 Authors' Addresses............................................212 Full Copyright Statement......................................213
E.13 TDM Circuit Package....................................182 APPENDIX I EXAMPLE CALL FLOWS (INFORMATIVE)...................184 A.1 Residential Gateway to Residential Gateway Call.........184 A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior...................................184 A.1.2 Collecting Originator Digits and Initiating Termination.........................................186 APPENDIX II Changes From RFC 3015............................195 Intellectual Property Rights..................................210 Acknowledgments...............................................211 Authors' Addresses............................................212 Full Copyright Statement......................................213
1 Scope
1范围
The present document, which is identical to the published version of ITU-T Recommendation H.248.1 (03/2002) except as noted below, defines the protocols used between elements of a physically decomposed multimedia gateway. There are no functional differences from a system view between a decomposed gateway, with distributed sub-components potentially on more than one physical device, and a monolithic gateway such as described in ITU-T Recommendation H.246. This document does not define how gateways, multipoint control units or interactive voice response units (IVRs) work. Instead it creates a general framework that is suitable for these applications.
本文件与ITU-T建议H.248.1(03/2002)的出版版本相同,但下文另有说明。本文件定义了物理分解多媒体网关各元件之间使用的协议。分解网关(可能在多个物理设备上具有分布式子组件)和单片网关(如ITU-T建议H.246中所述)之间的系统视图没有功能差异。本文档未定义网关、多点控制单元或交互式语音响应单元(IVR)的工作方式。相反,它创建了一个适合这些应用程序的通用框架。
Packet network interfaces may include IP, ATM or possibly others. The interfaces will support a variety of Switched Circuit Network (SCN) signalling systems, including tone signalling, ISDN, ISUP, QSIG and GSM. National variants of these signalling systems will be supported where applicable.
分组网络接口可包括IP、ATM或可能的其他接口。这些接口将支持各种交换电路网络(SCN)信号系统,包括音频信号、ISDN、ISUP、QSIG和GSM。在适用的情况下,将支持这些信号系统的国家变体。
The differences between this document and RFC 3015 are documented in Appendix II.
本文件与RFC 3015之间的差异记录在附录II中。
This document differs from the corresponding ITU-T publication in the following respects:
本文件与相应的ITU-T出版物在以下方面有所不同:
- Added IETF front matter in place of the corresponding ITU-T material.
- 增加了IETF前端内容,以代替相应的ITU-T材料。
- The ITU-T summary is too H.323-specific and has been omitted.
- ITU-T摘要过于特定于H.323,因此被省略。
- The IETF conventions have been stated as governing this document. As discussed in section 5 below, this gives slightly greater strength to "should" requirements.
- 本文件以IETF公约为准。如下文第5节所述,这使得“应该”要求的强度稍大一些。
- The Scope section (just above) has been edited slightly to suit its IETF context.
- 范围部分(就在上面)经过了轻微编辑,以适应IETF环境。
- Added normative references to RFCs 2026 and 2119.
- 增加了RFCs 2026和2119的规范性参考。
- Figures 4, 5, and 6 show the centre of the context for greater clarity. Also added Figure 6a showing an important additional example.
- 图4、图5和图6显示了上下文的中心,以便更加清晰。还添加了图6a,其中显示了一个重要的附加示例。
- Added a paragraph in section 7.1.18 which was approved in the Implementor's Guide but lost inadvertently in the ITU-T approved version.
- 在第7.1.18节中添加了一段,该段在实施者指南中获得批准,但在ITU-T批准的版本中意外丢失。
- This document incorporates corrections to the informative examples in Appendix I which also appear in H.248.1 version 2, but which were not picked up in H.248.1 (03/2002).
- 本文件包含对附录I中信息性示例的更正,这些示例也出现在H.248.1第2版中,但在H.248.1(2002年3月)中未提及。
- This document includes a new Appendix II listing all the changes from RFC 3015.
- 本文件包括新附录II,其中列出了RFC 3015的所有变更。
- This document includes an Acknowledgements section listing the authors of RFC 3015 but also many other people who contributed to the development of the Megaco/H.248.x protocol.
- 本文档包括一个确认部分,列出了RFC 3015的作者以及许多其他对Megaco/H.248.x协议的开发做出贡献的人。
- Moved the Intellectual Property declaration to its usual place in an IETF document and added a reference to declarations on the IETF web site.
- 将知识产权声明移至IETF文件中的通常位置,并在IETF网站上添加了对声明的引用。
2 References
2参考文献
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this RFC. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this RFC are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.
以下ITU-T建议和其他参考文件包含通过在本文本中引用而构成本RFC条款的条款。出版时,所示版本有效。所有建议和其他参考文件均需修订;因此,鼓励本RFC的所有用户调查应用最新版本的建议和下列其他参考文献的可能性。目前有效的ITU-T建议清单定期发布。
- ITU-T Recommendation H.225.0 (1999), Call signalling protocols and media stream packetization for packet-based multimedia communication systems.
- ITU-T建议H.225.0(1999),基于分组的多媒体通信系统的呼叫信令协议和媒体流分组。
- ITU-T Recommendation H.235 (1998), Security and encryption for H-Series (H.323 and other H.245-based) multimedia terminals.
- ITU-T建议H.235(1998),H系列(H.323和其他基于H.245的)多媒体终端的安全和加密。
- ITU-T Recommendation H.245 (1998), Control protocol for multimedia communication.
- ITU-T建议H.245(1998),多媒体通信控制协议。
- ITU-T Recommendation H.246 (1998), Interworking of H-series multimedia terminals with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN.
- ITU-T建议H.246(1998),H系列多媒体终端与H系列多媒体终端以及GSTN和ISDN上的语音/声带终端的互通。
- ITU-T Recommendation H.248.8 (2002), H.248 Error Codes and Service Change Reasons.
- ITU-T建议H.248.8(2002),H.248错误代码和服务变更原因。
- ITU-T Recommendation H.323 (1999), Packet-based multimedia communication systems.
- ITU-T建议H.323(1999),基于分组的多媒体通信系统。
- ITU-T Recommendation I.363.1 (1996), B-ISDN ATM adaptation layer (AAL) specification: Type 1 AAL.
- ITU-T建议I.363.1(1996),B-ISDN ATM适配层(AAL)规范:类型1 AAL。
- ITU-T Recommendation I.363.2 (1997), B-ISDN ATM adaptation layer (AAL) specification: Type 2 AAL.
- ITU-T建议I.363.2(1997),B-ISDN ATM适配层(AAL)规范:类型2 AAL。
- ITU-T Recommendation I.363.5 (1996), B-ISDN ATM adaptation layer (AAL) specification: Type 5 AAL.
- ITU-T建议I.363.5(1996),B-ISDN ATM适配层(AAL)规范:第5类AAL。
- ITU-T Recommendation I.366.1 (1998), Segmentation and Reassembly Service Specific Convergence Sublayer for the AAL type 2.
- ITU-T建议I.366.1(1998),AAL类型2的特定于服务的分段和重组汇聚子层。
- ITU-T Recommendation I.366.2 (1999), AAL type 2 service specific convergence sublayer for trunking.
- ITU-T建议I.366.2(1999),用于中继的AAL 2类特定服务汇聚子层。
- ITU-T Recommendation I.371 (2000), Traffic control and congestion control in B-ISDN.
- ITU-T建议I.371(2000),B-ISDN中的流量控制和拥塞控制。
- ITU-T Recommendation Q.763 (1999), Signalling System No. 7 - ISDN user part formats and codes.
- ITU-T建议Q.763(1999),第7号信令系统——ISDN用户部分格式和代码。
- ITU-T Recommendation Q.765.5 (2001), Application transport mechanism - Bearer independent call control (BICC).
- ITU-T建议Q.765.5(2001),应用传输机制-承载独立呼叫控制(BICC)。
- ITU-T Recommendation Q.931 (1998), ISDN user-network interface layer 3 specification for basic call control.
- ITU-T建议Q.931(1998),基本呼叫控制的ISDN用户网络接口第3层规范。
- ITU-T Recommendation Q.2630.1 (1999), AAL type 2 signalling protocol (Capability Set 1).
- ITU-T建议Q.2630.1(1999),AAL第2类信令协议(能力集1)。
- ITU-T Recommendation Q.2931 (1995), Digital Subscriber Signalling System No. 2 (DSS2) - User-Network Interface (UNI) - Layer 3 specification for basic call/connection control.
- ITU-T建议Q.2931(1995),第2号数字用户信令系统(DSS2).用户网络接口(UNI).基本呼叫/连接控制的第3层规范。
- ITU-T Recommendation Q.2941.1 (1997), Digital Subscriber Signalling System No. 2 - Generic identifier transport.
- ITU-T建议Q.2941.1(1997),第2号数字用户信令系统-通用标识符传输。
- ITU-T Recommendation Q.2961.1 (1995), Additional signalling capabilities to support traffic parameters for the tagging option and the sustainable call rate parameter set.
- ITU-T建议Q.2961.1(1995),支持标记选项和可持续呼叫率参数集的流量参数的附加信令能力。
- ITU-T Recommendation Q.2961.2 (1997), Additional traffic parameters: Support of ATM transfer capability in the broadband bearer capability information element.
- ITU-T建议Q.2961.2(1997),附加业务参数:在宽带承载能力信息元素中支持ATM传输能力。
- ITU-T Recommendation Q.2965.1 (1999), Digital subscriber signalling system No. 2 - Support of Quality of Service classes.
- ITU-T建议Q.2965.1(1999),数字用户信号发送系统第2号——服务质量等级的支持。
- ITU-T Recommendation Q.2965.2 (1999), Digital subscriber signalling system No. 2 - Signalling of individual Quality of Service parameters.
- ITU-T建议Q.2965.2(1999),数字用户信号发送系统第2号-单个服务质量参数的信号发送。
- ITU-T Recommendation V.76 (1996), Generic multiplexer using V.42 LAPM-based procedures.
- ITU-T建议V.76(1996),使用基于V.42 LAPM程序的通用多路复用器。
- ITU-T Recommendation X.213 (1995), Information technology - Open Systems Interconnection - Network service definition plus Amendment 1 (1997), Addition of the Internet protocol address format identifier.
- ITU-T建议X.213(1995),信息技术-开放系统互连-网络服务定义加上修正案1(1997),添加互联网协议地址格式标识符。
- ITU-T Recommendation X.680 (1997), Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation.
- ITU-T建议X.680(1997),信息技术——抽象语法符号一(ASN.1):基本符号规范。
- ITU-T Recommendation X.690 (1997), Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
- ITU-T建议X.690(1997),信息技术-ASN.1编码规则:基本编码规则(BER)、规范编码规则(CER)和区分编码规则(DER)的规范。
- ATM Forum (1996), ATM User-Network Interface (UNI) Signalling Specification - Version 4.0.
- ATM论坛(1996),ATM用户网络接口(UNI)信令规范-版本4.0。
[RFC 1006] Rose, M. and D. Cass, "ISO Transport Service on top of the TCP, Version 3", STD 35, RFC 1006, May 1987.
[RFC 1006]Rose,M.和D.Cass,“TCP之上的ISO传输服务,版本3”,STD 35,RFC 1006,1987年5月。
[RFC 2026] Brander, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, October 1996.
[RFC 2026]Brander,S.,“互联网标准过程——第3版”,BCP 9,RFC 2026,1996年10月。
[RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC 2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[RFC 2234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC 2234, November 1997.
[RFC 2234]Crocker,D.,Ed.和P.Overell,“语法规范的扩充BNF:ABNF”,RFC 2234,1997年11月。
[RFC 2327] Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998.
[RFC 2327]Handley,M.和V.Jacobson,“SDP:会话描述协议”,RFC 2327,1998年4月。
[RFC 2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.
[RFC 2402]Kent,S.和R.Atkinson,“IP认证头”,RFC 2402,1998年11月。
[RFC 2406] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[RFC 2406]Kent,S.和R.Atkinson,“IP封装安全有效载荷(ESP)”,RFC 2406,1998年11月。
- ITU-T Recommendation E.180/Q.35 (1998), Technical characteristics of tones for the telephone service.
- ITU-T建议E.180/Q.35(1998),电话业务音调的技术特征。
- CCITT Recommendation G.711 (1988), Pulse Code Modulation (PCM) of voice frequencies.
- CCITT建议G.711(1988),语音频率的脉冲编码调制(PCM)。
- ITU-T Recommendation H.221 (1999), Frame structure for a 64 to 1920 kbit/s channel in audiovisual teleservices.
- ITU-T建议H.221(1999),视听电信业务中64至1920 kbit/s信道的帧结构。
- ITU T Recommendation H.223 (1996), Multiplexing protocol for low bit rate multimedia communication.
- ITU T建议H.223(1996),低比特率多媒体通信的多路复用协议。
- ITU-T Recommendation H.226 (1998), Channel aggregation protocol for multilink operation on circuit-switched networks
- ITU-T建议H.226(1998),电路交换网络上多链路操作的信道聚合协议
- ITU-T Recommendation Q.724 (1998), Signalling procedures.
- ITU-T建议Q.724(1998),信令程序。
- ITU-T Recommendation Q.764 (1999), Signalling system No. 7 - ISDN user part signalling procedures.
- ITU-T建议Q.764(1999),第7号信令系统——ISDN用户部分信令程序。
- ITU-T Recommendation Q.1902.4 (2001), Bearer independent call control protocol - Basic call procedures.
- ITU-T建议Q.1902.4(2001),承载独立呼叫控制协议-基本呼叫程序。
[RFC 768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980.
[RFC 768]Postel,J.,“用户数据报协议”,STD 6,RFC 768,1980年8月。
[RFC 791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.
[RFC 791]Postel,J.,“互联网协议”,STD 5,RFC 7911981年9月。
[RFC 793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981.
[RFC 793]Postel,J.,“传输控制协议”,标准7,RFC 793,1981年9月。
[RFC 1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994.
[RFC 1661]辛普森,W.,编辑,“点对点协议(PPP)”,STD 51,RFC 1661,1994年7月。
[RFC 1889] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", RFC 1889, January 1996.
[RFC 1889]Schulzrinne,H.,Casner,S.,Frederick,R.和V.Jacobson,“RTP:实时应用的传输协议”,RFC 1889,1996年1月。
[RFC 1890] Schulzrinne, H. and G. Fokus, "RTP Profile for Audio and Video Conferences with Minimal Control", RFC 1890, January 1996.
[RFC 1890]Schulzrinne,H.和G.Fokus,“具有最小控制的音频和视频会议的RTP配置文件”,RFC 1890,1996年1月。
[RFC 2401] Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
[RFC 2401]Kent,S.和R.Atkinson,“互联网协议的安全架构”,RFC 2401,1998年11月。
[RFC 2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[RFC 2460]Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,RFC 2460,1998年12月。
[RFC 2543] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg, "SIP: Session Initiation Protocol", RFC 2543, March 1999.
[RFC 2543]Handley,M.,Schulzrinne,H.,Schooler,E.和J.Rosenberg,“SIP:会话启动协议”,RFC 25431999年3月。
[RFC 2805] Greene, N., Ramalho, M. and B. Rosen, "Media Gateway Control Protocol Architecture and Requirements", RFC 2805, April 2000.
[RFC 2805]Greene,N.,Ramalho,M.和B.Rosen,“媒体网关控制协议体系结构和要求”,RFC 2805,2000年4月。
3 Definitions
3定义
This document defines the following terms:
本文件定义了以下术语:
Access gateway: A type of gateway that provides a User-Network Interface (UNI) such as ISDN.
接入网关:一种提供用户网络接口(UNI)的网关,如ISDN。
Descriptor: A syntactic element of the protocol that groups related properties. For instance, the properties of a media flow on the MG can be set by the MGC by including the appropriate descriptor in a command.
描述符:协议的语法元素,用于对相关属性进行分组。例如,MGC可以通过在命令中包含适当的描述符来设置MG上媒体流的属性。
Media Gateway (MG): The media gateway converts media provided in one type of network to the format required in another type of network. For example, a MG could terminate bearer channels from a switched circuit network (e.g., DS0s) and media streams from a packet network (e.g., RTP streams in an IP network). This gateway may be capable of processing audio, video and T.120 alone or in any combination, and will be capable of full duplex media translations. The MG may also play audio/video messages and perform other IVR functions, or may perform media conferencing.
媒体网关(MG):媒体网关将一种网络中提供的媒体转换为另一种网络中所需的格式。例如,MG可以终止来自交换电路网络(例如,ds0)的承载信道和来自分组网络(例如,IP网络中的RTP流)的媒体流。该网关可单独或以任何组合处理音频、视频和T.120,并可进行全双工媒体翻译。MG还可以播放音频/视频消息和执行其他IVR功能,或者可以执行媒体会议。
Media Gateway Controller (MGC): Controls the parts of the call state that pertain to connection control for media channels in a MG.
媒体网关控制器(MGC):控制与MG中媒体通道连接控制相关的呼叫状态部分。
Multipoint Control Unit (MCU): An entity that controls the setup and coordination of a multi-user conference that typically includes processing of audio, video and data.
多点控制单元(MCU):控制多用户会议的设置和协调的实体,通常包括音频、视频和数据的处理。
Residential gateway: A gateway that interworks an analogue line to a packet network. A residential gateway typically contains one or two analogue lines and is located at the customer premises.
住宅网关:将模拟线路与分组网络互连的网关。住宅网关通常包含一条或两条模拟线路,位于客户场所。
SCN FAS signalling gateway: This function contains the SCN Signalling Interface that terminates SS7, ISDN or other signalling links where the call control channel and bearer channels are collocated in the same physical span.
SCN FAS信令网关:此功能包含SCN信令接口,用于终止SS7、ISDN或其他信令链路,其中呼叫控制信道和承载信道位于同一物理范围内。
SCN NFAS signalling gateway: This function contains the SCN Signalling Interface that terminates SS7 or other signalling links where the call control channels are separated from bearer channels.
SCN NFAS信令网关:此功能包含SCN信令接口,用于终止SS7或其他信令链路,其中呼叫控制信道与承载信道分离。
Stream: Bidirectional media or control flow received/sent by a media gateway as part of a call or conference.
流:作为呼叫或会议的一部分,由媒体网关接收/发送的双向媒体或控制流。
Trunk: A communication channel between two switching systems such as a DS0 on a T1 or E1 line.
中继线:两个交换系统(如T1或E1线路上的DS0)之间的通信信道。
Trunking gateway: A gateway between SCN network and packet network that typically terminates a large number of digital circuits.
中继网关:SCN网络和分组网络之间的网关,通常终止大量数字电路。
4 Abbreviations
4缩写
This RFC document uses the following abbreviations:
本RFC文件使用以下缩写:
ALF Application Layer Framing
ALF应用层框架
ATM Asynchronous Transfer Mode
异步传输模式
CAS Channel Associated Signalling
信道相关信令
DTMF Dual Tone Multi-Frequency
双音多频DTMF
FAS Facility Associated Signalling
FAS设施相关信号
GSM Global System for Mobile communications
GSM全球移动通信系统
GW GateWay
网关
IANA Internet Assigned Numbers Authority (superseded by Internet Corporation for Assigned Names and Numbers - ICANN)
IANA互联网分配号码管理局(由互联网名称和号码分配公司-ICANN取代)
IP Internet Protocol
网际协议
ISUP ISDN User Part
ISUP ISDN用户部分
IVR Interactive Voice Response
交互式语音应答
MG Media Gateway
媒体网关
MGC Media Gateway Controller
媒体网关控制器
NFAS Non-Facility Associated Signalling
NFAS非设施相关信令
PRI Primary Rate Interface
PRI主速率接口
PSTN Public Switched Telephone Network
公共交换电话网
QoS Quality of Service
服务质量
RTP Real-time Transport Protocol
实时传输协议
SCN Switched Circuit Network
交换电路网络
SG Signalling Gateway
信令网关
SS7 Signalling System No. 7
七号信令系统七号
5 Conventions
五公约
In the H.248.1 Recommendation, "SHALL" refers to a mandatory requirement, while "SHOULD" refers to a suggested but optional feature or procedure. The term "MAY" refers to an optional course of action without expressing a preference. Note that these definition are overridden in the present document by the RFC 2119 conventions stated at the beginning of this document. RFC 2119 has a more precise definition of "should" than is provided by the ITU-T.
在H.248.1建议中,“应”指强制性要求,而“应”指建议但可选的特征或程序。“可”一词是指不表示偏好的可选行动方案。请注意,本文件开头所述的RFC 2119公约覆盖了这些定义。RFC2119对“应该”的定义比ITU-T提供的定义更精确。
6 Connection model
6连接模型
The connection model for the protocol describes the logical entities, or objects, within the Media Gateway that can be controlled by the Media Gateway Controller. The main abstractions used in the connection model are Terminations and Contexts.
协议的连接模型描述了媒体网关中可由媒体网关控制器控制的逻辑实体或对象。连接模型中使用的主要抽象是终止和上下文。
A Termination sources and/or sinks one or more streams. In a multimedia conference, a Termination can be multimedia and sources or sinks multiple media streams. The media stream parameters, as well as modem, and bearer parameters are encapsulated within the Termination.
终端源和/或汇一个或多个流。在多媒体会议中,终端可以是多媒体,也可以是多个媒体流的源或汇。媒体流参数以及调制解调器和承载参数封装在终端中。
A Context is an association between a collection of Terminations. There is a special type of Context, the null Context, which contains all Terminations that are not associated to any other Termination. For instance, in a decomposed access gateway, all idle lines are represented by Terminations in the null Context.
上下文是终止集合之间的关联。有一种特殊类型的上下文,null上下文,它包含与任何其他终止都不关联的所有终止。例如,在分解的访问网关中,所有空闲线路都由空上下文中的终端表示。
Following is a graphical depiction of these concepts. The diagram of Figure 1 gives several examples and is not meant to be an all-inclusive illustration. The asterisk box in each of the Contexts represents the logical association of Terminations implied by the Context.
以下是这些概念的图形描述。图1的图表给出了几个示例,并不意味着是一个包罗万象的说明。每个上下文中的星号框表示上下文所暗示的终止的逻辑关联。
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context +-------------+ | | | | | Termination | | | | | |-------------| | | | | +-------------+ +->| SCN Bearer |<---+-> | | | Termination | +-----+ | | Channel | | | | | |-------------| | |---+ +-------------+ | | <-+--->| RTP Stream |---| * | | | | | | | | |---+ +-------------+ | | | | +-------------+ +-----+ | | Termination | | | | | | |-------------| | | | | +->| SCN Bearer |<---+-> | | | Channel | | | | | +-------------+ | | | +-------------------------------------------------+ | | | | | | +------------------------------+ | | (NULL Context) |Context | | | +-------------+ | +-------------+ | | | | Termination | | +-----+ | Termination | | | | |-------------| | | | |-------------| | | | | SCN Bearer | | | * |------| SCN Bearer |<---+-> | | Channel | | | | | Channel | | | | +-------------+ | +-----+ +-------------+ | | | +------------------------------+ | | | | | | +-------------------------------------------------+ | | |Context | | | | +-------------+ +-------------+ | | | | | Termination | +-----+ | Termination | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | ___________________________________________________ | +------------------------------------------------------+
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context +-------------+ | | | | | Termination | | | | | |-------------| | | | | +-------------+ +->| SCN Bearer |<---+-> | | | Termination | +-----+ | | Channel | | | | | |-------------| | |---+ +-------------+ | | <-+--->| RTP Stream |---| * | | | | | | | | |---+ +-------------+ | | | | +-------------+ +-----+ | | Termination | | | | | | |-------------| | | | | +->| SCN Bearer |<---+-> | | | Channel | | | | | +-------------+ | | | +-------------------------------------------------+ | | | | | | +------------------------------+ | | (NULL Context) |Context | | | +-------------+ | +-------------+ | | | | Termination | | +-----+ | Termination | | | | |-------------| | | | |-------------| | | | | SCN Bearer | | | * |------| SCN Bearer |<---+-> | | Channel | | | | | Channel | | | | +-------------+ | +-----+ +-------------+ | | | +------------------------------+ | | | | | | +-------------------------------------------------+ | | |Context | | | | +-------------+ +-------------+ | | | | | Termination | +-----+ | Termination | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | ___________________________________________________ | +------------------------------------------------------+
Figure 1: Examples of Megaco/H.248 Connection Model
图1:Megaco/H.248连接模型示例
The example in Figure 2 shows an example of one way to accomplish a call-waiting scenario in a decomposed access gateway, illustrating the relocation of a Termination between Contexts. Terminations T1 and T2 belong to Context C1 in a two-way audio call. A second audio call is waiting for T1 from Termination T3. T3 is alone in Context C2. T1 accepts the call from T3, placing T2 on hold. This action results in T1 moving into Context C2, as shown in Figure 3.
图2中的示例显示了在分解的访问网关中实现呼叫等待场景的一种方法的示例,说明了在上下文之间重新定位终端。终端T1和T2属于双向音频呼叫中的上下文C1。第二个音频呼叫正在等待来自终端T3的T1。T3在上下文C2中是单独的。T1接受T3的呼叫,将T2置于等待状态。此操作导致T1移动到上下文C2中,如图3所示。
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ +-------------+ | | | | | Term. T2 | +-----+ | Term. T1 | | | | | |-------------| | | |-------------| | | <-+--->| RTP Stream |---| * |------| SCN Bearer |<---+-> | | | | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ | | | | +-----+ | Term. T3 | | | | | | | |-------------| | | | | | * |------| SCN Bearer |<---+-> | | | | | Channel | | | | | +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ +-------------+ | | | | | Term. T2 | +-----+ | Term. T1 | | | | | |-------------| | | |-------------| | | <-+--->| RTP Stream |---| * |------| SCN Bearer |<---+-> | | | | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ | | | | +-----+ | Term. T3 | | | | | | | |-------------| | | | | | * |------| SCN Bearer |<---+-> | | | | | Channel | | | | | +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
Figure 2: Example Call Waiting Scenario / Alerting Applied to T1
图2:应用于T1的呼叫等待场景/警报示例
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ | | | | | Term. T2 | +-----+ | | | | |-------------| | | | | <-+--->| RTP Stream |---| * | | | | | | | | | | | | | +-------------+ +-----+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ +-------------+ | | | | | Term. T1 | +-----+ | Term. T3 | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ | | | | | Term. T2 | +-----+ | | | | |-------------| | | | | <-+--->| RTP Stream |---| * | | | | | | | | | | | | | +-------------+ +-----+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ +-------------+ | | | | | Term. T1 | +-----+ | Term. T3 | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
Figure 3. Example Call Waiting Scenario / Answer by T1
图3。T1呼叫等待场景/应答示例
A Context is an association between a number of Terminations. The Context describes the topology (who hears/sees whom) and the media mixing and/or switching parameters if more than two Terminations are involved in the association.
上下文是多个终止之间的关联。上下文描述了拓扑(谁听到/看到谁)以及媒体混合和/或切换参数(如果关联中涉及两个以上的终端)。
There is a special Context called the null Context. It contains Terminations that are not associated to any other Termination. Terminations in the null Context can have their parameters examined or modified, and may have events detected on them.
有一个称为空上下文的特殊上下文。它包含与任何其他终端不关联的终端。空上下文中的终止可以检查或修改其参数,并且可以在其上检测到事件。
In general, an Add command is used to add Terminations to Contexts. If the MGC does not specify an existing Context to which the Termination is to be added, the MG creates a new Context. A Termination may be removed from a Context with a Subtract command, and a Termination may be moved from one Context to another with a Move command. A Termination SHALL exist in only one Context at a time.
通常,Add命令用于向上下文添加终止。如果MGC没有指定要添加终止的现有上下文,MG将创建一个新上下文。可以使用减法命令从上下文中删除终止,并且可以使用移动命令将终止从一个上下文移动到另一个上下文。一次只能在一个上下文中存在终止。
The maximum number of Terminations in a Context is a MG property. Media gateways that offer only point-to-point connectivity might allow at most two Terminations per Context. Media gateways that support multipoint conferences might allow three or more Terminations per Context.
上下文中的最大终止数是MG属性。仅提供点对点连接的媒体网关可能允许每个上下文最多两个终止。支持多点会议的媒体网关可能允许每个上下文有三个或更多终端。
The attributes of Contexts are:
上下文的属性包括:
- ContextID.
- 上下文ID。
- The topology (who hears/sees whom).
- 拓扑结构(谁听到/看到谁)。
The topology of a Context describes the flow of media between the Terminations within a Context. In contrast, the mode of a Termination (send/receive/...) describes the flow of the media at the ingress/egress of the media gateway.
上下文的拓扑描述了上下文中终端之间的媒体流。相反,终止模式(发送/接收/…)描述媒体网关入口/出口处的媒体流。
- The priority is used for a Context in order to provide the MG with information about a certain precedence handling for a Context. The MGC can also use the priority to control autonomously the traffic precedence in the MG in a smooth way in certain situations (e.g., restart), when a lot of Contexts must be handled simultaneously. Priority 0 is the lowest priority and a priority of 15 is the highest priority.
- 优先级用于上下文,以便向MG提供有关上下文的特定优先级处理的信息。当必须同时处理大量上下文时,MGC还可以在某些情况下(例如,重新启动)使用优先级以平滑方式自主控制MG中的流量优先级。优先级0是最低优先级,优先级15是最高优先级。
- An indicator for an emergency call is also provided to allow a preference handling in the MG.
- 还提供了紧急呼叫指示器,以允许MG中的优先处理。
The protocol can be used to (implicitly) create Contexts and modify the parameter values of existing Contexts. The protocol has commands to add Terminations to Contexts, subtract them from Contexts, and to move Terminations between Contexts. Contexts are deleted implicitly when the last remaining Termination is subtracted or moved out.
该协议可用于(隐式)创建上下文和修改现有上下文的参数值。该协议具有向上下文添加终止、从上下文中减去终止以及在上下文之间移动终止的命令。当减去或移出最后一个剩余终止时,上下文将被隐式删除。
A Termination is a logical entity on a MG that sources and/or sinks media and/or control streams. A Termination is described by a number of characterizing Properties, which are grouped in a set of Descriptors that are included in commands. Terminations have unique identities (TerminationIDs), assigned by the MG at the time of their creation.
终端是MG上的一个逻辑实体,用于发送和/或接收媒体和/或控制流。终端由许多特征属性描述,这些属性分组在命令中包含的一组描述符中。终止具有唯一标识(TerminationID),由MG在创建时分配。
Terminations representing physical entities have a semi-permanent existence. For example, a Termination representing a TDM channel might exist for as long as it is provisioned in the gateway. Terminations representing ephemeral information flows, such as RTP flows, would usually exist only for the duration of their use.
表示物理实体的终止具有半永久性存在。例如,表示TDM信道的终端只要在网关中设置就可能存在。表示短暂信息流(如RTP流)的终止通常仅在其使用期间存在。
Ephemeral Terminations are created by means of an Add command. They are destroyed by means of a Subtract command. In contrast, when a physical Termination is Added to or Subtracted from a Context, it is taken from or to the null Context, respectively.
临时终止是通过Add命令创建的。它们通过减法命令被销毁。相反,当向上下文中添加或减去物理终止时,它分别从空上下文中获取或从空上下文中获取。
Terminations may have signals applied to them (see 7.1.11). Terminations may be programmed to detect Events, the occurrence of which can trigger notification messages to the MGC, or action by the MG. Statistics may be accumulated on a Termination. Statistics are reported to the MGC upon request (by means of the AuditValue command, see 7.2.5) and when the Termination is taken out of the call it is in.
终端可能有应用于其的信号(见7.1.11)。可以对终止进行编程以检测事件,事件的发生可以触发向MGC的通知消息或MG的动作。可在终止时累积统计数据。根据要求(通过AuditValue命令,见7.2.5)以及在呼叫终止时,向MGC报告统计数据。
Multimedia gateways may process multiplexed media streams. For example, Recommendation H.221 describes a frame structure for multiple media streams multiplexed on a number of digital 64 kbit/s channels. Such a case is handled in the connection model in the following way. For every bearer channel that carries part of the multiplexed streams, there is a physical or ephemeral "bearer Termination". The bearer Terminations that source/sink the digital channels are connected to a separate Termination called the "multiplexing Termination". The multiplexing termination is an ephemeral termination representing a frame-oriented session. The MultiplexDescriptor for this Termination describes the multiplex used (e.g., H.221 for an H.320 session) and indicates the order in which the contained digital channels are assembled into a frame.
多媒体网关可以处理多路复用的媒体流。例如,建议H.221描述了在多个数字64kbit/s信道上多路复用的多个媒体流的帧结构。这种情况在连接模型中按以下方式处理。对于承载部分多路复用流的每个承载信道,存在物理或短暂的“承载终止”。发送/接收数字信道的承载终端连接到称为“多路复用终端”的单独终端。多路复用终端是表示面向帧的会话的短暂终端。该终端的MultiplexDescriptor描述了所使用的多路复用(例如,H.221用于H.320会话),并指示所包含的数字信道组装到帧中的顺序。
Multiplexing terminations may be cascades (e.g., H.226 multiplex of digital channels feeding into a H.223 multiplex supporting an H.324 session).
多路复用终端可以是级联(例如,馈送到支持H.324会话的H.223多路复用的数字信道的H.226多路复用)。
The individual media streams carried in the session are described by StreamDescriptors on the multiplexing Termination. These media streams can be associated with streams sourced/sunk by Terminations in the Context other than the bearer Terminations supporting the multiplexing Termination. Each bearer Termination supports only a single data stream. These data streams do not appear explicitly as streams on the multiplexing Termination and they are hidden from the rest of the context.
会话中承载的各个媒体流由多路复用终端上的流描述符描述。这些媒体流可以与支持多路复用终端的承载终端以外的上下文中的终端所来源/接收的流相关联。每个承载端仅支持一个数据流。这些数据流在多路复用终端上不显式显示为流,并且它们对上下文的其余部分隐藏。
Figures 4, 5, 6, and 6a illustrate typical applications of the multiplexing termination and Multiplex Descriptor.
图4、5、6和6a说明了多路复用终端和多路复用描述符的典型应用。
+-----------------------------------+ | Context +-------+ | +----+ | | | Circuit 1 -|--| TC1|---------+ Tmux | | | +----+ (Str 1) | | Audio +-----+ | | | +-----*-----+ |----- | +----+ | H.22x | Stream 1 | | Circuit 2 -|--| TC2|---------+ multi-| | TR1 | | +----+ (Str 1) | plex | |(RTP)| | | | | Video | | | +----+ | +-----*-----+ |----- Circuit 3 -|--| TC3|---------+ | Stream 2 | | / +----+ (Str 1) | | +-----+ / | +-------+ | / +-----------------\-----------------+ Audio, video, and control \ signals are carried in frames Tmux is an ephemeral with two spanning the circuits. explicit Stream Descriptors and a Multiplex Descriptor.
+-----------------------------------+ | Context +-------+ | +----+ | | | Circuit 1 -|--| TC1|---------+ Tmux | | | +----+ (Str 1) | | Audio +-----+ | | | +-----*-----+ |----- | +----+ | H.22x | Stream 1 | | Circuit 2 -|--| TC2|---------+ multi-| | TR1 | | +----+ (Str 1) | plex | |(RTP)| | | | | Video | | | +----+ | +-----*-----+ |----- Circuit 3 -|--| TC3|---------+ | Stream 2 | | / +----+ (Str 1) | | +-----+ / | +-------+ | / +-----------------\-----------------+ Audio, video, and control \ signals are carried in frames Tmux is an ephemeral with two spanning the circuits. explicit Stream Descriptors and a Multiplex Descriptor.
Figure 4: Multiplexed Termination Scenario - Circuit to Packet (Asterisks * denote the centre of the context)
图4:多路复用终止场景-电路到数据包(星号*表示上下文的中心)
Context +--------------------------------------+ | +-------+ +-------+ | +----+ | | | | +----+ Circuit 1 ----| TC1|---+ Tmux1 | Audio | Tmux2 +---| TC4|--- +----+ | +---*----+ | +----+ | | | Str 1 | | | +----+ | H.22x | | H.22x | +----+ Circuit 2 ----| TC2|---+ multi-| | multi-+---| TC5|--- +----+ | plex | | plex | +----+ | | | Video | | | +----+ | +---*----+ | +----+ Circuit 3 ----| TC3|---+ | Str 2 | +---| TC6|--- +----+ | | | | +----+ | +-------+ +-------+ | +-----------------\-----/--------------+ \ / Tmux1 and Tmux2 are ephemerals each with two explicit Stream Descriptors and a Multiplex Descriptor.
Context +--------------------------------------+ | +-------+ +-------+ | +----+ | | | | +----+ Circuit 1 ----| TC1|---+ Tmux1 | Audio | Tmux2 +---| TC4|--- +----+ | +---*----+ | +----+ | | | Str 1 | | | +----+ | H.22x | | H.22x | +----+ Circuit 2 ----| TC2|---+ multi-| | multi-+---| TC5|--- +----+ | plex | | plex | +----+ | | | Video | | | +----+ | +---*----+ | +----+ Circuit 3 ----| TC3|---+ | Str 2 | +---| TC6|--- +----+ | | | | +----+ | +-------+ +-------+ | +-----------------\-----/--------------+ \ / Tmux1 and Tmux2 are ephemerals each with two explicit Stream Descriptors and a Multiplex Descriptor.
Figure 5: Multiplexed Termination Scenario - Circuit to Circuit (Asterisks * denote the centre of the context)
图5:多路复用终端场景-电路对电路(星号*表示上下文的中心)
+-----------------------------------+ | Context +-------+ | +----+ | | | Circuit 1 -|--| TC1|---------+ Tmux | | | +----+ (Str 1) | | Audio +-----+ | | | +-----*-----+ TR1 |----- | +----+ | H.22x | Stream 1 |(RTP)| Circuit 2 -|--| TC2|---------+ multi-| +-----+ | +----+ (Str 1) | plex | | | | | | Video +-----+ | +----+ | +-----*-----+ TR2 |----- Circuit 3 -|--| TC3|---------+ | Stream 2 |(RTP)| / +----+ (Str 1) | | +-----+ / | +-------+ | / +-----------------\-----------------+ Audio, video, and control \ Tmux is an ephemeral with two signals are carried in frames explicit Stream Descriptors and spanning the circuits. and a Multiplex Descriptor.
+-----------------------------------+ | Context +-------+ | +----+ | | | Circuit 1 -|--| TC1|---------+ Tmux | | | +----+ (Str 1) | | Audio +-----+ | | | +-----*-----+ TR1 |----- | +----+ | H.22x | Stream 1 |(RTP)| Circuit 2 -|--| TC2|---------+ multi-| +-----+ | +----+ (Str 1) | plex | | | | | | Video +-----+ | +----+ | +-----*-----+ TR2 |----- Circuit 3 -|--| TC3|---------+ | Stream 2 |(RTP)| / +----+ (Str 1) | | +-----+ / | +-------+ | / +-----------------\-----------------+ Audio, video, and control \ Tmux is an ephemeral with two signals are carried in frames explicit Stream Descriptors and spanning the circuits. and a Multiplex Descriptor.
Figure 6: Multiplexed Termination Scenario - Single to Multiple Terminations (Asterisks * denote the centre of the context)
图6:多路复用终端场景-单到多个终端(星号*表示上下文的中心)
Context +---------------------------------------------+ | +-------+ +-------+ | Cct 1 +----+ | | | | Audio +-----+ ----| TC1|---+ Tmux1 | | Tmux2 +-----*-----| TR1 |----- +----+ | | | | Stream 1 |(RTP)| | | | Data | | +-----+ Cct 2 +----+ | H.226 +-------+ H.223 | | ----| TC2|---+ multi-|(Str 1)| multi-| Control +-----+ +----+ | plex | | plex +-----*-----+ Tctl|----- | | | | | Stream 3 +-----+ Cct 3 +----+ | | | | | ----| TC3|---+ | | | +-----+ +----+ | | | +-----*-----+ TR2 |----- | +-------+ | | Video |(RTP)| | +-------+ Stream 2 +-----+ | | +---------------------------------------------+ Tmux1 has a Multiplex Descriptor and a single data stream. Tmux2 has a Multiplex Descriptor with a single bearer and three explicit Stream Descriptors.
Context +---------------------------------------------+ | +-------+ +-------+ | Cct 1 +----+ | | | | Audio +-----+ ----| TC1|---+ Tmux1 | | Tmux2 +-----*-----| TR1 |----- +----+ | | | | Stream 1 |(RTP)| | | | Data | | +-----+ Cct 2 +----+ | H.226 +-------+ H.223 | | ----| TC2|---+ multi-|(Str 1)| multi-| Control +-----+ +----+ | plex | | plex +-----*-----+ Tctl|----- | | | | | Stream 3 +-----+ Cct 3 +----+ | | | | | ----| TC3|---+ | | | +-----+ +----+ | | | +-----*-----+ TR2 |----- | +-------+ | | Video |(RTP)| | +-------+ Stream 2 +-----+ | | +---------------------------------------------+ Tmux1 has a Multiplex Descriptor and a single data stream. Tmux2 has a Multiplex Descriptor with a single bearer and three explicit Stream Descriptors.
Figure 6a: Multiplexed Termination Scenario - Cascaded Multiplexes (Asterisks * denote the centre of the context) Note: this figure does not appear in Rec. H.248.1
图6a:多路复用终端场景-级联多路复用(星号*表示上下文的中心)注:该图未出现在建议H.248.1中
Terminations may be created which represent multiplexed bearers, such as an ATM AAL Type 2 bearer. When a new multiplexed bearer is to be created, an ephemeral Termination is created in a Context established for this purpose. When the Termination is subtracted, the multiplexed bearer is destroyed.
可以创建表示多路复用承载的终端,例如ATM AAL类型2承载。当要创建新的多路复用承载时,在为此目的建立的上下文中创建临时终止。当终端被减去时,多路复用承载被破坏。
The protocol can be used to create new Terminations and to modify property values of existing Terminations. These modifications include the possibility of adding or removing events and/or signals. The Termination properties, and events and signals are described in the ensuing subclauses. An MGC can only release/modify Terminations and the resources that the Termination represents which it has previously seized via, e.g., the Add command.
该协议可用于创建新终端和修改现有终端的属性值。这些修改包括添加或删除事件和/或信号的可能性。终端属性、事件和信号在随后的子条款中描述。MGC只能释放/修改终端以及终端所代表的资源,这些资源是MGC之前通过Add命令获取的。
Terminations are referenced by a TerminationID, which is an arbitrary schema chosen by the MG.
终止由TerminationID引用,TerminationID是MG选择的任意模式。
TerminationIDs of physical Terminations are provisioned in the Media Gateway. The TerminationIDs may be chosen to have structure. For instance, a TerminationID may consist of trunk group and a trunk within the group.
物理终端的TerminationID在媒体网关中设置。可以选择TerminationID具有结构。例如,TerminationID可能由中继组和组内的中继组成。
A wildcarding mechanism using two types of wildcards can be used with TerminationIDs. The two wildcards are ALL and CHOOSE. The former is used to address multiple Terminations at once, while the latter is used to indicate to a media gateway that it must select a Termination satisfying the partially specified TerminationID. This allows, for instance, that a MGC instructs a MG to choose a circuit within a trunk group.
使用两种通配符的通配符机制可以与TerminationID一起使用。这两个通配符是“全部”并选择。前者用于一次寻址多个终端,而后者用于向媒体网关指示它必须选择满足部分指定的TerminationID的终端。例如,这允许MGC指示MG选择中继组内的线路。
When ALL is used in the TerminationID of a command, the effect is identical to repeating the command with each of the matching TerminationIDs. The use of ALL does not address the ROOT termination. Since each of these commands may generate a response, the size of the entire response may be large. If individual responses are not required, a wildcard response may be requested. In such a case, a single response is generated, which contains the UNION of all of the individual responses which otherwise would have been generated, with duplicate values suppressed. For instance, given a Termination Ta with properties p1=a, p2=b and Termination Tb with
在命令的TerminationID中使用ALL时,效果与使用每个匹配的TerminationID重复命令相同。使用ALL不能解决根终止问题。由于这些命令中的每一个都可能生成响应,因此整个响应的大小可能很大。如果不需要单独的响应,可以请求通配符响应。在这种情况下,将生成一个响应,其中包含所有单独响应的并集,否则将生成这些响应,并抑制重复值。例如,给定属性为p1=a、p2=b的终端Ta和属性为
properties p2=c, p3=d, a UNION response would consist of a wildcarded TerminationId and the sequence of properties p1=a, p2=b,c and p3=d. Wildcard response may be particularly useful in the Audit commands.
属性p2=c,p3=d,联合响应将由通配符TerminationId和属性p1=a,p2=b,c和p3=d的序列组成。通配符响应在审计命令中可能特别有用。
The encoding of the wildcarding mechanism is detailed in Annexes A and B.
通配符机制的编码详见附件A和B。
Different types of gateways may implement Terminations that have widely differing characteristics. Variations in Terminations are accommodated in the protocol by allowing Terminations to have optional Properties, Events, Signals and Statistics implemented by MGs.
不同类型的网关可以实现具有不同特性的终端。通过允许终端具有MGs实现的可选属性、事件、信号和统计信息,协议中适应了终端的变化。
In order to achieve MG/MGC interoperability, such options are grouped into Packages, and typically a Termination realizes a set of such Packages. More information on definition of packages can be found in clause 12. An MGC can audit a Termination to determine which Packages it realizes.
为了实现MG/MGC互操作性,这些选项被分组到包中,并且通常终端实现一组这样的包。有关包定义的更多信息,请参见第12条。MGC可以审核终止以确定它实现了哪些包。
Properties, Events, Signals and Statistics defined in Packages, as well as parameters to them, are referenced by identifiers (Ids). Identifiers are scoped. For each package, PropertyIds, EventIds, SignalIds, StatisticsIds and ParameterIds have unique name spaces and the same identifier may be used in each of them. Two PropertyIds in different packages may also have the same identifier, etc.
在包中定义的属性、事件、信号和统计信息以及它们的参数由标识符(ID)引用。标识符的作用域是有限的。对于每个包,PropertyID、EventID、SignalID、StatisticsID和ParameterID都有唯一的名称空间,并且可以在每个包中使用相同的标识符。不同包中的两个PropertyID也可能具有相同的标识符,等等。
To support a particular package the MG must support all properties, signals, events and statistics defined in a package. It must also support all Signal and Event parameters. The MG may support a subset of the values listed in a package for a particular Property or Parameter.
为了支持特定的包,MG必须支持包中定义的所有属性、信号、事件和统计信息。它还必须支持所有信号和事件参数。MG可以支持特定属性或参数的包中列出的值的子集。
When packages are extended, the properties, events, signals and statistics defined in the base package can be referred to using either the extended package name or the base package name. For example, if Package A defines event e1, and Package B extends Package A, then B/e1 is an event for a termination implementing Package B. By definition, the MG MUST also implement the base Package, but it is optional to publish the base package as an allowed interface. If it does publish A, then A would be reported on the Package Descriptor in AuditValue as well as B, and event A/e1 would be available on a termination. If the MG does not publish A, then only B/e1 would be available. If published through AuditValue, A/e1 and B/e1 are the same event.
扩展包时,可以使用扩展包名称或基本包名称引用基本包中定义的属性、事件、信号和统计信息。例如,如果包A定义事件e1,包B扩展包A,则B/e1是实现包B的终止的事件。根据定义,MG还必须实现基本包,但将基本包发布为允许的接口是可选的。如果它确实发布了A,那么将在AuditValue中的包描述符上报告A以及B,并且事件A/e1将在终止时可用。如果MG不发布A,那么只有B/e1可用。如果通过AuditValue发布,则A/e1和B/e1是同一事件。
For improved interoperability and backward compatibility, an MG MAY publish all Packages supported by its Terminations, including base Packages from which extended Packages are derived. An exception to this is in cases where the base packages are expressly "Designed to be extended only".
为了提高互操作性和向后兼容性,MG可以发布其终端支持的所有包,包括派生扩展包的基本包。例外情况是,基本包明确“设计为仅扩展”。
Terminations have properties. The properties have unique PropertyIDs. Most properties have default values, which are explicitly defined in this protocol specification or in a package (see clause 12) or set by provisioning. If not provisioned otherwise, the properties in all descriptors except TerminationState and LocalControl default to empty/"no value" when a Termination is first created or returned to the null Context. The default contents of the two exceptions are described in 7.1.5 and 7.1.7.
终止具有属性。属性具有唯一的属性ID。大多数属性都有默认值,这些默认值在本协议规范或包(见第12条)中明确定义,或由配置设置。如果未以其他方式设置,则在首次创建终止或将其返回到空上下文时,除TerminationState和LocalControl之外的所有描述符中的属性默认为空/“无值”。7.1.5和7.1.7中描述了这两个例外的默认内容。
The provisioning of a property value in the MG will override any default value, be it supplied in this protocol specification or in a package. Therefore if it is essential for the MGC to have full control over the property values of a Termination, it should supply explicit values when ADDing the Termination to a Context. Alternatively, for a physical Termination the MGC can determine any provisioned property values by auditing the Termination while it is in the NULL Context.
MG中属性值的设置将覆盖任何默认值,无论它是在本协议规范中提供的还是在包中提供的。因此,如果MGC必须完全控制终止的属性值,则在将终止添加到上下文时,MGC应提供显式值。或者,对于物理终止,MGC可以在终止处于空上下文时通过审核该终止来确定任何已设置的属性值。
There are a number of common properties for Terminations and properties specific to media streams. The common properties are also called the Termination state properties. For each media stream, there are local properties and properties of the received and transmitted flows.
终端有许多通用属性和特定于媒体流的属性。公共属性也称为终止状态属性。对于每个媒体流,都有本地属性以及接收和传输流的属性。
Properties not included in the base protocol are defined in Packages. These properties are referred to by a name consisting of the PackageName and a PropertyId. Most properties have default values described in the Package description. Properties may be read-only or read/write. The possible values of a property may be audited, as can their current values. For properties that are read/write, the MGC can set their values. A property may be declared as "Global" which has a single value shared by all Terminations realizing the package. Related properties are grouped into descriptors for convenience.
基本协议中未包含的属性在包中定义。这些属性由PackageName和PropertyId组成的名称引用。大多数属性都有包说明中描述的默认值。属性可以是只读或读/写。可以审核属性的可能值及其当前值。对于读/写属性,MGC可以设置其值。一个属性可以声明为“全局”,它有一个由实现包的所有终端共享的值。为方便起见,相关属性被分组到描述符中。
When a Termination is added to a Context, the value of its read/write properties can be set by including the appropriate descriptors as parameters to the Add command. Similarly, a property of a Termination in a Context may have its value changed by the Modify command.
将终止添加到上下文时,可以通过将适当的描述符作为参数添加到Add命令来设置其读/写属性的值。类似地,上下文中终止的属性的值可能会被Modify命令更改。
Properties may also have their values changed when a Termination is moved from one Context to another as a result of a Move command. In some cases, descriptors are returned as output from a command.
当终端由于Move命令从一个上下文移动到另一个上下文时,属性的值也可能会发生更改。在某些情况下,描述符作为命令的输出返回。
In general, if a Descriptor is completely omitted from one of the aforementioned Commands, the properties in that Descriptor retain their prior values for the Termination(s) upon which the Command acts. On the other hand, if some read/write properties are omitted from a Descriptor in a Command (i.e., the Descriptor is only partially specified), those properties will be reset to their default values for the Termination(s) upon which the Command acts, unless the package specifies other behavior. For more details, see clause 7.1 dealing with the individual Descriptors.
通常,如果在上述命令中完全省略了描述符,则该描述符中的属性将保留其在命令执行时终止时的先前值。另一方面,如果命令中的描述符省略了某些读/写属性(即,仅部分指定了描述符),则这些属性将重置为命令作用的终止的默认值,除非包指定了其他行为。有关更多详细信息,请参见第7.1条,其中涉及各个描述符。
The following table lists all of the possible descriptors and their use. Not all descriptors are legal as input or output parameters to every command.
下表列出了所有可能的描述符及其用法。并非所有描述符都可以作为每个命令的输入或输出参数。
Descriptor name Description
描述符名称描述
Modem Identifies modem type and properties when applicable
调制解调器在适用时标识调制解调器类型和属性
Mux Describes multiplex type for multimedia Terminations (e.g., H.221, H.223, H.225.0) and Terminations forming the input mux
Mux描述多媒体终端(例如H.221、H.223、H.225.0)和构成输入Mux的终端的多路复用类型
Media A list of media stream specifications (see 7.1.4)
媒体流规范列表(见7.1.4)
TerminationState Properties of a Termination (which can be defined in Packages) that are not stream specific
TerminationState非特定于流的终止(可在包中定义)的属性
Stream A list of remote/local/localControl descriptors for a single stream
流单个流的远程/本地/本地控制描述符列表
Local Contains properties that specify the media flows that the MG receives from the remote entity.
Local包含指定MG从远程实体接收的媒体流的属性。
Remote Contains properties that specify the media flows that the MG sends to the remote entity.
Remote包含指定MG发送到远程实体的媒体流的属性。
LocalControl Contains properties (which can be defined in packages) that are of interest between the MG and the MGC.
LocalControl包含MG和MGC之间感兴趣的属性(可以在包中定义)。
Events Describes events to be detected by the MG and what to do when an event is detected.
事件描述MG检测到的事件以及检测到事件时要执行的操作。
EventBuffer Describes events to be detected by the MG when Event Buffering is active.
EventBuffer描述当事件缓冲处于活动状态时MG检测到的事件。
Signals Describes signals (see 7.1.11) applied to Terminations.
信号描述应用于终端的信号(见7.1.11)。
Audit In Audit commands, identifies which information is desired.
Audit在Audit命令中,标识所需的信息。
Packages In AuditValue, returns a list of Packages realized by Termination.
AuditValue中的包,返回通过终止实现的包的列表。
DigitMap Defines patterns against which sequences of a specified set of events are to be matched so they can be reported as a group rather than singly.
DigitMap定义了一组特定事件序列的匹配模式,以便将它们作为一个组而不是单独报告。
ServiceChange In ServiceChange, what, why service change occurred, etc.
ServiceChange中的ServiceChange、服务更改的内容、发生服务更改的原因等。
ObservedEvents In Notify or AuditValue, report of events observed.
Notify或AuditValue中观察到的事件,观察到的事件报告。
Statistics In Subtract and Audit, report of Statistics kept on a Termination.
在减法和审计中的统计,终止时保存的统计报告。
Topology Specifies flow directions between Terminations in a Context.
拓扑指定上下文中端点之间的流向。
Error Contains an error code and optionally error text; it may occur in command replies and in Notify requests.
错误包含错误代码和可选的错误文本;它可能出现在命令回复和通知请求中。
Occasionally, a command must refer to the entire gateway, rather than a Termination within it. A special TerminationID, "Root" is reserved for this purpose. Packages may be defined on Root. Root thus may have properties, events and statistics (signals are not appropriate for root). Accordingly, the root TerminationID may appear in:
有时,命令必须引用整个网关,而不是其中的终端。为此保留了一个特殊的TerminationID“Root”。包可以在根目录上定义。因此,Root可能具有属性、事件和统计信息(信号不适合Root)。因此,根TerminationID可能出现在:
- a Modify command - to change a property or set an event
- 修改命令-更改属性或设置事件
- a Notify command - to report an event
- 通知命令-报告事件
- an AuditValue return - to examine the values of properties and statistics implemented on root
- AuditValue返回-检查在根目录上实现的属性和统计信息的值
- an AuditCapability - to determine what properties of root are implemented
- AuditCapability—确定实现了根目录的哪些属性
- a ServiceChange - to declare the gateway in or out of service.
- ServiceChange—声明网关投入或退出服务。
Any other use of the root TerminationID is an error. Error code 410 - Incorrect identifier shall be returned in these cases.
根TerminationID的任何其他用法都是错误的。错误代码410-在这些情况下,应返回不正确的标识符。
7 Commands
7命令
The protocol provides commands for manipulating the logical entities of the protocol connection model, Contexts and Terminations. Commands provide control at the finest level of granularity supported by the protocol. For example, Commands exist to add Terminations to a Context, modify Terminations, subtract Terminations from a Context, and audit properties of Contexts or Terminations. Commands provide for complete control of the properties of Contexts and Terminations. This includes specifying which events a Termination is to report, which signals/actions are to be applied to a Termination and specifying the topology of a Context (who hears/sees whom).
协议提供用于操作协议连接模型、上下文和终止的逻辑实体的命令。命令以协议支持的最佳粒度级别提供控制。例如,存在向上下文添加终止、修改终止、从上下文中减去终止以及审核上下文或终止的属性的命令。命令用于完全控制上下文和终止的属性。这包括指定要报告的终止事件、要应用于终止的信号/操作以及指定上下文的拓扑(谁听到/看到谁)。
Most commands are for the specific use of the Media Gateway Controller as command initiator in controlling Media Gateways as command responders. The exceptions are the Notify and ServiceChange commands: Notify is sent from Media Gateway to Media Gateway Controller, and ServiceChange may be sent by either entity. Below is an overview of the commands; they are explained in more detail in 7.2.
大多数命令都是用于将媒体网关控制器作为命令发起者来控制作为命令响应者的媒体网关的特定用途。例外情况是Notify和ServiceChange命令:Notify从媒体网关发送到媒体网关控制器,ServiceChange可以由任一实体发送。下面是命令的概述;7.2中对其进行了更详细的解释。
1) Add - The Add command adds a Termination to a Context. The Add command on the first Termination in a Context is used to create a Context.
1) Add-Add命令将终止添加到上下文中。上下文中第一个终端上的Add命令用于创建上下文。
2) Modify - The Modify command modifies the properties, events and signals of a Termination.
2) 修改-修改命令修改终止的属性、事件和信号。
3) Subtract - The Subtract command disconnects a Termination from its Context and returns statistics on the Termination's participation in the Context. The Subtract command on the last Termination in a Context deletes the Context.
3) Subtract-Subtract命令将终端与其上下文断开连接,并返回终端参与上下文的统计信息。上下文中最后一个终止时的减法命令删除上下文。
4) Move - The Move command atomically moves a Termination to another Context.
4) Move-Move命令以原子方式将终止移动到另一个上下文。
5) AuditValue - The AuditValue command returns the current state of properties, events, signals and statistics of Terminations.
5) AuditValue-AuditValue命令返回终止的属性、事件、信号和统计信息的当前状态。
6) AuditCapabilities - The AuditCapabilities command returns all the possible values for Termination properties, events and signals allowed by the Media Gateway.
6) AuditCapabilities—AuditCapabilities命令返回媒体网关允许的终止属性、事件和信号的所有可能值。
7) Notify - The Notify command allows the Media Gateway to inform the Media Gateway Controller of the occurrence of events in the Media Gateway.
7) Notify-Notify命令允许媒体网关将媒体网关中发生的事件通知媒体网关控制器。
8) ServiceChange - The ServiceChange command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. ServiceChange is also used by the MG to announce its availability to a MGC (registration), and to notify the MGC of impending or completed restart of the MG. The MGC may announce a handover to the MG by sending it a ServiceChange command. The MGC may also use ServiceChange to instruct the MG to take a Termination or group of Terminations in or out of service.
8) ServiceChange—ServiceChange命令允许媒体网关通知媒体网关控制器一个或一组终端即将停止服务或刚刚恢复服务。MG还使用ServiceChange向MGC(注册)宣布其可用性,并通知MGC即将或完成MG重启。MGC可以通过向MG发送ServiceChange命令来宣布向MG的移交。MGC还可以使用ServiceChange来指示MG将一个或一组终端接入或退出服务。
These commands are detailed in 7.2.1 through 7.2.8.
这些命令在7.2.1至7.2.8中有详细说明。
The parameters to a command are termed Descriptors. A descriptor consists of a name and a list of items. Some items may have values. Many Commands share common descriptors. This subclause enumerates these descriptors. Descriptors may be returned as output from a command. In any such return of descriptor contents, an empty descriptor is represented by its name unaccompanied by any list. Parameters and parameter usage specific to a given Command type are described in the subclause that describes the Command.
命令的参数称为描述符。描述符由名称和项目列表组成。有些项目可能有值。许多命令共享公共描述符。本款列举了这些描述符。描述符可以作为命令的输出返回。在任何这样的描述符内容返回中,空描述符由其名称表示,不带任何列表。特定于给定命令类型的参数和参数用法在描述该命令的子条款中描述。
Command parameters are structured into a number of descriptors. In general, the text format of descriptors is DescriptorName=<someID>{parm=value, parm=value, ...}.
命令参数被构造成许多描述符。通常,描述符的文本格式是DescriptorName=<someID>{parm=value,parm=value,…}。
Parameters may be fully specified, overspecified or underspecified:
参数可以是完全指定的、过度指定的或未指定的:
1) Fully specified parameters have a single, unambiguous value that the command initiator is instructing the command responder to use for the specified parameter.
1) 完全指定的参数有一个单一的、明确的值,命令发起者正在指示命令响应者对指定参数使用该值。
2) Underspecified parameters, using the CHOOSE value, allow the command responder to choose any value it can support.
2) 未指定的参数使用“选择”值,允许命令响应程序选择它可以支持的任何值。
3) Overspecified parameters have a list of potential values. The list order specifies the command initiator's order of preference of selection. The command responder chooses one value from the offered list and returns that value to the command initiator.
3) 过度指定的参数有一个潜在值列表。列表顺序指定命令启动器的选择优先顺序。命令响应程序从提供的列表中选择一个值,并将该值返回给命令启动器。
If a required descriptor other than the Audit descriptor is unspecified (i.e., entirely absent) from a command, the previous values set in that descriptor for that Termination, if any, are retained. In commands other than Subtract, a missing Audit descriptor is equivalent to an empty Audit descriptor. The Behaviour of the MG with respect to unspecified parameters within a descriptor varies with the descriptor concerned, as indicated in succeeding subclauses. Whenever a parameter is underspecified or overspecified, the descriptor containing the value chosen by the responder is included as output from the command.
如果命令中未指定(即完全缺少)审计描述符以外的所需描述符,则保留该描述符中为该终止设置的先前值(如果有)。在除Subtract以外的命令中,缺少的审核描述符相当于空的审核描述符。MG关于描述符内未指定参数的行为因相关描述符而异,如后续子条款所示。当参数未指定或指定过度时,包含响应程序选择的值的描述符将作为命令的输出包含在内。
Each command specifies the TerminationId the command operates on. This TerminationId may be "wildcarded". When the TerminationId of a command is wildcarded, the effect shall be as if the command was repeated with each of the TerminationIds matched.
每个命令都指定命令操作的TerminationId。此TerminationId可以是“通配符”。当命令的TerminationId为通配符时,其效果应如同在每个TerminationId匹配的情况下重复命令一样。
The Modem descriptor specifies the modem type and parameters, if any, required for use in e.g., H.324 and text conversation. The descriptor includes the following modem types: V.18, V.22, V.22 bis, V.32, V.32 bis, V.34, V.90, V.91, Synchronous ISDN, and allows for extensions. By default, no Modem descriptor is present in a Termination.
调制解调器描述符指定了在H.324和文本对话中使用所需的调制解调器类型和参数(如有)。描述符包括以下调制解调器类型:V.18、V.22、V.22 bis、V.32、V.32 bis、V.34、V.90、V.91、同步ISDN,并允许扩展。默认情况下,终端中不存在调制解调器描述符。
In multimedia calls, a number of media streams are carried on a (possibly different) number of bearers. The multiplex descriptor associates the media and the bearers. The descriptor includes the multiplex type:
在多媒体呼叫中,在(可能不同)数量的承载器上承载多个媒体流。多路复用描述符将媒体和承载相关联。描述符包括多路复用类型:
- H.221;
- H.221;
- H.223;
- H.223;
- H.226;
- H.226;
- V.76;
- 五.76;
- possible extensions,
- 可能的延期,
and a set of TerminationIDs representing the multiplexed bearers, in order. For example:
以及一组表示多路复用承载的TerminationID,按顺序排列。例如:
Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}
Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}
The Media descriptor specifies the parameters for all the media streams. These parameters are structured into two descriptors: a TerminationState descriptor, which specifies the properties of a Termination that are not stream dependent, and one or more Stream descriptors each of which describes a single media stream.
媒体描述符指定所有媒体流的参数。这些参数被构造成两个描述符:TerminationState描述符(指定不依赖于流的终止的属性)和一个或多个流描述符(每个描述符描述一个媒体流)。
A stream is identified by a StreamID. The StreamID is used to link the streams in a Context that belong together. Multiple streams exiting a Termination shall be synchronized with each other. Within the Stream descriptor, there are up to three subsidiary descriptors: LocalControl, Local, and Remote. The relationship between these descriptors is thus:
流由StreamID标识。StreamID用于链接上下文中属于一起的流。退出终端的多个流应相互同步。在流描述符中,最多有三个辅助描述符:LocalControl、Local和Remote。因此,这些描述符之间的关系如下:
Media descriptor TerminationState Descriptor Stream descriptor LocalControl descriptor Local descriptor Remote descriptor
媒体描述符终止状态描述符流描述符本地控制描述符本地描述符远程描述符
As a convenience, LocalControl, Local, or Remote descriptors may be included in the Media descriptor without an enclosing Stream descriptor. In this case, the StreamID is assumed to be 1.
为了方便起见,可以在媒体描述符中包括LocalControl、Local或Remote描述符,而不包括封闭的流描述符。在这种情况下,假定StreamID为1。
The TerminationState descriptor contains the ServiceStates property, the EventBufferControl property and properties of a Termination (defined in Packages) that are not stream specific.
TerminationState描述符包含ServiceState属性、EventBufferControl属性和非特定于流的终止(在包中定义)属性。
The ServiceStates property describes the overall state of the Termination (not stream specific). A Termination can be in one of the following states: "test", "out of service", or "in service". The "test" state indicates that the Termination is being tested. The state "out of service" indicates that the Termination cannot be used for traffic. The state "in service" indicates that a Termination can be used or is being used for normal traffic. "in service" is the default state.
ServiceStates属性描述终止的整体状态(非特定于流)。终端可以处于以下状态之一:“测试”、“停止使用”或“正在使用”。“测试”状态表示正在测试终端。“停止服务”状态表示终端不能用于通信。“服务中”状态表示终端可用于或正在用于正常通信。“正在使用”是默认状态。
Values assigned to Properties may be simple values (integer/string/enumeration) or may be underspecified, where more than one value is supplied and the MG may make a choice:
分配给属性的值可以是简单值(整数/字符串/枚举),也可以是未指定的值,其中提供了多个值,MG可以选择:
- Alternative Values - multiple values in a list, one of which must be selected
- 备选值-列表中的多个值,必须选择其中一个
- Ranges - minimum and maximum values, any value between min and max must be selected, boundary values included
- 范围-最小值和最大值,必须选择最小值和最大值之间的任何值,包括边界值
- Greater Than/Less Than - value must be greater/less than specified value
- 大于/小于-值必须大于/小于指定值
- CHOOSE Wildcard - the MG chooses from the allowed values for the property
- 选择通配符-MG从属性的允许值中进行选择
The EventBufferControl property specifies whether events are buffered following detection of an event in the Events descriptor, or processed immediately. See 7.1.9 for details.
EventBufferControl属性指定是在事件描述符中检测到事件后缓冲事件,还是立即处理事件。详见7.1.9。
A Stream descriptor specifies the parameters of a single bidirectional stream. These parameters are structured into three descriptors: one that contains Termination properties specific to a stream and one each for local and remote flows. The Stream Descriptor includes a StreamID which identifies the stream. Streams are created by specifying a new StreamID on one of the Terminations in a Context. A stream is deleted by setting empty Local and Remote descriptors for the stream with ReserveGroup and ReserveValue in LocalControl set to "false" on all Terminations in the Context that previously supported that stream.
流描述符指定单个双向流的参数。这些参数分为三个描述符:一个包含特定于流的终止属性,另一个分别用于本地和远程流。流描述符包括识别流的StreamID。流是通过在上下文中的一个终止上指定新的StreamID来创建的。通过将流的空本地和远程描述符设置为空,并将LocalControl中的ReserveGroup和ReserveValue在先前支持该流的上下文中的所有终止上设置为“false”,可以删除该流。
StreamIDs are of local significance between MGC and MG and they are assigned by the MGC. Within a Context, StreamID is a means by which to indicate which media flows are interconnected: streams with the same StreamID are connected.
流线在MGC和MG之间具有局部意义,由MGC指定。在上下文中,StreamID是一种指示哪些媒体流相互连接的方法:连接具有相同StreamID的流。
If a Termination is moved from one Context to another, the effect on the Context to which the Termination is moved is the same as in the case that a new Termination were added with the same StreamIDs as the moved Termination.
如果将终止从一个上下文移动到另一个上下文,则对将终止移动到的上下文的影响与使用与移动的终止相同的StreamID添加新终止的情况相同。
The LocalControl descriptor contains the Mode property, the ReserveGroup and ReserveValue properties and properties of a Termination (defined in Packages) that are stream specific, and are of interest between the MG and the MGC. Values of properties may be underspecified as in 7.1.1.
LocalControl描述符包含特定于流的模式属性、ReserveGroup和ReserveValue属性以及终止(在包中定义)的属性,这些属性在MG和MGC之间很重要。如7.1.1所述,可能未对特性值进行规定。
The allowed values for the mode property are send-only, receive-only, send/receive, inactive and loop-back. "Send" and "receive" are with respect to the exterior of the Context, so that, for example, a stream set to mode=sendOnly does not pass received media into the Context. The default value for the mode property is "Inactive". Signals and Events are not affected by mode.
mode属性允许的值为仅发送、仅接收、发送/接收、非活动和环回。“发送”和“接收”与上下文外部有关,因此,例如,设置为mode=sendOnly的流不会将接收到的媒体传递到上下文中。模式属性的默认值为“非活动”。信号和事件不受模式的影响。
The boolean-valued Reserve properties, ReserveValue and ReserveGroup, of a Termination indicate what the MG is expected to do when it receives a Local and/or Remote descriptor.
终止的布尔值保留属性ReserveValue和ReserveGroup指示MG在接收本地和/或远程描述符时应执行的操作。
If the value of a Reserve property is True, the MG SHALL reserve resources for all alternatives specified in the Local and/or Remote descriptors for which it currently has resources available. It SHALL respond with the alternatives for which it reserves resources. If it cannot not support any of the alternatives, it SHALL respond with a reply to the MGC that contains empty Local and/or Remote descriptors. If media begins to flow while more than a single alternative is reserved, media packets may be sent/received on any of the alternatives and must be processed, although only a single alternative may be active at any given time.
如果保留财产的价值为真,MG应为其当前拥有可用资源的本地和/或远程描述符中规定的所有备选方案保留资源。其应以其保留资源的备选方案作出回应。如果不能支持任何备选方案,则应回复MGC,其中包含空的本地和/或远程描述符。如果在保留多个备选方案时媒体开始流动,则可以在任何备选方案上发送/接收媒体分组,并且必须对其进行处理,尽管在任何给定时间只有一个备选方案处于活动状态。
If the value of a Reserve property is False, the MG SHALL choose one of the alternatives specified in the Local descriptor (if present) and one of the alternatives specified in the Remote descriptor (if present). If the MG has not yet reserved resources to support the selected alternative, it SHALL reserve the resources. If, on the other hand, it already reserved resources for the Termination addressed (because of a prior exchange with ReserveValue and/or ReserveGroup equal to True), it SHALL release any excess resources it reserved previously. Finally, the MG shall send a reply to the MGC containing the alternatives for the Local and/or Remote descriptor that it selected. If the MG does not have sufficient resources to support any of the alternatives specified, it SHALL respond with error 510 (insufficient resources).
如果保留属性的值为假,MG应选择本地描述符(如果存在)中指定的备选方案之一和远程描述符(如果存在)中指定的备选方案之一。如果MG尚未保留资源以支持所选备选方案,则应保留资源。另一方面,如果它已经为地址终止保留了资源(因为之前的交换ReserveValue和/或ReserveGroup等于True),它应该释放它先前保留的任何多余资源。最后,MG应向MGC发送回复,其中包含其选择的本地和/或远程描述符的备选方案。如果MG没有足够的资源来支持指定的任何备选方案,则应以错误510(资源不足)进行响应。
The default value of ReserveValue and ReserveGroup is False. More information on the use of the two Reserve properties is provided in 7.1.8.
ReserveValue和ReserveGroup的默认值为False。7.1.8中提供了有关使用这两处保留地的更多信息。
A new setting of the LocalControl Descriptor completely replaces the previous setting of that descriptor in the MG. Thus, to retain information from the previous setting, the MGC must include that information in the new setting. If the MGC wishes to delete some information from the existing descriptor, it merely resends the descriptor (in a Modify command) with the unwanted information stripped out.
LocalControl描述符的新设置完全替换MG中该描述符的先前设置。因此,要保留以前设置中的信息,MGC必须在新设置中包含该信息。如果MGC希望从现有描述符中删除一些信息,它只需重新发送描述符(在Modify命令中),去掉不需要的信息。
The MGC uses Local and Remote descriptors to reserve and commit MG resources for media decoding and encoding for the given Stream(s) and Termination to which they apply. The MG includes these descriptors in its response to indicate what it is actually prepared to support. The MG SHALL include additional properties and their values in its response if these properties are mandatory yet not present in the requests made by the MGC (e.g., by specifying detailed video encoding parameters where the MGC only specified the payload type).
MGC使用本地和远程描述符来保留和提交MG资源,用于给定流的媒体解码和编码以及它们应用的终止。MG在其响应中包含这些描述符,以表明其实际准备支持的内容。MG应在其响应中包括附加属性及其值,如果这些属性是强制性的,但在MGC发出的请求中不存在(例如,通过指定详细的视频编码参数,MGC仅指定有效负载类型)。
Local refers to the media received by the MG and Remote refers to the media sent by the MG.
本地指MG接收的媒体,远程指MG发送的媒体。
When text encoding the protocol, the descriptors consist of session descriptions as defined in SDP (RFC 2327). In session descriptions sent from the MGC to the MG, the following exceptions to the syntax of RFC 2327 are allowed:
当对协议进行文本编码时,描述符由SDP(RFC 2327)中定义的会话描述组成。在从MGC发送到MG的会话描述中,RFC 2327的语法允许以下例外情况:
- the "s=", "t=" and "o=" lines are optional;
- “s=”、“t=”和“o=”行是可选的;
- the use of CHOOSE is allowed in place of a single parameter value; and
- 允许使用CHOOSE代替单个参数值;和
- the use of alternatives is allowed in place of a single parameter value.
- 允许使用备选方案代替单个参数值。
A Stream Descriptor specifies a single bi-directional media stream and so a single session description MUST NOT include more than one media description ("m=" line). A Stream Descriptor may contain additional session descriptions as alternatives. Each media stream for a termination must appear in distinct Stream Descriptors. When multiple session descriptions are provided in one descriptor, the "v=" lines are required as delimiters; otherwise they are optional in session descriptions sent to the MG. Implementations shall accept session descriptions that are fully conformant to RFC 2327. When binary encoding the protocol the descriptor consists of groups of properties (tag-value pairs) as specified in Annex C. Each such group may contain the parameters of a session description.
流描述符指定单个双向媒体流,因此单个会话描述不能包含多个媒体描述(“m=”行)。流描述符可以包含额外的会话描述作为替代。终端的每个媒体流必须出现在不同的流描述符中。当在一个描述符中提供多个会话描述时,需要使用“v=”行作为分隔符;否则,它们在发送给MG的会话描述中是可选的。实施应接受完全符合RFC 2327的会话描述。当对协议进行二进制编码时,描述符由附录C中规定的属性组(标签-值对)组成。每个属性组可包含会话描述的参数。
Below, the semantics of the Local and Remote descriptors are specified in detail. The specification consists of two parts. The first part specifies the interpretation of the contents of the descriptor. The second part specifies the actions the MG must take upon receiving the Local and Remote descriptors. The actions to be taken by the MG depend on the values of the ReserveValue and ReserveGroup properties of the LocalControl descriptor.
下面详细说明了本地和远程描述符的语义。本规范由两部分组成。第一部分指定描述符内容的解释。第二部分指定MG在接收本地和远程描述符时必须采取的操作。MG要执行的操作取决于LocalControl描述符的ReserveValue和ReserveGroup属性的值。
Either the Local or the Remote descriptor or both may be:
本地或远程描述符或两者都可以是:
1) unspecified (i.e., absent);
1) 未指明(即缺席);
2) empty;
2) 空的
3) underspecified through use of CHOOSE in a property value;
3) 通过在属性值中使用“选择”未指定;
4) fully specified; or
4) 完全指定;或
5) overspecified through presentation of multiple groups of properties and possibly multiple property values in one or more of these groups.
5) 通过显示多组属性以及其中一个或多个组中的多个属性值而过度指定。
Where the descriptors have been passed from the MGC to the MG, they are interpreted according to the rules given in 7.1.1, with the following additional comments for clarification:
如果描述符已从MGC传递给MG,则应根据7.1.1中给出的规则对其进行解释,并附上以下附加注释进行澄清:
a) An unspecified Local or Remote descriptor is considered to be a missing mandatory parameter. It requires the MG to use whatever was last specified for that descriptor. It is possible that there was no previously specified value, in which case the descriptor concerned is ignored in further processing of the command.
a) 未指定的本地或远程描述符被视为缺少必需参数。它要求MG使用上次为该描述符指定的内容。可能之前没有指定值,在这种情况下,在命令的进一步处理中忽略相关描述符。
b) An empty Local (Remote) descriptor in a message from the MGC signifies a request to release any resources reserved for the media flow received (sent).
b) 来自MGC的消息中的空本地(远程)描述符表示请求释放为接收(发送)的媒体流保留的任何资源。
c) If multiple groups of properties are present in a Local or Remote descriptor or multiple values within a group, the order of preference is descending.
c) 如果本地或远程描述符中存在多组属性,或者一个组中存在多个值,则首选顺序为降序。
d) Underspecified or overspecified properties within a group of properties sent by the MGC are requests for the MG to choose one or more values which it can support for each of those properties. In case of an overspecified property, the list of values is in descending order of preference.
d) MGC发送的一组属性中的指定不足或指定过度的属性是请求MG为每个属性选择一个或多个可支持的值。如果是过度指定的属性,则值列表按首选项的降序排列。
Subject to the above rules, subsequent action depends on the values of the ReserveValue and ReserveGroup properties in LocalControl.
根据上述规则,后续操作取决于LocalControl中ReserveValue和ReserveGroup属性的值。
If ReserveGroup is True, the MG reserves the resources required to support any of the requested property group alternatives that it can currently support. If ReserveValue is True, the MG reserves the resources required to support any of the requested property value alternatives that it can currently support.
如果ReserveGroup为True,MG将保留支持其当前可以支持的任何请求的财产组备选方案所需的资源。如果ReserveValue为True,MG将保留支持其当前可以支持的任何请求的财产价值备选方案所需的资源。
NOTE - If a Local or Remote descriptor contains multiple groups of properties, and ReserveGroup is True, then the MG is requested to reserve resources so that it can decode or encode the media stream according to any of the alternatives. For instance, if the Local descriptor contains two groups of properties, one specifying packetized G.711 A-law audio and the other G.723.1 audio, the MG reserves resources so that it can decode one audio stream encoded in either G.711 A-law format or G.723.1 format. The MG does not have to reserve resources to decode two audio streams simultaneously, one encoded in G.711 A-law and one in G.723.1. The intention for the use of ReserveValue is analogous.
注意-如果本地或远程描述符包含多组属性,并且ReserveGroup为True,则请求MG保留资源,以便它可以根据任何备选方案对媒体流进行解码或编码。例如,如果本地描述符包含两组属性,一组指定打包的G.711 A-law音频,另一组指定G.723.1音频,MG将保留资源,以便能够解码以G.711 A-law格式或G.723.1格式编码的一个音频流。MG不必保留资源来同时解码两个音频流,一个在G.711 A-law中编码,另一个在G.723.1中编码。使用ReserveValue的意图类似。
If ReserveGroup is true or ReserveValue is True, then the following rules apply:
如果ReserveGroup为true或ReserveValue为true,则以下规则适用:
- If the MG has insufficient resources to support all alternatives requested by the MGC and the MGC requested resources in both Local and Remote, the MG should reserve resources to support at least one alternative each within Local and Remote.
- 如果MG没有足够的资源来支持MGC请求的所有备选方案以及MGC请求的本地和远程资源,MG应保留资源,以支持本地和远程范围内的至少一个备选方案。
- If the MG has insufficient resources to support at least one alternative within a Local (Remote) descriptor received from the MGC, it shall return an empty Local (Remote) in response.
- 如果MG没有足够的资源来支持从MGC接收的本地(远程)描述符中的至少一个备选方案,则MG应返回一个空的本地(远程)描述符作为响应。
- In its response to the MGC, when the MGC included Local and Remote descriptors, the MG SHALL include Local and Remote descriptors for all groups of properties and property values it reserved resources for. If the MG is incapable of supporting at least one of the alternatives within the Local (Remote) descriptor received from the MGC, it SHALL return an empty Local (Remote) descriptor.
- 在对MGC的回应中,当MGC包括本地和远程描述符时,MG应包括其保留资源的所有财产组和财产价值的本地和远程描述符。如果MG无法支持从MGC接收的本地(远程)描述符中的至少一个备选方案,则应返回空的本地(远程)描述符。
- If the Mode property of the LocalControl descriptor is RecvOnly, SendRecv, or LoopBack, the MG must be prepared to receive media encoded according to any of the alternatives included in its response to the MGC.
- 如果LocalControl描述符的Mode属性为RecVoOnly、SendRecv或LoopBack,则MG必须准备好接收根据其对MGC的响应中包含的任何备选方案编码的媒体。
If ReserveGroup is False and ReserveValue is False, then the MG SHOULD apply the following rules to resolve Local and Remote to a single alternative each:
如果ReserveGroup为False且ReserveValue为False,则MG应应用以下规则将本地和远程解析为单个备选方案:
- The MG chooses the first alternative in Local for which it is able to support at least one alternative in Remote.
- MG在本地选择第一个备选方案,并且能够在远程支持至少一个备选方案。
- If the MG is unable to support at least one Local and one Remote alternative, it returns Error 510 (Insufficient Resources).
- 如果MG无法支持至少一个本地和一个远程备选方案,则返回错误510(资源不足)。
- The MG returns its selected alternative in each of Local and Remote.
- MG在本地和远程中返回其选择的备选方案。
A new setting of a Local or Remote descriptor completely replaces the previous setting of that descriptor in the MG. Thus, to retain information from the previous setting, the MGC must include that information in the new setting. If the MGC wishes to delete some information from the existing descriptor, it merely resends the descriptor (in a Modify command) with the unwanted information stripped out.
本地或远程描述符的新设置完全替换MG中该描述符的先前设置。因此,要保留以前设置中的信息,MGC必须在新设置中包含该信息。如果MGC希望从现有描述符中删除一些信息,它只需重新发送描述符(在Modify命令中),去掉不需要的信息。
The EventsDescriptor parameter contains a RequestIdentifier and a list of events that the Media Gateway is requested to detect and report. The RequestIdentifier is used to correlate the request with the notifications that it may trigger. Requested events include, for example, fax tones, continuity test results, and on-hook and off-hook transitions. The RequestIdentifier is omitted if the EventsDescriptor is empty (i.e., no events are specified).
EventsDescriptor参数包含RequestIdentifier和请求媒体网关检测和报告的事件列表。RequestIdentifier用于将请求与其可能触发的通知关联起来。请求的事件包括,例如,传真音、连续性测试结果以及挂机和摘机转换。如果EventsDescriptor为空(即未指定任何事件),则会忽略RequestIdentifier。
Each event in the descriptor contains the Event name, an optional streamID, an optional KeepActive flag, and optional parameters. The Event name consists of a Package Name (where the event is defined) and an EventID. The ALL wildcard may be used for the EventID, indicating that all events from the specified package have to be detected. The default streamID is 0, indicating that the event to be detected is not related to a particular media stream. Events can have parameters. This allows a single event description to have some variation in meaning without creating large numbers of individual events. Further event parameters are defined in the package.
描述符中的每个事件都包含事件名称、可选streamID、可选KeepActiv标志和可选参数。事件名称由包名称(定义事件的位置)和事件ID组成。所有通配符可用于EventID,表示必须检测指定包中的所有事件。默认streamID为0,表示要检测的事件与特定媒体流无关。事件可以有参数。这允许单个事件描述在意义上有一些变化,而不会创建大量的单个事件。进一步的事件参数在包中定义。
If a digit map completion event is present or implied in the EventsDescriptor, the EventDM parameter is used to carry either the name or the value of the associated digit map. See 7.1.14 for further details.
如果EventsDescriptor中存在或暗示数字映射完成事件,则EventDM参数用于携带关联数字映射的名称或值。详见7.1.14。
When an event is processed against the contents of an active Events Descriptor and found to be present in that descriptor ("recognized"), the default action of the MG is to send a Notify command to the MGC. Notification may be deferred if the event is absorbed into the current dial string of an active digit map (see 7.1.14). Any other action is for further study. Moreover, event recognition may cause currently active signals to stop, or may cause the current Events and/or Signals descriptor to be replaced, as described at the end of
当根据活动事件描述符的内容处理事件并发现该描述符中存在(“已识别”)事件时,MG的默认操作是向MGC发送Notify命令。如果事件被吸收到活动数字映射的当前拨号字符串中,则通知可能会延迟(见7.1.14)。其他行动有待进一步研究。此外,事件识别可能导致当前激活的信号停止,或者可能导致当前事件和/或信号描述符被替换,如本文末尾所述
this subclause. Unless the Events Descriptor is replaced by another Events Descriptor, it remains active after an event has been recognized.
本款。除非事件描述符被另一个事件描述符替换,否则在识别事件后它将保持活动状态。
If the value of the EventBufferControl property equals LockStep, following detection of such an event, normal handling of events is suspended. Any event which is subsequently detected and occurs in the EventBuffer descriptor is added to the end of the EventBuffer (a FIFO queue), along with the time that it was detected. The MG SHALL wait for a new EventsDescriptor to be loaded. A new EventsDescriptor can be loaded either as the result of receiving a command with a new EventsDescriptor, or by activating an embedded EventsDescriptor.
如果EventBufferControl属性的值等于LockStep,则在检测到此类事件后,将暂停事件的正常处理。随后在EventBuffer描述符中检测到并发生的任何事件都将与检测到的时间一起添加到EventBuffer(FIFO队列)的末尾。MG应等待加载新的事件描述符。可以通过接收带有新EventsDescriptor的命令或激活嵌入式EventsDescriptor来加载新EventsDescriptor。
If EventBufferControl equals Off, the MG continues processing based on the active EventsDescriptor.
如果EventBufferControl等于Off,MG将根据活动的EventsDescriptor继续处理。
In the case of an embedded EventsDescriptor being activated, the MG continues event processing based on the newly activated EventsDescriptor.
在激活嵌入式EventsDescriptor的情况下,MG将基于新激活的EventsDescriptor继续事件处理。
NOTE 1 - For purposes of EventBuffer handling, activation of an embedded EventsDescriptor is equivalent to receipt of a new EventsDescriptor.
注1-出于EventBuffer处理的目的,激活嵌入式EventsDescriptor相当于接收新的EventsDescriptor。
When the MG receives a command with a new EventsDescriptor, one or more events may have been buffered in the EventBuffer in the MG. The value of EventBufferControl then determines how the MG treats such buffered events.
当MG接收到带有新EventsDescriptor的命令时,MG中的EventBuffer中可能已缓冲了一个或多个事件。然后,EventBufferControl的值确定MG如何处理此类缓冲事件。
Case 1
案例1
If EventBufferControl equals LockStep and the MG receives a new EventsDescriptor, it will check the FIFO EventBuffer and take the following actions:
如果EventBufferControl等于LockStep且MG接收到新的EventsDescriptor,它将检查FIFO EventBuffer并采取以下操作:
1) If the EventBuffer is empty, the MG waits for detection of events based on the new EventsDescriptor.
1) 如果EventBuffer为空,MG将等待基于新EventsDescriptor的事件检测。
2) If the EventBuffer is non-empty, the MG processes the FIFO queue starting with the first event:
2) 如果EventBuffer为非空,MG将从第一个事件开始处理FIFO队列:
a) If the event in the queue is in the events listed in the new EventsDescriptor, the MG acts on the event and removes the event from the EventBuffer. The time stamp of the Notify shall be the time the event was actually detected. The MG then waits for a new EventsDescriptor. While waiting for a new EventsDescriptor, any events detected that appear in the
a) 如果队列中的事件位于新EventsDescriptor中列出的事件中,MG将对该事件执行操作并从EventBuffer中删除该事件。通知的时间戳应为实际检测到事件的时间。MG然后等待新的EventsDescriptor。在等待新的EventsDescriptor时,检测到出现在
EventsBufferDescriptor will be placed in the EventBuffer. When a new EventsDescriptor is received, the event processing will repeat from step 1.
EventsBufferDescriptor将放置在EventBuffer中。当收到新的EventsDescriptor时,事件处理将从步骤1开始重复。
b) If the event is not in the new EventsDescriptor, the MG SHALL discard the event and repeat from step 1.
b) 如果该事件不在新的事件描述器中,MG应丢弃该事件并从步骤1开始重复。
Case 2
案例2
If EventBufferControl equals Off and the MG receives a new EventsDescriptor, it processes new events with the new EventsDescriptor.
如果EventBufferControl等于Off且MG接收到新的EventsDescriptor,则它将使用新的EventsDescriptor处理新事件。
If the MG receives a command instructing it to set the value of EventBufferControl to Off, all events in the EventBuffer SHALL be discarded.
如果MG收到命令,指示其将EventBufferControl的值设置为Off,则应丢弃EventBuffer中的所有事件。
The MG may report several events in a single Transaction as long as this does not unnecessarily delay the reporting of individual events.
MG可以在单个交易中报告多个事件,只要这不会不必要地延迟单个事件的报告。
For procedures regarding transmitting the Notify command, refer to the appropriate annex or Recommendation of the H.248 sub-series for specific transport considerations.
有关发送Notify命令的程序,请参阅H.248子系列的相应附件或建议,以了解具体的运输注意事项。
The default value of EventBufferControl is Off.
EventBufferControl的默认值为Off。
NOTE 2 - Since the EventBufferControl property is in the TerminationStateDescriptor, the MG might receive a command that changes the EventBufferControl property and does not include an EventsDescriptor.
注意2-由于EventBufferControl属性位于TerminationStateDescriptor中,MG可能会收到更改EventBufferControl属性的命令,并且不包括EventsDescriptor。
Normally, recognition of an event shall cause any active signals to stop. When KeepActive is specified in the event, the MG shall not interrupt any signals active on the Termination on which the event is detected.
通常,事件识别应导致任何激活信号停止。当事件中规定了Keepacitive时,MG不得中断检测到事件的终端上的任何激活信号。
An event can include an Embedded Signals descriptor and/or an Embedded Events descriptor which, if present, replaces the current Signals/Events descriptor when the event is recognized. It is possible, for example, to specify that the dial-tone Signal be generated when an off-hook Event is recognized, or that the dial-tone Signal be stopped when a digit is recognized. A media gateway controller shall not send EventsDescriptors with an event both marked KeepActive and containing an embedded SignalsDescriptor.
事件可以包括嵌入式信号描述符和/或嵌入式事件描述符,如果存在,则在识别事件时替换当前信号/事件描述符。例如,可以指定在识别脱钩事件时生成拨号音信号,或者在识别数字时停止拨号音信号。媒体网关控制器不得发送带有标记为KeepActive且包含嵌入式信号脚本的事件脚本。
Only one level of embedding is permitted. An embedded EventsDescriptor SHALL NOT contain another embedded EventsDescriptor; an embedded EventsDescriptor MAY contain an embedded SignalsDescriptor.
只允许一级嵌入。嵌入式EventsDescriptor不得包含其他嵌入式EventsDescriptor;嵌入式EventsDescriptor可能包含嵌入式SignalsDescriptor。
An EventsDescriptor received by a media gateway replaces any previous Events descriptor. Event notification in process shall complete, and events detected after the command containing the new EventsDescriptor executes, shall be processed according to the new EventsDescriptor.
媒体网关接收的事件描述符将替换以前的任何事件描述符。过程中的事件通知应完成,并且在包含新EventsDescriptor的命令执行后检测到的事件应根据新EventsDescriptor进行处理。
An empty Events Descriptor disables all event recognition and reporting. An empty EventBuffer Descriptor clears the EventBuffer and disables all event accumulation in LockStep mode: the only events reported will be those occurring while an Events Descriptor is active. If an empty Events Descriptor is activated while the Termination is operating in LockStep mode, the events buffer is immediately cleared.
空事件描述符将禁用所有事件识别和报告。空的EventBuffer描述符清除EventBuffer并在LockStep模式下禁用所有事件累积:报告的唯一事件将是事件描述符处于活动状态时发生的事件。如果终端在锁步模式下运行时激活了空事件描述符,则会立即清除事件缓冲区。
The EventBuffer descriptor contains a list of events, with their parameters if any, that the MG is requested to detect and buffer when EventBufferControl equals LockStep (see 7.1.9).
EventBuffer描述符包含事件列表及其参数(如果有),当EventBufferControl等于LockStep时,MG被请求检测并缓冲这些事件(参见7.1.9)。
Signals are MG generated media such as tones and announcements as well as bearer-related signals such as hookswitch. More complex signals may include a sequence of such simple signals interspersed with and conditioned upon the receipt and analysis of media or bearer-related signals. Examples include echoing of received data as in Continuity Test package. Signals may also request preparation of media content for future signals.
信号是MG生成的媒体,如铃声和公告,以及与承载相关的信号,如hookswitch。更复杂的信号可以包括这样的简单信号序列,这些简单信号的序列散布在媒体或承载相关信号的接收和分析中,并以接收和分析为条件。示例包括连续性测试包中接收数据的回声。信号还可以请求为将来的信号准备媒体内容。
A SignalsDescriptor is a parameter that contains the set of signals that the Media Gateway is asked to apply to a Termination. A SignalsDescriptor contains a number of signals and/or sequential signal lists. A SignalsDescriptor may contain zero signals and sequential signal lists. Support of sequential signal lists is optional.
SignalsDescriptor是一个参数,包含要求媒体网关应用于终端的一组信号。信号描述符包含许多信号和/或顺序信号列表。信号描述符可以包含零信号和顺序信号列表。支持顺序信号列表是可选的。
Signals are defined in packages. Signals shall be named with a Package name (in which the signal is defined) and a SignalID. No wildcard shall be used in the SignalID. Signals that occur in a SignalsDescriptor have an optional StreamID parameter (default is 0, to indicate that the signal is not related to a particular media stream), an optional signal type (see below), an optional duration and possibly parameters defined in the package that defines the
信号在包中定义。信号应使用包名(其中定义了信号)和信号ID进行命名。SignalID中不得使用通配符。在SignalsDescriptor中出现的信号具有可选的StreamID参数(默认值为0,表示该信号与特定媒体流无关)、可选的信号类型(请参见下文)、可选的持续时间以及在定义流的包中定义的可能参数
signal. This allows a single signal to have some variation in meaning, obviating the need to create large numbers of individual signals.
信号这允许单个信号在含义上有一些变化,从而避免了创建大量单个信号的需要。
Finally, the optional parameter "notifyCompletion" allows a MGC to indicate that it wishes to be notified when the signal finishes playout. The possible cases are that the signal timed out (or otherwise completed on its own), that it was interrupted by an event, that it was halted when a Signals descriptor was replaced, or that it stopped or never started for other reasons. If the notifyCompletion parameter is not included in a Signals descriptor, notification is generated only if the signal stopped or was never started for other reasons. For reporting to occur, the signal completion event (see E.1.2) must be enabled in the currently active Events descriptor.
最后,可选参数“notifyCompletion”允许MGC指示它希望在信号完成播放时收到通知。可能的情况是信号超时(或自行完成)、被事件中断、在替换信号描述符时停止、或因其他原因停止或从未启动。如果notifyCompletion参数未包含在信号描述符中,则仅当信号因其他原因停止或从未启动时才会生成通知。要报告发生的情况,必须在当前活动事件描述符中启用信号完成事件(见E.1.2)。
The duration is an integer value that is expressed in hundredths of a second.
持续时间是以百分之一秒表示的整数值。
There are three types of signals:
有三种类型的信号:
- on/off - the signal lasts until it is turned off;
- 开/关-信号持续到关闭;
- timeout - the signal lasts until it is turned off or a specific period of time elapses;
- 超时-信号持续到关闭或经过特定时间段;
- brief - the signal will stop on its own unless a new Signals descriptor is applied that causes it to stop; no timeout value is needed.
- 简短-信号将自行停止,除非应用新的信号描述符使其停止;不需要超时值。
If a signal of default type other than TO has its type overridden to type TO in the Signals descriptor, the duration parameter must be present.
如果在信号描述符中,默认类型不是TO的信号的类型被重写为type TO,则必须存在duration参数。
If the signal type is specified in a SignalsDescriptor, it overrides the default signal type (see 12.1.4). If duration is specified for an on/off signal, it SHALL be ignored.
如果信号描述符中指定了信号类型,则会覆盖默认信号类型(见12.1.4)。如果规定了接通/断开信号的持续时间,则应忽略该持续时间。
A sequential signal list consists of a signal list identifier and a sequence of signals to be played sequentially. Only the trailing element of the sequence of signals in a sequential signal list may be an on/off signal. The duration of a sequential signal list is the sum of the durations of the signals it contains.
顺序信号列表由信号列表标识符和要顺序播放的信号序列组成。只有顺序信号列表中信号序列的尾随元素可以是开/关信号。序列信号列表的持续时间是其包含的信号持续时间之和。
Multiple signals and sequential signal lists in the same SignalsDescriptor shall be played simultaneously.
应同时播放同一信号编剧中的多个信号和顺序信号列表。
Signals are defined as proceeding from the Termination towards the exterior of the Context unless otherwise specified in a package.
除非包装中另有规定,信号定义为从终端向上下文外部发出。
When the same Signal is applied to multiple Terminations within one Transaction, the MG should consider using the same resource to generate these Signals.
当相同的信号被应用到一个事务中的多个终端时,MG应该考虑使用相同的资源来产生这些信号。
Production of a Signal on a Termination is stopped by application of a new SignalsDescriptor, or detection of an Event on the Termination (see 7.1.9).
通过应用新的信号描述符或检测终端上的事件,终止信号的产生(见7.1.9)。
A new SignalsDescriptor replaces any existing SignalsDescriptor. Any signals applied to the Termination not in the replacement descriptor shall be stopped, and new signals are applied, except as follows. Signals present in the replacement descriptor and containing the KeepActive flag shall be continued if they are currently playing and have not already completed. If a replacement signal descriptor contains a signal that is not currently playing and contains the KeepActive flag, that signal SHALL be ignored. If the replacement descriptor contains a sequential signal list with the same identifier as the existing descriptor, then
新的SignalsDescriptor将替换任何现有的SignalsDescriptor。应停止应用于替代描述符中未包含的终端的任何信号,并应用新信号,以下情况除外。如果替换描述符中存在且包含KeepActive标志的信号当前正在播放且尚未完成,则应继续播放该信号。如果替换信号描述符包含当前未播放的信号且包含KeepActive标志,则应忽略该信号。如果替换描述符包含与现有描述符具有相同标识符的顺序信号列表,则
- the signal type and sequence of signals in the sequential signal list in the replacement descriptor shall be ignored; and
- 替换描述符中顺序信号列表中的信号类型和信号顺序应忽略;和
- the playing of the signals in the sequential signal list in the existing descriptor shall not be interrupted.
- 现有描述符中顺序信号列表中的信号播放不得中断。
The Audit descriptor specifies what information is to be audited. The Audit descriptor specifies the list of descriptors to be returned. Audit may be used in any command to force the return of any descriptor containing the current values of its properties, events, signals and statistics even if that descriptor was not present in the command, or had no underspecified parameters. Possible items in the Audit descriptor are:
审核描述符指定要审核的信息。审核描述符指定要返回的描述符列表。Audit可用于任何命令,强制返回包含其属性、事件、信号和统计信息的当前值的任何描述符,即使该描述符不在命令中,或没有未指定的参数。审核描述符中可能的项目包括:
Modem Mux Events Media Signals ObservedEvents DigitMap Statistics Packages EventBuffer
调制解调器多路复用事件观察到的媒体信号事件DigitMap统计数据包事件缓冲区
Audit may be empty, in which case, no descriptors are returned. This is useful in Subtract, to inhibit return of statistics, especially when using wildcard.
审核可能为空,在这种情况下,不会返回任何描述符。这在减法中很有用,可以禁止返回统计信息,尤其是在使用通配符时。
The ServiceChangeDescriptor contains the following parameters:
ServiceChangeDescriptor包含以下参数:
. ServiceChangeMethod . ServiceChangeReason . ServiceChangeAddress . ServiceChangeDelay . ServiceChangeProfile . ServiceChangeVersion . ServiceChangeMGCId . TimeStamp . Extension
. ServiceChangeMethod。服务改变原因。ServiceChangeAddress。服务更改延迟。ServiceChangeProfile。ServiceChangeVersion。ServiceChangeMGCId。时间戳。扩大
See 7.2.8.
见7.2.8。
A DigitMap is a dialing plan resident in the Media Gateway used for detecting and reporting digit events received on a Termination. The DigitMap descriptor contains a DigitMap name and the DigitMap to be assigned. A digit map may be preloaded into the MG by management action and referenced by name in an EventsDescriptor, may be defined dynamically and subsequently referenced by name, or the actual digitmap itself may be specified in the EventsDescriptor. It is permissible for a digit map completion event within an Events descriptor to refer by name to a DigitMap which is defined by a DigitMap descriptor within the same command, regardless of the transmitted order of the respective descriptors.
DigitMap是驻留在媒体网关中的拨号计划,用于检测和报告终端上接收到的数字事件。DigitMap描述符包含DigitMap名称和要分配的DigitMap。数字映射可以通过管理操作预加载到MG中,并在EventsDescriptor中通过名称引用,可以动态定义并随后通过名称引用,或者可以在EventsDescriptor中指定实际的数字映射本身。允许事件描述符中的数字映射完成事件通过名称引用由同一命令中的数字映射描述符定义的数字映射,而不管相应描述符的传输顺序如何。
DigitMaps defined in a DigitMapDescriptor can occur in any of the standard Termination manipulation Commands of the protocol. A DigitMap, once defined, can be used on all Terminations specified by the (possibly wildcarded) TerminationID in such a command. DigitMaps defined on the root Termination are global and can be used on every Termination in the MG, provided that a DigitMap with the same name has not been defined on the given Termination. When a DigitMap is defined dynamically in a DigitMap descriptor:
在DigitMapDescriptor中定义的DigitMaps可以出现在协议的任何标准终止操作命令中。一旦定义了DigitMap,就可以在这样一个命令中由TerminationID(可能是通配符)指定的所有终端上使用。根终端上定义的DigitMaps是全局的,可以在MG中的每个终端上使用,前提是给定终端上未定义具有相同名称的DigitMap。在DigitMap描述符中动态定义DigitMap时:
- A new DigitMap is created by specifying a name that is not yet defined. The value shall be present.
- 通过指定尚未定义的名称来创建新的DigitMap。该值应为当前值。
- A DigitMap value is updated by supplying a new value for a name that is already defined. Terminations presently using the digitmap shall continue to use the old definition; subsequent EventsDescriptors specifying the name, including any EventsDescriptor in the command containing the DigitMap descriptor, shall use the new one.
- 通过为已定义的名称提供新值来更新DigitMap值。目前使用digitmap的终端应继续使用旧定义;指定名称的后续事件脚本(包括包含DigitMap描述符的命令中的任何事件脚本)应使用新的事件脚本。
- A DigitMap is deleted by supplying an empty value for a name that is already defined. Terminations presently using the digitmap shall continue to use the old definition.
- 通过为已定义的名称提供空值,可以删除DigitMap。目前使用digitmap的终端应继续使用旧定义。
The collection of digits according to a DigitMap may be protected by three timers, viz. a start timer (T), short timer (S), and long timer (L).
根据DigitMap收集的数字可由三个定时器保护,即:。启动计时器(T)、短计时器(S)和长计时器(L)。
1) The start timer (T) is used prior to any digits having been dialed. If the start timer is overridden with the value set to zero (T=0), then the start timer shall be disabled. This implies that the MG will wait indefinitely for digits.
1) 在拨出任何数字之前使用启动计时器(T)。如果启动计时器被设置为零(T=0)的值覆盖,则应禁用启动计时器。这意味着MG将无限期地等待数字。
2) If the Media Gateway can determine that at least one more digit is needed for a digit string to match any of the allowed patterns in the digit map, then the interdigit timer value should be set to a long (L) duration (e.g., 16 seconds).
2) 如果媒体网关可以确定一个数字字符串需要至少一个以上的数字来匹配数字映射中的任何允许模式,则叉指计时器值应设置为长(L)持续时间(例如,16秒)。
3) If the digit string has matched one of the patterns in a digit map, but it is possible that more digits could be received which would cause a match with a different pattern, then instead of reporting the match immediately, the MG must apply the short timer (S) and wait for more digits.
3) 如果数字字符串已匹配数字映射中的一个模式,但可能会收到更多的数字,从而导致与不同模式的匹配,则MG必须应用较短的计时器并等待更多的数字,而不是立即报告匹配。
The timers are configurable parameters to a DigitMap. Default values of these timers should be provisioned on the MG, but can be overridden by values specified within the DigitMap.
定时器是数字地图的可配置参数。这些计时器的默认值应该在MG上设置,但可以由DigitMap中指定的值覆盖。
The formal syntax of the digit map is described by the DigitMap rule in the formal syntax description of the protocol (see Annex A and Annex B). A DigitMap, according to this syntax, is defined either by a string or by a list of strings. Each string in the list is an alternative event sequence, specified either as a sequence of digit map symbols or as a regular expression of digit map symbols. These digit map symbols, the digits "0" through "9" and letters "A" through a maximum value depending on the signalling system concerned, but never exceeding "K", correspond to specified events within a package
数字映射的形式语法由协议形式语法描述中的数字映射规则描述(见附录A和附录B)。根据这种语法,DigitMap由字符串或字符串列表定义。列表中的每个字符串都是可选的事件序列,指定为数字映射符号序列或数字映射符号的正则表达式。这些数字映射符号,数字“0”至“9”和字母“A”至最大值(取决于相关信号系统),但不超过“K”,对应于包内的指定事件
which has been designated in the Events descriptor on the Termination to which the digit map is being applied. (The mapping between events and digit map symbols is defined in the documentation for packages associated with channel-associated signalling systems such as DTMF, MF, or R2. Digits "0" through "9" MUST be mapped to the corresponding digit events within the signalling system concerned. Letters should be allocated in logical fashion, facilitating the use of range notation for alternative events.)
已在应用数字映射的终端上的事件描述符中指定。(事件和数字映射符号之间的映射在与信道相关信号系统(如DTMF、MF或R2)相关的包的文档中定义。数字“0”到“9”必须映射到相关信号系统内的相应数字事件。字母应以逻辑方式分配,以便于对替代事件使用范围符号。)
The letter "x" is used as a wildcard, designating any event corresponding to symbols in the range "0"-"9". The string may also contain explicit ranges and, more generally, explicit sets of symbols, designating alternative events any one of which satisfies that position of the digit map. Finally, the dot symbol "." stands for zero or more repetitions of the event selector (event, range of events, set of alternative events, or wildcard) that precedes it. As a consequence of the third timing rule above, inter-event timing while matching a terminal dot symbol uses the short timer by default.
字母“x”用作通配符,表示与“0”-“9”范围内的符号相对应的任何事件。该字符串还可以包含显式范围,更一般地,还可以包含显式符号集,指定替代事件,其中任何一个满足数字映射的位置。最后,点符号“.”表示前面的事件选择器(事件、事件范围、备选事件集或通配符)的零次或多次重复。作为上述第三个定时规则的结果,在匹配终端点符号时,事件间定时默认使用短定时器。
In addition to these event symbols, the string may contain "S" and "L" inter-event timing specifiers and the "Z" duration modifier. "S" and "L" respectively indicate that the MG should use the short (S) timer or the long (L) timer for subsequent events, overriding the timing rules described above. If an explicit timing specifier is in effect in one alternative event sequence, but none is given in any other candidate alternative, the timer value set by the explicit timing specifier must be used. If all sequences with explicit timing controls are dropped from the candidate set, timing reverts to the default rules given above. Finally, if conflicting timing specifiers are in effect in different alternative sequences, the long timer shall be used.
除这些事件符号外,字符串还可能包含“S”和“L”事件间计时说明符以及“Z”持续时间修饰符。“S”和“L”分别表示MG应对后续事件使用短(S)计时器或长(L)计时器,覆盖上述计时规则。如果显式计时说明符在一个备选事件序列中有效,但在任何其他备选事件序列中均未给出,则必须使用显式计时说明符设置的计时器值。如果从候选集中删除所有具有显式计时控件的序列,则计时将恢复为上面给出的默认规则。最后,如果在不同的替代序列中存在冲突的定时说明符,则应使用长定时器。
A "Z" designates a long duration event: placed in front of the symbol(s) designating the event(s) which satisfy a given digit position, it indicates that that position is satisfied only if the duration of the event exceeds the long-duration threshold. The value of this threshold is assumed to be provisioned in the MG.
“Z”表示长持续时间事件:放在指定满足给定数字位置的事件的符号前面,表示仅当事件持续时间超过长持续时间阈值时才满足该位置。假设在MG中提供该阈值的值。
A digit map is active while the Events descriptor which invoked it is active and it has not completed. A digit map completes when:
数字映射处于活动状态,而调用它的事件描述符处于活动状态且尚未完成。数字地图在以下情况下完成:
- a timer has expired; or
- 计时器已过期;或
- an alternative event sequence has been matched and no other alternative event sequence in the digit map could be matched through detection of an additional event (unambiguous match); or
- 已匹配一个备选事件序列,且通过检测附加事件(明确匹配),无法匹配数字映射中的其他备选事件序列;或
- an event has been detected such that a match to a complete alternative event sequence of the digit map will be impossible no matter what additional events are received.
- 已检测到事件,因此无论接收到什么其他事件,都不可能匹配到数字映射的完整替代事件序列。
Upon completion, a digit map completion event as defined in the package providing the events being mapped into the digit map shall be generated. At that point the digit map is deactivated. Subsequent events in the package are processed as per the currently active event processing mechanisms.
完成后,应生成包中定义的数字映射完成事件,提供映射到数字映射的事件。此时,数字地图被停用。包中的后续事件按照当前活动的事件处理机制进行处理。
Pending completion, successive events shall be processed according to the following rules:
在完成之前,应根据以下规则处理连续事件:
1) The "current dial string", an internal variable, is initially empty. The set of candidate alternative event sequences includes all of the alternatives specified in the digit map.
1) “当前拨号字符串”是一个内部变量,最初为空。候选备选事件序列集包括数字映射中指定的所有备选事件。
2) At each step, a timer is set to wait for the next event, based either on the default timing rules given above or on explicit timing specified in one or more alternative event sequences. If the timer expires and a member of the candidate set of alternatives is fully satisfied, a timeout completion with full match is reported. If the timer expires and part or none of any candidate alternative is satisfied, a timeout completion with partial match is reported.
2) 在每个步骤中,根据上述默认计时规则或一个或多个备选事件序列中指定的显式计时,将计时器设置为等待下一个事件。如果计时器过期且备选方案候选集的一个成员完全满足,则报告完全匹配的超时完成。如果计时器过期,并且任何备选方案中的一部分或任何一个都未得到满足,则会报告超时完成和部分匹配。
3) If an event is detected before the timer expires, it is mapped to a digit string symbol and provisionally added to the end of the current dial string. The duration of the event (long or not long) is noted if and only if this is relevant in the current symbol position (because at least one of the candidate alternative event sequences includes the "Z" modifier at this position in the sequence).
3) 如果在计时器过期之前检测到事件,则会将其映射到数字字符串符号,并临时添加到当前拨号字符串的末尾。当且仅当事件持续时间与当前符号位置相关时(因为至少一个候选替代事件序列在序列中的该位置包括“Z”修饰符),才记录事件持续时间(长或不长)。
4) The current dial string is compared to the candidate alternative event sequences. If and only if a sequence expecting a long-duration event at this position is matched (i.e., the event had long duration and met the specification for this position), then any alternative event sequences not specifying a long duration event at this position are discarded, and the current dial string is modified by inserting a "Z" in front of the symbol representing the latest event. Any sequence expecting a long-duration event at this position but not matching the observed event is discarded from the candidate set. If alternative event sequences not specifying a long duration event in the given
4) 将当前拨号字符串与候选备选事件序列进行比较。如果且仅当在该位置预期长持续时间事件的序列匹配(即,该事件具有长持续时间且符合该位置的规范),则丢弃在该位置未指定长持续时间事件的任何替代事件序列,并通过插入“Z”修改当前拨号字符串在代表最新事件的符号前面。任何在此位置期待长持续时间事件但与观察到的事件不匹配的序列都将从候选集中丢弃。如果替代事件序列未在给定时间内指定长持续时间事件
position remain in the candidate set after application of the above rules, the observed event duration is treated as irrelevant in assessing matches to them.
在应用上述规则后,位置保留在候选集中,观察到的事件持续时间在评估与它们的匹配时被视为无关。
5) If exactly one candidate remains and it has been fully matched, a completion event is generated indicating an unambiguous match. If no candidates remain, the latest event is removed from the current dial string and a completion event is generated indicating full match if one of the candidates from the previous step was fully satisfied before the latest event was detected, or partial match otherwise. The event removed from the current dial string will then be reported as per the currently active event processing mechanisms.
5) 如果只剩下一个候选者,并且该候选者已完全匹配,则会生成一个完成事件,指示明确的匹配。如果没有候选项,则从当前拨号字符串中删除最新事件,并生成一个完成事件,如果在检测到最新事件之前,上一步骤中的一个候选项已完全满足,则表示完全匹配,否则表示部分匹配。然后,将根据当前活动的事件处理机制报告从当前拨号字符串中删除的事件。
6) If no completion event is reported out of step 5, processing returns to step 2.
6) 如果在步骤5中没有报告完成事件,则处理返回到步骤2。
A digit map is activated whenever a new Event descriptor is applied to the Termination or embedded Event descriptor is activated, and that Event descriptor contains a digit map completion event. The digit map completion event contains an eventDM field in the requested actions field. Each new activation of a digit map begins at step 1 of the above procedure, with a clear current dial string. Any previous contents of the current dial string from an earlier activation are lost.
每当新的事件描述符应用于终止或嵌入式事件描述符被激活时,就会激活数字映射,并且该事件描述符包含数字映射完成事件。数字映射完成事件在请求的操作字段中包含eventDM字段。数字映射的每次新激活都从上述步骤的第1步开始,并带有一个清除的当前拨号字符串。先前激活的当前拨号字符串的任何先前内容都将丢失。
A digit map completion event that does not contain an eventDM field in its requested actions field is considered an error. Upon receipt of such an event in an EventsDescriptor, a MG shall respond with an error response, including Error 457 - Missing parameter in signal or event.
数字映射完成事件如果在其请求的操作字段中不包含eventDM字段,则视为错误。在EventsDescriptor中收到此类事件后,MG应以错误响应进行响应,包括错误457-信号或事件中缺少参数。
While the digit map is activated, detection is enabled for all events defined in the package containing the specified digit map completion event. Normal event behaviour (e.g., stopping of signals unless the digit completion event has the KeepActive flag enabled) continues to apply for each such event detected, except that:
激活数字映射时,对包含指定数字映射完成事件的包中定义的所有事件启用检测。正常事件行为(例如,停止信号,除非数字完成事件启用了KeepActive标志)继续适用于检测到的每个此类事件,但以下情况除外:
- the events in the package containing the specified digit map completion event other than the completion event itself are not individually notified and have no side-effects unless separately enabled; and
- 包中包含指定数字映射完成事件(完成事件本身除外)的事件不会单独通知,除非单独启用,否则不会产生任何副作用;和
- an event that triggers a partial match completion event is not recognized and therefore has no side effects until reprocessed following the recognition of the digit map completion event.
- 触发部分匹配完成事件的事件不会被识别,因此在识别数字映射完成事件后重新处理之前没有副作用。
Note that if a package contains a digit map completion event, then an event specification consisting of the package name with a wildcarded ItemID (Property Name) will activate a digit map; to that end, the event specification must include an eventDM field according to section 7.1.14.6. If the package also contains the digit events themselves, this form of event specification will cause the individual events to be reported to the MGC as they are detected.
注意,如果包包含数字映射完成事件,则由包名和通配符ItemID(属性名)组成的事件规范将激活数字映射;为此,根据第7.1.14.6节,事件规范必须包括eventDM字段。如果包中还包含数字事件本身,则此形式的事件规范将导致在检测到单个事件时向MGC报告这些事件。
As an example, consider the following dial plan:
作为一个例子,考虑以下拨号计划:
0 Local operator
0本地操作员
00 Long-distance operator
00长途接线员
xxxx Local extension number (starts with 1-7)
xxxx本地分机号码(从1-7开始)
8xxxxxxx Local number
8xxxxxx本地号码
#xxxxxxx Off-site extension
#xxxxxxx场外扩展
*xx Star services
*xx星级服务
91xxxxxxxxxx Long-distance number
91XXXXXXXXX长途电话号码
9011 + up to 15 digits International number
9011+最多15位国际号码
If the DTMF detection package described in E.6 is used to collect the dialed digits, then the dialing plan shown above results in the following digit map:
如果使用E.6中所述的DTMF检测包收集已拨数字,则上述拨号计划会产生以下数字映射:
(0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)
(0 | 00 |[1-7]xxx | 8xxxxxx | fxxxxxx | Exx | 91xxxxxxxxx | 9011x)
The Statistics Descriptor provides information describing the status and usage of a Termination during its existence within a specific Context. There is a set of standard statistics kept for each Termination where appropriate (number of octets sent and received for
统计描述符提供了描述终止在特定上下文中存在期间的状态和使用情况的信息。在适当的情况下,为每个终端保留一组标准统计数据(为每个终端发送和接收的八位字节数)
example). The particular statistical properties that are reported for a given Termination are determined by the Packages realized by the Termination. By default, statistics are reported when the Termination is Subtracted from the Context. This behaviour can be overridden by including an empty AuditDescriptor in the Subtract command. Statistics may also be returned from the AuditValue command, or any Add/Move/Modify command using the Audit descriptor.
示例)。给定终端报告的特定统计特性由终端实现的包决定。默认情况下,从上下文中减去终止时会报告统计信息。可以通过在Subtract命令中包含空的AuditDescriptor来覆盖此行为。还可以从AuditValue命令或使用审核描述符的任何添加/移动/修改命令返回统计信息。
Statistics are cumulative; reporting Statistics does not reset them. Statistics are reset when a Termination is Subtracted from a Context.
统计是累积的;报告统计信息不会重置它们。当从上下文中减去终止时,将重置统计信息。
Used only with the AuditValue command, the PackageDescriptor returns a list of Packages realized by the Termination.
PackageDescriptor仅与AuditValue命令一起使用,返回由终止实现的包的列表。
ObservedEvents is supplied with the Notify command to inform the MGC of which event(s) were detected. Used with the AuditValue command, the ObservedEventsDescriptor returns events in the event buffer which have not been Notified. ObservedEvents contains the RequestIdentifier of the EventsDescriptor that triggered the notification, the event(s) detected, optionally the detection time(s) and any parameters of the observed event. Detection times are reported with a precision of hundredths of a second.
ObservedEvents随Notify命令一起提供,用于通知MGC检测到哪些事件。ObservedEventsDescriptor与AuditValue命令一起使用,返回事件缓冲区中未通知的事件。ObservedEvents包含触发通知的事件描述符的RequestIdentifier、检测到的事件、可选的检测时间以及观察到的事件的任何参数。检测时间的报告精度为百分之一秒。
A Topology descriptor is used to specify flow directions between Terminations in a Context. Contrary to the descriptors in previous subclauses, the Topology descriptor applies to a Context instead of a Termination. The default topology of a Context is that each Termination's transmission is received by all other Terminations. The Topology descriptor is optional to implement. An MG that does not support Topology descriptors, but receives a command containing one, returns Error 444 Unsupported or unknown descriptor, and optionally includes a string containing the name of the unsupported Descriptor ("Topology") in the error text in the error descriptor.
拓扑描述符用于指定上下文中端点之间的流向。与前面子部分中的描述符相反,拓扑描述符应用于上下文而不是终止。上下文的默认拓扑是每个终端的传输由所有其他终端接收。拓扑描述符是可选的。MG不支持拓扑描述符,但接收包含拓扑描述符的命令,返回错误444不支持或未知的描述符,并可选地在错误描述符的错误文本中包含包含不支持的描述符名称(“拓扑”)的字符串。
The Topology descriptor occurs before the commands in an action. It is possible to have an action containing only a Topology descriptor, provided that the Context to which the action applies already exists.
拓扑描述符出现在操作中的命令之前。如果操作应用的上下文已经存在,则可以使操作只包含拓扑描述符。
A Topology descriptor consists of a sequence of triples of the form (T1, T2, association). T1 and T2 specify Terminations within the Context, possibly using the ALL or CHOOSE wildcard. The association specifies how media flows between these two Terminations as follows.
拓扑描述符由以下形式的三元组序列组成(T1、T2、关联)。T1和T2在上下文中指定终止,可能使用ALL或CHOOSE通配符。该关联指定媒体如何在这两个终端之间流动,如下所示。
- (T1, T2, isolate) means that the Terminations matching T2 do not receive media from the Terminations matching T1, nor vice versa.
- (T1,T2,隔离)表示匹配T2的终端不从匹配T1的终端接收介质,反之亦然。
- (T1, T2, oneway) means that the Terminations that match T2 receive media from the Terminations matching T1, but not vice versa. In this case use of the ALL wildcard such that there are Terminations that match both T1 and T2 is not allowed.
- (T1,T2,单向)表示匹配T2的终端从匹配T1的终端接收介质,但反之亦然。在这种情况下,不允许使用所有通配符,以便存在同时匹配T1和T2的终止符。
- (T1, T2, bothway) means that the Terminations matching T2 receive media from the Terminations matching T1, and vice versa. In this case it is allowed to use wildcards such that there are Terminations that match both T1 and T2. However, if there is a Termination that matches both, no loopback is introduced.
- (T1,T2,双向)表示匹配T2的终端从匹配T1的终端接收介质,反之亦然。在这种情况下,允许使用通配符,以使终端同时匹配T1和T2。但是,如果有一个终端与这两个匹配,则不会引入环回。
CHOOSE wildcards may be used in T1 and T2 as well, under the following restrictions:
CHOOSE通配符也可以在T1和T2中使用,但有以下限制:
- the action (see clause 8) of which the topology descriptor is part contains an Add command in which a CHOOSE wildcard is used;
- 拓扑描述符所属的操作(见第8条)包含一个Add命令,其中使用了CHOOSE通配符;
- if a CHOOSE wildcard occurs in T1 or T2, then a partial name SHALL NOT be specified.
- 如果选择通配符出现在T1或T2中,则不应指定部分名称。
The CHOOSE wildcard in a Topology descriptor matches the TerminationID that the MG assigns in the first Add command that uses a CHOOSE wildcard in the same action. An existing Termination that matches T1 or T2 in the Context to which a Termination is added, is connected to the newly added Termination as specified by the Topology descriptor.
拓扑描述符中的CHOOSE通配符与MG在同一操作中使用CHOOSE通配符的第一个Add命令中分配的TerminationID相匹配。根据拓扑描述符的指定,在添加终端的上下文中匹配T1或T2的现有终端连接到新添加的终端。
If a termination is not mentioned within a Topology Descriptor, any topology associated with it remains unchanged. If, however, a new termination is added into a context its association with the other terminations within the context defaults to bothway, unless a Topology Descriptor is given to change this (e.g., if T3 is added to a context with T1 and T2 with topology (T3, T1, oneway) it will be connected bothway to T2).
如果拓扑描述符中未提及终止,则与之关联的任何拓扑将保持不变。但是,如果将新的终端添加到上下文中,则其与上下文中其他终端的关联默认为双向,除非给定拓扑描述符来更改此关联(例如,如果将T3添加到具有T1和T2拓扑(T3,T1,单向)的上下文中,则它将双向连接到T2)。
Figure 7 and the table following it show some examples of the effect of including topology descriptors in actions. In these examples it is assumed that the topology descriptors are applied in sequence.
图7及其下表显示了在操作中包含拓扑描述符的效果的一些示例。在这些示例中,假设拓扑描述符按顺序应用。
+------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | ^ ^ | | ^ | | ^ | | | | | | | | | | | | +--+ +--+ | | +---+ | | +--+ | | | | | | | | | | | | v v | | v | | | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 1. No Topology Desc. 2. T1, T2, Isolate 3. T3, T2, Oneway
+------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | ^ ^ | | ^ | | ^ | | | | | | | | | | | | +--+ +--+ | | +---+ | | +--+ | | | | | | | | | | | | v v | | v | | | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 1. No Topology Desc. 2. T1, T2, Isolate 3. T3, T2, Oneway
+------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | | | | ^ | | ^ ^ | | | | | | | | | | | | +--+ | | +---+ | | +--+ +--+ | | | | | | | | | | | | v | | v | | v v | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 4. T2, T3 oneway 5. T2, T3 bothway 6. T1, T2 bothway
+------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | | | | ^ | | ^ ^ | | | | | | | | | | | | +--+ | | +---+ | | +--+ +--+ | | | | | | | | | | | | v | | v | | v v | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 4. T2, T3 oneway 5. T2, T3 bothway 6. T1, T2 bothway
Note: the direction of the arrow indicates the direction of flow.
注:箭头方向表示流动方向。
Figure 7: Example topologies
图7:示例拓扑
Topology Description
拓扑描述
1 No topology descriptors When no topology descriptors are included, all Terminations have a bothway connection to all other Terminations.
1无拓扑描述符当不包括拓扑描述符时,所有终端与所有其他终端都有双向连接。
2 T1, T2 Isolate Removes the connection between T1 and T2. T3 has a bothway connection with both T1 and T2. T1 and T2 have bothway connection to T3.
2 T1,T2隔离删除T1和T2之间的连接。T3与T1和T2都有双向连接。T1和T2双向连接至T3。
3 T3, T2 oneway A oneway connection from T3 to T2 (i.e., T2 receives media flow from T3). A bothway connection between T1 and T3.
3 T3、T2单向从T3到T2的单向连接(即T2接收来自T3的媒体流)。T1和T3之间的双向连接。
4 T2, T3 oneway A oneway connection between T2 to T3. T1 and T3 remain bothway connected.
4 T2,T3单向T2与T3之间的单向连接。T1和T3保持双向连接。
5 T2, T3 bothway T2 is bothway connected to T3. This results in the same as 2.
5 T2、T3双向T2与T3双向连接。这将产生与2相同的结果。
6 T1, T2 bothway (T2, T3 All Terminations have a bothway bothway and T1, T3 connection to all other Terminations. bothway may be implied or explicit).
6 T1、T2双向(T2、T3所有终端都有双向双向,T1、T3连接到所有其他终端。双向可以是隐含的或明确的)。
A oneway connection must be implemented in such a way that the other Terminations in the Context are not aware of the change in topology.
单向连接的实现方式必须确保上下文中的其他终端不知道拓扑中的更改。
If a responder encounters an error when processing a transaction request, it must include an error descriptor in its response. A Notify request may contain an error descriptor as well.
如果响应程序在处理事务请求时遇到错误,则必须在其响应中包含错误描述符。通知请求也可能包含错误描述符。
An error descriptor consists of an IANA-registered error code, optionally accompanied by an error text. H.248.8 contains a list of valid error codes and error descriptions.
错误描述符由IANA注册的错误代码组成,还可以选择附带错误文本。H.248.8包含有效错误代码和错误描述的列表。
An error descriptor shall be specified at the "deepest level" that is semantically appropriate for the error being described and that is possible given any parsing problems with the original request. An error descriptor may refer to a syntactical construct other than where it appears. For example, Error descriptor 422 - Syntax Error in Action, could appear within a command even though it refers to the larger construct - the action - and not the particular command within which it appears.
应在“最深层”指定一个错误描述符,该描述符在语义上适用于所描述的错误,并且考虑到原始请求的任何解析问题,该描述符是可能的。错误描述符可能引用语法结构,而不是它出现的位置。例如,错误描述符422(动作中的语法错误)可能出现在命令中,即使它引用的是更大的构造(动作),而不是它出现的特定命令。
Following is an Application Programming Interface (API) describing the Commands of the protocol. This API is shown to illustrate the Commands and their parameters and is not intended to specify implementation (e.g., via use of blocking function calls). It describes the input parameters in parentheses after the command name and the return values in front of the Command. This is only for descriptive purposes; the actual Command syntax and encoding are
以下是描述协议命令的应用程序编程接口(API)。显示此API是为了说明命令及其参数,而不是为了指定实现(例如,通过使用阻塞函数调用)。它描述了命令名后面的括号中的输入参数和命令前面的返回值。这仅用于描述目的;实际的命令语法和编码如下
specified in later subclauses. The order of parameters to commands is not fixed. Descriptors may appear as parameters to commands in any order. The descriptors SHALL be processed in the order in which they appear.
在后面的子条款中指定。命令的参数顺序不是固定的。描述符可以以任何顺序显示为命令的参数。描述符应按照其出现的顺序进行处理。
Any reply to a command may contain an error descriptor; the API does not specifically show this.
对命令的任何回复都可能包含错误描述符;API没有具体说明这一点。
All parameters enclosed by square brackets ([. . .]) are considered optional.
方括号([…])内的所有参数均视为可选参数。
The Add Command adds a Termination to a Context.
Add命令将终止添加到上下文中。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Add( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, EventBufferDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Add( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, EventBufferDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
The TerminationID specifies the Termination to be added to the Context. The Termination is either created, or taken from the null Context. If a CHOOSE wildcard is used in the TerminationID, the selected TerminationID will be returned. Wildcards may be used in an Add, but such usage would be unusual. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified.
TerminationID指定要添加到上下文的终止。终止要么创建,要么从空上下文中获取。如果在TerminationID中使用CHOOSE通配符,则将返回所选TerminationID。可以在Add中使用通配符,但这种用法并不常见。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。
The optional MediaDescriptor describes all media streams.
可选的MediaDescriptor描述所有媒体流。
The optional ModemDescriptor and MuxDescriptor specify a modem and multiplexer if applicable. For convenience, if a Multiplex descriptor is present in an Add command and lists any Terminations that are not currently in the Context, such Terminations are added to the Context as if individual Add commands listing the Terminations were invoked. If an error occurs on such an implied Add, error 471 - Implied Add for Multiplex failure shall be returned and further processing of the command shall cease.
可选调制解调器描述符和MuxDescriptor指定调制解调器和多路复用器(如果适用)。为方便起见,如果Add命令中存在多路复用描述符,并且列出了当前不在上下文中的任何终止,则此类终止将添加到上下文中,就像调用了列出终止的各个Add命令一样。如果此类隐含Add出现错误,则应返回错误471-多路传输故障的隐含Add,并停止对命令的进一步处理。
The EventsDescriptor parameter is optional. If present, it provides the list of events that should be detected on the Termination.
EventsDescriptor参数是可选的。如果存在,则提供应在终端上检测到的事件列表。
The EventBufferDescriptor parameter is optional. If present, it provides the list of events that the MG is requested to detect and buffer when EventBufferControl equals LockStep.
EventBufferDescriptor参数是可选的。如果存在,它将提供请求MG检测和缓冲EventBufferControl等于LockStep时的事件列表。
The SignalsDescriptor parameter is optional. If present, it provides the list of signals that should be applied to the Termination.
SignalsDescriptor参数是可选的。如果存在,则提供应应用于终端的信号列表。
The DigitMapDescriptor parameter is optional. If present, it defines a DigitMap definition that may be used in an EventsDescriptor.
DigitMapDescriptor参数是可选的。如果存在,它将定义可在EventsDescriptor中使用的DigitMap定义。
The AuditDescriptor is optional. If present, the command will return descriptors as specified in the AuditDescriptor.
AuditDescriptor是可选的。如果存在,该命令将返回AuditDescriptor中指定的描述符。
All descriptors that can be modified could be returned by MG if a parameter was underspecified or overspecified. ObservedEvents, Statistics, and Packages, and the EventBuffer descriptors are returned only if requested in the AuditDescriptor.
如果参数未指定或指定过度,MG可以返回所有可以修改的描述符。只有在AuditDescriptor中请求时,才会返回ObservedEvents、Statistics和Packages以及EventBuffer描述符。
Add SHALL NOT be used on a Termination with a serviceState of "OutofService".
Add不得用于serviceState为“OutofService”的终端。
The Modify Command modifies the properties of a Termination.
“修改”命令修改终端的属性。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor]
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor]
Modify( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, EventBufferDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
Modify( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, EventBufferDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
The TerminationID may be specific if a single Termination in the Context is to be modified. Use of wildcards in the TerminationID may be appropriate for some operations. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. The CHOOSE option is an error, as the Modify command may only be used on existing Terminations.
如果要修改上下文中的单个终止,则TerminationID可能是特定的。在TerminationID中使用通配符可能适用于某些操作。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。“选择”选项是一个错误,因为“修改”命令只能用于现有终端。
For convenience, if a Multiplex Descriptor is present in a Modify command, then:
为方便起见,如果Modify命令中存在多路复用描述符,则:
- if the new Multiplex Descriptor lists any Terminations that are not currently in the Context, such Terminations are added to the context as if individual commands listing the Terminations were invoked.
- 如果新的多路复用描述符列出了当前不在上下文中的任何终止,则此类终止将添加到上下文中,就像调用了列出终止的各个命令一样。
- if any Terminations listed previously in the Multiplex Descriptor are no longer present in the new Multiplex Descriptor, they are subtracted from the context as if individual Subtract commands listing the Terminations were invoked.
- 如果先前在多路复用描述符中列出的任何终端不再出现在新的多路复用描述符中,则将从上下文中减去它们,就像调用了列出终端的各个减法命令一样。
The remaining parameters to Modify are the same as those to Add. Possible return values are the same as those to Add.
要修改的其余参数与要添加的参数相同。可能的返回值与要添加的返回值相同。
The Subtract Command disconnects a Termination from its Context and returns statistics on the Termination's participation in the Context.
Subtract命令将终端与其上下文断开连接,并返回终端参与上下文的统计信息。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor]
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor]
[,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Subtract(TerminationID [, AuditDescriptor] )
[,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Subtract(TerminationID [, AuditDescriptor] )
TerminationID in the input parameters represents the Termination that is being subtracted. The TerminationID may be specific or may be a wildcard value indicating that all (or a set of related) Terminations in the Context of the Subtract Command are to be subtracted. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified.
输入参数中的TerminationID表示要减去的终止。TerminationID可以是特定的,也可以是通配符值,指示要减去减法命令上下文中的所有(或一组相关)终止。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。
The use of CHOOSE in the TerminationID is an error, as the Subtract command may only be used on existing Terminations.
在TerminationID中使用CHOOSE是一个错误,因为减法命令只能在现有终端上使用。
ALL may be used as the ContextID as well as the TerminationId in a Subtract, which would have the effect of deleting all Contexts, deleting all ephemeral Terminations, and returning all physical Terminations to Null Context. Subtract of a termination from the Null Context is not allowed.
ALL可以用作减法中的ContextID和TerminationId,其效果是删除所有上下文,删除所有临时终止,并将所有物理终止返回到空上下文。不允许从空上下文中减去终止。
For convenience, if a multiplexing Termination is the object of a Subtract command, then any bearer Terminations listed in its Multiplex Descriptor are subtracted from the context as if individual Subtract commands listing the Terminations were invoked.
为方便起见,如果多路复用终端是减法命令的对象,则从上下文中减去其多路复用描述符中列出的任何承载终端,就像调用了列出终端的各个减法命令一样。
By default, the Statistics parameter is returned to report information collected on the Termination or Terminations specified in the Command. The information reported applies to the Termination's or Terminations' existence in the Context from which it or they are being subtracted.
默认情况下,返回Statistics参数以报告在命令中指定的一个或多个终止上收集的信息。报告的信息适用于该终止在其被减去的上下文中的存在。
The AuditDescriptor is optional. If present, the command will return only those descriptors as specified in the AuditDescriptor, which may be empty. If omitted, the Statistics descriptor is returned, by default. Possible return values are the same as those to Add.
AuditDescriptor是可选的。如果存在,该命令将仅返回AuditDescriptor中指定的描述符,这些描述符可能为空。如果省略,默认情况下将返回统计描述符。可能的返回值与要添加的返回值相同。
When a provisioned Termination is Subtracted from a Context, its property values shall revert to:
当从上下文中减去规定终止时,其属性值应恢复为:
- the default value, if specified for the property and not overridden by provisioning;
- 默认值(如果为属性指定且未被设置覆盖);
- otherwise, the provisioned value.
- 否则,设置的值。
The Move Command moves a Termination to another Context from its current Context in one atomic operation. The Move command is the only command that refers to a Termination in a Context different from that to which the command is applied. The Move command shall not be used to move Terminations to or from the null Context.
Move命令在一个原子操作中将终端从其当前上下文移动到另一个上下文。“移动”命令是在与应用该命令的上下文不同的上下文中引用终止的唯一命令。Move命令不得用于在null上下文之间移动终端。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Move( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, EventBufferDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Move( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, EventBufferDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
The TerminationID specifies the Termination to be moved. It may be wildcarded, but CHOOSE shall not be used in the TerminationID. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. The Context to which the Termination is moved is indicated by the target ContextId in the Action. If the last remaining Termination is moved out of a Context, the Context is deleted.
TerminationID指定要移动的终端。它可以是通配符,但不能在TerminationID中使用CHOOSE。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。将终止移动到的上下文由操作中的目标ContextId指示。如果将最后剩余的终止移出上下文,则该上下文将被删除。
The Move command does not affect the properties of the Termination on which it operates, except those properties explicitly modified by descriptors included in the Move command. The AuditDescriptor with the Statistics option, for example, would return statistics on the Termination just prior to the Move. Possible descriptors returned from Move are the same as for Add.
Move命令不影响其操作的终端的属性,但由Move命令中包含的描述符显式修改的属性除外。例如,带有Statistics选项的AuditDescriptor将在移动之前返回终止时的统计信息。从Move返回的可能描述符与Add相同。
For convenience, if a multiplexing Termination is the object of a Move command, then any bearer Terminations listed in its Multiplex Descriptor are also moved as if individual Move commands listing the Terminations were invoked.
为方便起见,如果多路复用终端是Move命令的对象,则其多路复用描述符中列出的任何承载终端也会被移动,就像调用了列出终端的各个Move命令一样。
Move SHALL NOT be used on a Termination with a serviceState of "OutofService".
不得在serviceState为“OutofService”的终端上使用Move。
The AuditValue Command returns the current values of properties, events, signals and statistics associated with Terminations.
AuditValue命令返回与终止相关的属性、事件、信号和统计信息的当前值。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] AuditValue(TerminationID, AuditDescriptor )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] AuditValue(TerminationID, AuditDescriptor )
TerminationID may be specific or wildcarded. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. If a wildcarded response is requested, only one command return is generated, with the contents containing the union of the values of all Terminations matching the wildcard. This convention may reduce the volume of data required to audit a group of Terminations. Use of CHOOSE is an error.
TerminationID可以是特定的,也可以是通配符。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。如果请求通配符响应,则只生成一个命令返回,返回内容包含与通配符匹配的所有终止值的并集。此约定可以减少审核一组终止所需的数据量。使用CHOOSE是一个错误。
The appropriate descriptors, with the current values for the Termination, are returned from AuditValue. Values appearing in multiple instances of a descriptor are defined to be alternate values supported, with each parameter in a descriptor considered independent.
AuditValue返回相应的描述符以及终止的当前值。一个描述符的多个实例中出现的值被定义为支持的备用值,描述符中的每个参数都被视为独立的。
ObservedEvents returns a list of events in the EventBuffer. If the ObservedEventsDescriptor is audited while a DigitMap is active, the returned ObservedEvents descriptor also includes a digit map completion event that shows the current dial string but does not show a Termination method.
ObservedEvents返回EventBuffer中的事件列表。如果在DigitMap处于活动状态时审核ObservedEvents描述符,则返回的ObservedEvents描述符还包括一个数字映射完成事件,该事件显示当前拨号字符串,但不显示终止方法。
EventBuffer returns the set of events and associated parameter values currently enabled in the EventBufferDescriptor. PackagesDescriptor returns a list of packages realized by the Termination. DigitMapDescriptor returns the name or value of the current DigitMap for the Termination. DigitMap requested in an AuditValue command with TerminationID ALL returns all DigitMaps in the gateway. Statistics returns the current values of all statistics being kept on the Termination. Specifying an empty Audit descriptor results in only the TerminationID being returned. This may be useful to get a list of TerminationIDs when used with wildcard. Annexes A and B provide a special syntax for presenting such a list in condensed form, such that the AuditValue command tag does not have to be repeated for each TerminationID.
EventBuffer返回EventBufferDescriptor中当前启用的事件集和相关参数值。PackagesDescriptor返回由终止实现的包的列表。DigitMapDescriptor返回终止当前DigitMap的名称或值。在带有TerminationID ALL的AuditValue命令中请求的DigitMap返回网关中的所有DigitMap。Statistics返回终端上保留的所有统计信息的当前值。指定空的审核描述符只会导致返回TerminationID。当与通配符一起使用时,这对于获取TerminationID列表可能很有用。附件A和B提供了一种特殊的语法,用于以压缩形式呈现此类列表,这样就不必为每个TerminationID重复AuditValue命令标记。
AuditValue results depend on the Context, viz. specific, null, or wildcarded. (Note that ContextID ALL does not include the null Context.) The TerminationID may be specific, or wildcarded.
AuditValue结果取决于上下文,即。特定、空或通配符。(请注意,ContextID ALL不包括空上下文。)TerminationID可以是特定的,也可以是通配符。
The following are examples of what is returned in case the context and/or the termination is wildcarded and a wildcarded response has been specified.
以下是上下文和/或终止为通配符且已指定通配符响应时返回的示例。
Assume that the gateway has 4 terminations: t1/1, t1/2, t2/1 and t2/2. Assume that terminations t1/* have implemented packages aaa and bbb and that terminations t2/* have implemented packages ccc and ddd. Assume that Context 1 has t1/1 and t2/1 in it and that Context 2 has t1/2 and t2/2 in it.
Assume that the gateway has 4 terminations: t1/1, t1/2, t2/1 and t2/2. Assume that terminations t1/* have implemented packages aaa and bbb and that terminations t2/* have implemented packages ccc and ddd. Assume that Context 1 has t1/1 and t2/1 in it and that Context 2 has t1/2 and t2/2 in it.
The command:
命令:
Context=1{AuditValue=t1/1{Audit{Packages}}}
Context=1{AuditValue=t1/1{Audit{Packages}}}
Returns:
返回:
Context=1{AuditValue=t1/1{Packages{aaa,bbb}}}
Context=1{AuditValue=t1/1{Packages{aaa,bbb}}}
The command:
命令:
Context=*{AuditValue=t2/*{Audit{Packages}}}
Context=*{AuditValue=t2/*{Audit{Packages}}}
Returns:
返回:
Context=1{AuditValue=t2/1{Packages{ccc,ddd}}}, Context=2{AuditValue=t2/2{Packages{ccc,ddd}}}
Context=1{AuditValue=t2/1{Packages{ccc,ddd}}}, Context=2{AuditValue=t2/2{Packages{ccc,ddd}}}
The command:
命令:
Context=*{W-AuditValue=t1/*{Audit{Packages}}}
Context=*{W-AuditValue=t1/*{Audit{Packages}}}
Returns:
返回:
Context=*{W-AuditValue=t1/*{Packages{aaa,bbb}}}
Context=*{W-AuditValue=t1/*{Packages{aaa,bbb}}}
Note: A wildcard response may also be used for other commands such as Subtract.
注意:通配符响应也可用于其他命令,如减法。
The following illustrates other information that can be obtained with the AuditValue Command:
以下说明了使用AuditValue命令可以获得的其他信息:
ContextID TerminationID Information Obtained
已获取ContextID TerminationID信息
Specific wildcard Audit of matching Terminations in a Context
上下文中匹配终止的特定通配符审核
Specific specific Audit of a single Termination in a Context
上下文中单个终止的具体审计
Null Root Audit of Media Gateway state and events
媒体网关状态和事件的空根审核
Null wildcard Audit of all matching Terminations in the null Context
空上下文中所有匹配终止的空通配符审核
Null specific Audit of a single Termination outside of any Context
在任何上下文之外对单个终止进行特定于Null的审核
All wildcard Audit of all matching Terminations and the Context to which they are associated
所有匹配终止及其关联上下文的所有通配符审核
All Root List of all ContextIds (the ContextID list should be returned by using multiple action replies, each containing a ContextID from the list)
所有ContextID的所有根列表(ContextID列表应通过使用多个操作回复返回,每个回复包含列表中的一个ContextID)
All Specific (Non-null) ContextID in which the Termination currently exists
当前存在终止的所有特定(非空)ContextID
The AuditCapabilities Command returns the possible values of properties, events, signals and statistics associated with Terminations.
AuditCapabilities命令返回与终止相关的属性、事件、信号和统计信息的可能值。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] AuditCapabilities(TerminationID, AuditDescriptor )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] AuditCapabilities(TerminationID, AuditDescriptor )
The appropriate descriptors, with the possible values for the Termination are returned from AuditCapabilities. Descriptors may be repeated where there are multiple possible values. If a wildcarded response is requested, only one command return is generated, with the contents containing the union of the values of all Terminations matching the wildcard. This convention may reduce the volume of data required to audit a group of Terminations.
从AuditCapabilities返回适当的描述符和可能的终止值。当存在多个可能值时,可以重复描述符。如果请求通配符响应,则只生成一个命令返回,返回内容包含与通配符匹配的所有终止值的并集。此约定可以减少审核一组终止所需的数据量。
Interpretation of what capabilities are requested for various values of ContextID and TerminationID is the same as in AuditValue.
对ContextID和TerminationID的各种值所请求的功能的解释与AuditValue中的相同。
The EventsDescriptor returns the list of possible events on the Termination together with the list of all possible values for the EventsDescriptor Parameters. EventBufferDescriptor returns the same information as EventsDescriptor. The SignalsDescriptor returns the list of possible signals that could be applied to the Termination together with the list of all possible values for the Signals Parameters. StatisticsDescriptor returns the names of the statistics being kept on the termination. ObservedEventsDescriptor returns the names of active events on the Termination. DigitMap and Packages are not legal in AuditCapability.
EventsDescriptor返回终止时可能发生的事件列表以及EventsDescriptor参数的所有可能值列表。EventBufferDescriptor返回与EventsDescriptor相同的信息。SignalsDescriptor返回可应用于终端的可能信号列表以及信号参数的所有可能值列表。StatisticsDescriptor返回终端上保留的统计信息的名称。ObservedEventsDescriptor返回终止时活动事件的名称。DigitMap和软件包在AuditCapability中不合法。
The following illustrates other information that can be obtained with the AuditCapabilties Command:
以下说明了可通过AuditCapabilities命令获得的其他信息:
ContextID TerminationID Information Obtained
已获取ContextID TerminationID信息
Specific wildcard Audit of matching Terminations in a Context
上下文中匹配终止的特定通配符审核
Specific specific Audit of a single Termination in a Context
上下文中单个终止的具体审计
Null Root Audit of MG state and events
MG状态和事件的空根审核
Null wildcard Audit of all matching Terminations in the Null Context
空上下文中所有匹配终止的空通配符审核
Null specific Audit of a single Termination outside of any Context
在任何上下文之外对单个终止进行特定于Null的审核
All wildcard Audit of all matching Terminations and the Context to which they are associated
所有匹配终止及其关联上下文的所有通配符审核
All Root Same as for AuditValue
所有根目录都与AuditValue相同
All Specific Same as for AuditValue
所有特定值与AuditValue相同
The Notify Command allows the Media Gateway to notify the Media Gateway Controller of events occurring within the Media Gateway.
Notify命令允许媒体网关将媒体网关内发生的事件通知媒体网关控制器。
TerminationID Notify(TerminationID, ObservedEventsDescriptor, [ErrorDescriptor] )
TerminationID通知(TerminationID,ObservedEventsDescriptor,[ErrorDescriptor])
The TerminationID parameter specifies the Termination issuing the Notify Command. The TerminationID shall be a fully qualified name.
TerminationID参数指定发出Notify命令的终止。TerminationID应为完全限定名称。
The ObservedEventsDescriptor contains the RequestID and a list of events that the Media Gateway detected in the order that they were detected. Each event in the list is accompanied by parameters associated with the event and optionally an indication of the time that the event was detected. Procedures for sending Notify commands with RequestID equal to 0 are for further study.
ObservedEventsDescriptor包含RequestID和媒体网关按检测顺序检测到的事件列表。列表中的每个事件都伴随着与该事件相关联的参数,并可选地指示检测到该事件的时间。发送RequestID等于0的Notify命令的过程有待进一步研究。
Notify Commands with RequestID not equal to 0 shall occur only as the result of detection of an event specified by an Events descriptor which is active on the Termination concerned.
RequestID不等于0的Notify命令只能在检测到相关终止时激活的事件描述符指定的事件时出现。
The RequestID returns the RequestID parameter of the EventsDescriptor that triggered the Notify Command. It is used to correlate the notification with the request that triggered it. The events in the list must have been requested via the triggering EventsDescriptor or embedded events descriptor unless the RequestID is 0 (which is for further study).
RequestID返回触发Notify命令的EventsDescriptor的RequestID参数。它用于将通知与触发通知的请求关联起来。列表中的事件必须是通过触发事件描述符或嵌入式事件描述符请求的,除非请求ID为0(用于进一步研究)。
The ErrorDescriptor may be sent in the Notify Command as a result of Error 518 - Event buffer full.
由于错误518-事件缓冲区已满,可能会在Notify命令中发送ErrorDescriptor。
The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. The Media Gateway Controller may indicate that Termination(s) shall be taken out of or returned to service. The Media Gateway may notify the MGC that the capability of a Termination has changed. It also allows a MGC to hand over control of a MG to another MGC.
ServiceChange命令允许媒体网关通知媒体网关控制器一个或一组终端即将停止服务或刚刚恢复服务。媒体网关控制器可指示终端退出或恢复服务。媒体网关可以通知MGC终端的能力已经改变。它还允许MGC将MG的控制权移交给另一个MGC。
TerminationID,
终止ID,
[ServiceChangeDescriptor] ServiceChange ( TerminationID, ServiceChangeDescriptor )
[ServiceChangeDescriptor]ServiceChange(终止ID,ServiceChangeDescriptor)
The TerminationID parameter specifies the Termination(s) that are taken out of or returned to service. Wildcarding of Termination names is permitted, with the exception that the CHOOSE mechanism shall not be used. Use of the "Root" TerminationID indicates a ServiceChange affecting the entire Media Gateway.
TerminationID参数指定退出或恢复服务的终端。允许对终端名称进行通配符,但不得使用选择机制。使用“根”TerminationID表示影响整个媒体网关的服务更改。
The ServiceChangeDescriptor contains the following parameters as required:
ServiceChangeDescriptor根据需要包含以下参数:
- ServiceChangeMethod - ServiceChangeReason - ServiceChangeDelay - ServiceChangeAddress - ServiceChangeProfile - ServiceChangeVersion - ServiceChangeMgcId - TimeStamp
- ServiceChangeMethod-ServiceChangeReason-ServiceChangeDelay-ServiceChangeAddress-ServiceChangeProfile-ServiceChangeVersion-ServiceChangeMgcId-TimeStamp
The ServiceChangeMethod parameter specifies the type of ServiceChange that will or has occurred:
ServiceChangeMethod参数指定将要或已经发生的ServiceChange的类型:
1) Graceful - indicates that the specified Terminations will be taken out of service after the specified ServiceChangeDelay; established connections are not yet affected, but the Media Gateway Controller should refrain from establishing new connections and should attempt to gracefully tear down existing connections on the Termination(s) affected by the serviceChange command. The MG should set Termination serviceState at the expiry of ServiceChangeDelay or the removal of the Termination from an active Context (whichever is first), to "out of service".
1) 优雅-表示指定的终止将在指定的ServiceChangeDelay之后停止服务;已建立的连接尚未受到影响,但媒体网关控制器应避免建立新连接,并应尝试正常断开受serviceChange命令影响的终端上的现有连接。MG应将ServiceChangeDelay到期时的Termination serviceState或从活动上下文中删除终止(以先到者为准)设置为“停止服务”。
2) Forced - indicates that the specified Terminations were taken abruptly out of service and any established connections associated with them may be lost. For non-Root terminations, the MGC is responsible for cleaning up the Context (if any) with which the failed Termination is associated. At a minimum the Termination shall be subtracted from the Context. The Termination serviceState should be "out of service". For the root termination, the MGC can assume that all connections are lost on the MG and thus can consider that all the terminations have been subtracted.
2) 强制-表示指定的终端突然停止使用,与之相关的任何已建立的连接可能会丢失。对于非根终止,MGC负责清理与失败终止关联的上下文(如果有)。至少应从上下文中减去终止。终止服务状态应为“停止服务”。对于根终止,MGC可以假设MG上的所有连接都丢失,因此可以考虑所有的终端都被减去。
3) Restart - indicates that service will be restored on the specified Terminations after expiration of the ServiceChangeDelay. The serviceState should be set to "inService" upon expiry of ServiceChangeDelay.
3) 重新启动-表示在ServiceChangeDelay过期后,将在指定的终止上恢复服务。serviceState应在ServiceChangeDelay到期时设置为“inService”。
4) Disconnected - always applied with the Root TerminationID, indicates that the MG lost communication with the MGC, but it was subsequently restored to the same MGC (possibly after trying other MGCs on a pre-provisioned list). Since MG state may have changed, the MGC may wish to use the Audit command to resynchronize its state with the MG's.
4) Disconnected(断开连接)-始终与根TerminationID一起应用,表示MG与MGC失去通信,但随后恢复到同一MGC(可能是在尝试预配置列表上的其他MGC之后)。由于MG状态可能已更改,MGC可能希望使用Audit命令将其状态与MG重新同步。
5) Handoff - sent from the MGC to the MG, this reason indicates that the MGC is going out of service and a new MGC association must be established. Sent from the MG to the MGC, this indicates that the MG is attempting to establish a new association in accordance with a Handoff received from the MGC with which it was previously associated.
5) 切换-从MGC发送到MG,此原因表示MGC正在停止服务,必须建立新的MGC关联。从MG发送到MGC,这表示MG正试图根据从MGC接收到的切换建立新的关联,MGC先前与其关联。
6) Failover - sent from MG to MGC to indicate the primary MG is out of service and a secondary MG is taking over. This serviceChange method is also sent from the MG to the MGC when the MG detects that MGC has failed.
6) 故障转移-从MG发送到MGC,以指示主MG已停止服务,而辅助MG正在接管。当MG检测到MGC失败时,此serviceChange方法也从MG发送到MGC。
7) Another value whose meaning is mutually understood between the MG and the MGC.
7) MG和MGC之间相互理解其含义的另一个值。
The ServiceChangeReason parameter specifies the reason why the ServiceChange has or will occur. It consists of an alphanumeric token (IANA registered) and, optionally, an explanatory string.
ServiceChangeReason参数指定ServiceChange已发生或将发生的原因。它由字母数字标记(IANA注册)和解释性字符串(可选)组成。
The optional ServiceChangeAddress parameter specifies the address (e.g., IP port number for IP networks) to be used for subsequent communications. It can be specified in the input parameter descriptor or the returned result descriptor. ServiceChangeAddress and ServiceChangeMgcId parameters must not both be present in the ServiceChangeDescriptor or the ServiceChangeResultDescriptor. The ServiceChangeAddress provides an address to be used within the Context of the association currently being negotiated, while the ServiceChangeMgcId provides an alternate address where the MG should seek to establish another association. Note that the use of ServiceChangeAddress is not encouraged. MGCs and MGs must be able to cope with the ServiceChangeAddress being either a full address or just a port number in the case of TCP transports.
可选ServiceChangeAddress参数指定用于后续通信的地址(例如,IP网络的IP端口号)。它可以在输入参数描述符或返回结果描述符中指定。ServiceChangeAddress和ServiceChangeMgcId参数不能同时出现在ServiceChangeDescriptor或ServiceChangeResultDescriptor中。ServiceChangeAddress提供在当前协商的关联上下文中使用的地址,而ServiceChangeMgcId提供MG应寻求建立另一关联的备用地址。请注意,不鼓励使用ServiceChangeAddress。对于TCP传输,MGCs和MGs必须能够处理ServiceChangeAddress为完整地址或仅为端口号的情况。
The optional ServiceChangeDelay parameter is expressed in seconds. If the delay is absent or set to zero, the delay value should be considered to be null. In the case of a "graceful" ServiceChangeMethod, a null delay indicates that the Media Gateway Controller should wait for the natural removal of existing connections and should not establish new connections. For "graceful" only, a null delay means the MG must not set serviceState "out of service" until the Termination is in the null Context.
可选的ServiceChangeDelay参数以秒表示。如果延迟缺失或设置为零,则延迟值应视为零。对于“优雅”ServiceChangeMethod,空延迟表示媒体网关控制器应等待现有连接的自然删除,而不应建立新连接。仅对于“优雅”而言,空延迟意味着MG不得将serviceState设置为“退出服务”,直到终止处于空上下文中。
The optional ServiceChangeProfile parameter specifies the Profile (if any) of the protocol supported. The ServiceChangeProfile includes the version of the profile supported.
可选的ServiceChangeProfile参数指定支持的协议的配置文件(如果有)。ServiceChangeProfile包含支持的配置文件版本。
The optional ServiceChangeVersion parameter contains the protocol version and is used if protocol version negotiation occurs (see 11.3).
可选的ServiceChangeVersion参数包含协议版本,并在发生协议版本协商时使用(请参阅11.3)。
The optional TimeStamp parameter specifies the actual time as kept by the sender. As such, it is not necessarily absolute time according to, for example, a local time zone - it merely establishes an arbitrary starting time against which all future timestamps transmitted by a sender during this association shall be compared. It can be used by the responder to determine how its notion of time differs from that of its correspondent. TimeStamp is sent with a precision of hundredths of a second.
可选的TimeStamp参数指定发送方保留的实际时间。因此,根据例如本地时区,它不一定是绝对时间-它仅仅建立了一个任意的开始时间,发送方在该关联期间传输的所有未来时间戳都应与之进行比较。响应者可以使用它来确定其时间概念与对应者的时间概念有何不同。时间戳以百分之一秒的精度发送。
The optional Extension parameter may contain any value whose meaning is mutually understood by the MG and MGC.
可选扩展参数可以包含MG和MGC相互理解其含义的任何值。
A ServiceChange Command specifying the "Root" for the TerminationID and ServiceChangeMethod equal to Restart is a registration command by which a Media Gateway announces its existence to the Media Gateway Controller. The Media Gateway may also announce a registration command by specifying the "Root" for the TerminationID and ServiceChangeMethod equal to Failover when the MG detects MGC failures. The Media Gateway is expected to be provisioned with the name of one primary and optionally some number of alternate Media Gateway Controllers. Acknowledgement of the ServiceChange Command completes the registration process, except when the MGC has returned an alternative ServiceChangeMgcId as described in the following paragraph. The MG may specify the transport ServiceChangeAddress to be used by the MGC for sending messages in the ServiceChangeAddress parameter in the input ServiceChangeDescriptor. The MG may specify an address in the ServiceChangeAddress parameter of the ServiceChange request, and the MGC may also do so in the ServiceChange reply. In either case, the recipient must use the supplied address as the destination for all subsequent transaction requests within the association. At the same time, as indicated in clause 9, transaction replies and pending indications must be sent to the address from which the corresponding requests originated. This must be done even if it implies extra messaging because commands and responses cannot be packed together. The TimeStamp parameter shall be sent with a registration command and its response.
指定TerminationID和ServiceChangeMethod的“根”等于重新启动的ServiceChange命令是一个注册命令,媒体网关通过该命令向媒体网关控制器宣布其存在。媒体网关还可以在MG检测到MGC故障时,通过为TerminationID和ServiceChangeMethod指定等于故障转移的“根”来宣布注册命令。媒体网关应配备一个主媒体网关控制器的名称,并可选地配备若干备用媒体网关控制器。ServiceChange命令的确认完成注册过程,除非MGC已返回下一段中所述的备选ServiceChangeMgcId。MG可以在输入ServiceChangeDescriptor的ServiceChangeAddress参数中指定MGC用于发送消息的传输ServiceChangeAddress。MG可以在ServiceChange请求的ServiceChangeAddress参数中指定地址,MGC也可以在ServiceChange回复中指定地址。在任何一种情况下,收件人都必须使用提供的地址作为关联中所有后续事务请求的目的地。同时,如第9条所述,交易回复和未决指示必须发送至相应请求的发起地址。即使这意味着额外的消息传递,也必须这样做,因为命令和响应不能打包在一起。时间戳参数应与注册命令及其响应一起发送。
The Media Gateway Controller may return a ServiceChangeMgcId parameter that describes the Media Gateway Controller that should preferably be contacted for further service by the Media Gateway. In this case the Media Gateway shall reissue the ServiceChange command to the new Media Gateway Controller. The MGC specified in a ServiceChangeMgcId, if provided, shall be contacted before any further alternate MGCs. On a HandOff message from MGC to MG, the ServiceChangeMgcId is the new MGC that will take over from the current MGC.
媒体网关控制器可返回ServiceChangeMgcId参数,该参数描述媒体网关控制器,媒体网关最好联系该媒体网关控制器以获得进一步服务。在这种情况下,媒体网关应向新媒体网关控制器重新发出ServiceChange命令。在任何其他替代MGC之前,应联系ServiceChangeMgcId中规定的MGC(如果提供)。在从MGC到MG的切换消息中,ServiceChangeMgcId是将从当前MGC接管的新MGC。
The return from ServiceChange is empty except when the Root terminationID is used. In that case it includes the following parameters as required:
ServiceChange返回值为空,除非使用根terminationID。在这种情况下,它根据需要包括以下参数:
- ServiceChangeAddress, if the responding MGC wishes to specify a new destination for messages from the MG for the remainder of the association;
- ServiceChangeAddress,如果响应MGC希望为来自MG的消息为剩余关联指定新的目的地;
- ServiceChangeMgcId, if the responding MGC does not wish to sustain an association with the MG;
- 如果响应MGC不希望与MG保持关联,则为ServiceChangeMgcId;
- ServiceChangeProfile, if the responder wishes to negotiate the profile to be used for the association;
- ServiceChangeProfile,如果响应者希望协商用于关联的配置文件;
- ServiceChangeVersion, if the responder wishes to negotiate the version of the protocol to be used for the association.
- ServiceChangeVersion,如果响应者希望协商用于关联的协议版本。
The following ServiceChangeReasons are defined. This list may be extended by an IANA registration as outlined in 13.3.
定义了以下ServiceChangeReasures。如第13.3条所述,可通过IANA注册扩展该列表。
900 Service Restored 901 Cold Boot 902 Warm Boot 903 MGC Directed Change 904 Termination malfunctioning 905 Termination taken out of service 906 Loss of lower layer connectivity (e.g., downstream sync) 907 Transmission Failure 908 MG Impending Failure 909 MGC Impending Failure 910 Media Capability Failure 911 Modem Capability Failure 912 Mux Capability Failure 913 Signal Capability Failure 914 Event Capability Failure 915 State Loss
900服务已恢复901冷启动902热启动903 MGC定向更改904终止故障905终止退出服务906下层连接丢失(例如,下游同步)907传输故障908 MG即将发生的故障909 MGC即将发生的故障910媒体能力故障911调制解调器能力故障912 Mux能力故障913信号能力故障914事件能力故障915状态丢失
The commands of the protocol as discussed in the preceding subclauses apply to Terminations. This subclause specifies how Contexts are manipulated and audited.
上述子条款中讨论的协议命令适用于终端。本子条款规定了如何操作和审核上下文。
Commands are grouped into actions (see clause 8). An action applies to one Context. In addition to commands, an action may contain Context manipulation and auditing instructions.
命令被分组为动作(见第8条)。一个动作适用于一个上下文。除命令外,操作还可能包含上下文操作和审核指令。
An action request sent to a MG may include a request to audit attributes of a Context. An action may also include a request to change the attributes of a Context.
发送给MG的操作请求可能包括审核上下文属性的请求。操作还可能包括更改上下文属性的请求。
The Context properties that may be included in an action reply are used to return information to a MGC. This can be information requested by an audit of Context attributes or details of the effect of manipulation of a Context.
操作回复中可能包含的上下文属性用于将信息返回给MGC。这可以是上下文属性审核请求的信息,也可以是上下文操作效果的详细信息。
If a MG receives an action which contains both a request to audit context attributes and a request to manipulate those attributes, the response SHALL include the values of the attributes after processing the manipulation request.
如果MG收到一个包含审计上下文属性请求和操纵这些属性请求的操作,则响应应包括处理操纵请求后的属性值。
The protocol can be encoded in a binary format or in a text format. MGCs should support both encoding formats. MGs may support both formats.
协议可以以二进制格式或文本格式进行编码。MGC应支持这两种编码格式。MGs可能支持这两种格式。
The protocol syntax for the binary format of the protocol is defined in Annex A. Annex C specifies the encoding of the Local and Remote descriptors for use with the binary format.
协议二进制格式的协议语法在附录A中定义。附录C规定了用于二进制格式的本地和远程描述符的编码。
A complete ABNF of the text encoding of the protocol per RFC 2234 is given in Annex B. SDP is used as the encoding of the Local and Remote descriptors for use with the text encoding as modified in 7.1.8.
附录B中给出了RFC 2234协议文本编码的完整ABNF。SDP用作本地和远程描述符的编码,用于7.1.8中修改的文本编码。
Errors consist of an IANA registered error code and an explanatory string. Sending the explanatory string is optional. Implementations are encouraged to append diagnostic information to the end of the string.
错误由IANA注册的错误代码和解释性字符串组成。发送解释性字符串是可选的。建议实现将诊断信息附加到字符串的末尾。
When a MG reports an error to a MGC, it does so in an error descriptor. An error descriptor consists of an error code and optionally the associated explanatory string.
当MG向MGC报告错误时,它会在错误描述符中报告。错误描述符由错误代码和可选的关联解释字符串组成。
H.248.8 contains the error codes supported by Recommendations in the H.248 sub-series.
H.248.8包含H.248子系列建议支持的错误代码。
8 Transactions
8项交易
Commands between the Media Gateway Controller and the Media Gateway are grouped into Transactions, each of which is identified by a TransactionID. Transactions consist of one or more Actions. An Action consists of a non-empty series of Commands, Context property modifications, or Context property audits that are limited to operating within a single Context. Consequently, each Action typically specifies a ContextID. However, there are two circumstances where a specific ContextID is not provided with an Action. One is the case of modification of a Termination outside of a Context. The other is where the controller requests the gateway to create a new Context. Figure 8 is a graphic representation of the Transaction, Action and Command relationships.
媒体网关控制器和媒体网关之间的命令被分组为事务,每个事务由TransactionID标识。事务由一个或多个操作组成。操作由一系列非空命令、上下文属性修改或上下文属性审核组成,这些操作仅限于在单个上下文中操作。因此,每个操作通常指定一个ContextID。但是,有两种情况下,特定的ContextID不提供操作。一种是在上下文之外修改终止的情况。另一个是控制器请求网关创建新上下文的位置。图8是事务、操作和命令关系的图形表示。
+----------------------------------------------------------+ | Transaction x | | +----------------------------------------------------+ | | | Action 1 | | | | +---------+ +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | 4 | | | | | +---------+ +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 2 | | | | +---------+ | | | | | Command | | | | | | 1 | | | | | +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 3 | | | | +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | | | | +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | +----------------------------------------------------------+
+----------------------------------------------------------+ | Transaction x | | +----------------------------------------------------+ | | | Action 1 | | | | +---------+ +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | 4 | | | | | +---------+ +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 2 | | | | +---------+ | | | | | Command | | | | | | 1 | | | | | +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 3 | | | | +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | | | | +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | +----------------------------------------------------------+
Figure 8: Transactions, Actions and Commands
图8:事务、操作和命令
Transactions are presented as TransactionRequests. Corresponding responses to a TransactionRequest are received in a single reply, possibly preceded by a number of TransactionPending messages (see 8.2.3).
事务以TransactionRequests的形式呈现。对TransactionRequest的相应响应在单个回复中接收,之前可能会有许多TransactionPending消息(见8.2.3)。
Transactions guarantee ordered Command processing. That is, Commands within a Transaction are executed sequentially. Ordering of Transactions is NOT guaranteed - transactions may be executed in any order, or simultaneously.
事务保证了命令处理的有序性。也就是说,事务中的命令是按顺序执行的。不保证交易的顺序-交易可以按任何顺序执行,也可以同时执行。
At the first failing Command in a Transaction, processing of the remaining Commands in that Transaction stops. If a command contains a wildcarded TerminationID, the command is attempted with each of the actual TerminationIDs matching the wildcard. A response within the TransactionReply is included for each matching TerminationID, even if one or more instances generated an error. If any TerminationID matching a wildcard results in an error when executed, any commands following the wildcarded command are not attempted.
在事务中的第一个失败命令时,停止处理该事务中的其余命令。如果命令包含通配符TerminationID,则尝试使用与通配符匹配的每个实际TerminationID执行该命令。即使一个或多个实例生成错误,每个匹配的TerminationID都会包含TransactionReply中的响应。如果任何与通配符匹配的TerminationID在执行时导致错误,则不会尝试使用通配符命令后面的任何命令。
Commands may be marked as "Optional" which can override this behaviour - if a command marked as Optional results in an error, subsequent commands in the Transaction will be executed. If a command fails, the MG shall as far as possible restore the state that existed prior to the attempted execution of the command before continuing with command processing.
命令可以标记为“可选”,这可以覆盖此行为-如果标记为可选的命令导致错误,则将执行事务中的后续命令。如果命令失败,MG应尽可能恢复尝试执行命令之前的状态,然后再继续执行命令处理。
A TransactionReply includes the results for all of the Commands in the corresponding TransactionRequest. The TransactionReply includes the return values for the Commands that were executed successfully, and the Command and error descriptor for any Command that failed.
TransactionReply包括对应TransactionRequest中所有命令的结果。TransactionReply包括成功执行的命令的返回值,以及任何失败命令的命令和错误描述符。
TransactionPending is used to periodically notify the receiver that a Transaction has not completed yet, but is actively being processed.
TransactionPending用于定期通知接收方交易尚未完成,但正在积极处理中。
Applications SHOULD implement an application level timer per transaction. Expiration of the timer should cause a retransmission of the request. Receipt of a Reply should cancel the timer. Receipt of Pending should restart the timer.
应用程序应为每个事务实现应用程序级计时器。计时器过期将导致请求重新传输。收到回复将取消计时器。收到挂起的消息应重新启动计时器。
Transactions are identified by a TransactionID, which is assigned by sender and is unique within the scope of the sender. A response containing an error descriptor to indicate that the TransactionID is missing in a request shall use TransactionID 0 in the corresponding TransactionReply.
事务由TransactionID标识,TransactionID由发送方分配,并且在发送方范围内是唯一的。包含错误描述符以指示请求中缺少TransactionID的响应应在相应TransactionReply中使用TransactionID 0。
Contexts are identified by a ContextID, which is assigned by the Media Gateway and is unique within the scope of the Media Gateway. The Media Gateway Controller shall use the ContextID supplied by the Media Gateway in all subsequent Transactions relating to that Context. The protocol makes reference to a distinguished value that may be used by the Media Gateway Controller when referring to a Termination that is currently not associated with a Context, namely the null ContextID.
上下文由ContextID标识,ContextID由媒体网关分配,在媒体网关范围内是唯一的。媒体网关控制器应在与该上下文相关的所有后续事务中使用媒体网关提供的ContextID。该协议引用媒体网关控制器在引用当前未与上下文关联的终端时可使用的可分辨值,即空ContextID。
The CHOOSE wildcard is used to request that the Media Gateway create a new Context.
CHOOSE通配符用于请求媒体网关创建新上下文。
The MGC may use the ALL wildcard to address all Contexts on the MG. The null Context is not included when the ALL wildcard is used.
MGC可以使用ALL通配符来处理MG上的所有上下文。使用ALL通配符时不包括null上下文。
The MGC shall not use partially specified ContextIDs containing the CHOOSE or ALL wildcards.
MGC不得使用包含CHOOSE或ALL通配符的部分指定的ContextID。
Following is an Application Programming Interface (API) describing the Transactions of the protocol. This API is shown to illustrate the Transactions and their parameters and is not intended to specify implementation (e.g., via use of blocking function calls). It will describe the input parameters and return values expected to be used by the various Transactions of the protocol from a very high level. Transaction syntax and encodings are specified in later subclauses.
下面是描述协议事务的应用程序编程接口(API)。显示此API是为了说明事务及其参数,而不是为了指定实现(例如,通过使用阻塞函数调用)。它将从一个非常高的层次描述协议的各种事务预期使用的输入参数和返回值。事务语法和编码在后面的子条款中指定。
The TransactionRequest is invoked by the sender. There is one Transaction per request invocation. A request contains one or more Actions, each of which specifies its target Context and one or more Commands per Context.
TransactionRequest由发送方调用。每个请求调用有一个事务。一个请求包含一个或多个操作,每个操作指定其目标上下文和每个上下文一个或多个命令。
TransactionRequest(TransactionId { ContextID {Command ... Command}, . . . ContextID {Command ... Command } })
TransactionRequest(TransactionId { ContextID {Command ... Command}, . . . ContextID {Command ... Command } })
The TransactionID parameter must specify a value for later correlation with the TransactionReply or TransactionPending response from the receiver.
TransactionID参数必须指定一个值,以便以后与来自接收方的TransactionReply或TransactionPending响应进行关联。
The ContextID parameter must specify a value to pertain to all Commands that follow up to either the next specification of a ContextID parameter or the end of the TransactionRequest, whichever comes first.
ContextID参数必须指定一个值,该值与在下一个ContextID参数规范或TransactionRequest结束后执行的所有命令相关,以先到者为准。
The Command parameter represents one of the Commands mentioned in 7.2 (Command Application Programming Interface).
命令参数表示7.2(命令应用程序编程接口)中提到的命令之一。
The TransactionReply is invoked by the receiver. There is one reply invocation per transaction. A reply contains one or more Actions, each of which must specify its target Context and one or more Responses per Context. The TransactionReply is invoked by the responder when it has processed the TransactionRequest.
TransactionReply由接收方调用。每个事务有一个应答调用。答复包含一个或多个操作,每个操作必须指定其目标上下文和每个上下文一个或多个响应。TransactionReply由响应程序在处理TransactionRequest时调用。
A TransactionRequest has been processed:
已处理TransactionRequest:
- when all actions in that TransactionRequest have been processed; or
- 已处理该TransactionRequest中的所有操作时;或
- when an error is encountered in processing that TransactionRequest, except when the error is in an optional command.
- 处理该TransactionRequest时遇到错误,但可选命令中的错误除外。
A command has been processed when all descriptors in that command have been processed.
处理完命令中的所有描述符后,该命令已被处理。
A SignalsDescriptor is considered to have been processed when it has been established that the descriptor is syntactically valid, the requested signals are supported and they have been queued to be applied.
当确定描述符在语法上有效、支持请求的信号且已排队应用时,则认为已处理了信号描述符。
An EventsDescriptor or EventBufferDescriptor is considered to have been processed when it has been established that the descriptor is syntactically valid, the requested events can be observed, any embedded signals can be generated, any embedded events can be detected, and the MG has been brought into a state in which the events will be detected.
当已确定描述符在语法上有效、可观察到请求的事件、可生成任何嵌入信号、可检测到任何嵌入事件以及MG已进入将检测事件的状态时,EventsDescriptor或EventBufferDescriptor被视为已被处理。
TransactionReply(TransactionID { ContextID { Response ... Response }, . . . ContextID { Response ... Response } })
TransactionReply(TransactionID { ContextID { Response ... Response }, . . . ContextID { Response ... Response } })
The TransactionID parameter must be the same as that of the corresponding TransactionRequest.
TransactionID参数必须与相应TransactionRequest的参数相同。
The ContextID parameter must specify a value to pertain to all Responses for the action. The ContextID may be specific, all or null.
ContextID参数必须指定一个与操作的所有响应相关的值。ContextID可以是特定的、全部的或空的。
Each of the Response parameters represents a return value as mentioned in 7.2, or an error descriptor if the command execution encountered an error. Commands after the point of failure are not processed and, therefore, Responses are not issued for them.
每个响应参数表示7.2中提到的返回值,如果命令执行遇到错误,则表示错误描述符。故障点后的命令不会被处理,因此不会对其发出响应。
An exception to this occurs if a command has been marked as optional in the Transaction request. If the optional command generates an error, the transaction still continues to execute, so the Reply would, in this case, have Responses after an Error.
如果在事务请求中将命令标记为可选,则会出现例外情况。如果可选命令生成错误,则事务仍将继续执行,因此在本例中,应答将在错误后有响应。
Section 7.1.19 Error Descriptor specifies the generation of error descriptors. The text below discusses several individual cases.
第7.1.19节错误描述符规定了错误描述符的生成。下文讨论了几个个案。
If the receiver encounters an error in processing a ContextID, the requested Action response will consist of the Context ID and a single error descriptor, 422 - Syntax Error in Action.
如果接收器在处理ContextID时遇到错误,请求的操作响应将包括上下文ID和单个错误描述符422-操作中的语法错误。
If the receiver encounters an error such that it cannot determine a legal Action, it will return a TransactionReply consisting of the TransactionID and a single error descriptor, 422 - Syntax Error in Action. If the end of an action cannot be reliably determined but one or more commands can be parsed, it will process them and then send 422 - Syntax Error in Action as the last action for the transaction. If the receiver encounters an error such that is cannot determine a legal Transaction, it will return a TransactionReply with a null TransactionID and a single error descriptor (403 - Syntax Error in TransactionRequest).
如果接收方遇到错误,无法确定法律行动,它将返回由TransactionID和单个错误描述符组成的TransactionReply,422-行动中的语法错误。如果无法可靠地确定某个操作的结束,但可以解析一个或多个命令,则它将处理这些命令,然后发送422-Syntax Error in action作为事务的最后一个操作。如果接收方遇到无法确定合法事务的错误,它将返回带有空TransactionID和单个错误描述符的TransactionReply(403-TransactionRequest中的语法错误)。
If the end of a transaction cannot be reliably determined and one or more Actions can be parsed, it will process them and then return 403 - Syntax Error in Transaction as the last action reply for the transaction. If no Actions can be parsed, it will return 403 - Syntax Error in TransactionRequest as the only reply.
如果无法可靠地确定事务的结束,并且可以解析一个或多个操作,它将处理这些操作,然后在事务中返回403-Syntax Error作为事务的最后一个操作回复。如果无法解析任何操作,它将在TransactionRequest中返回403-Syntax Error作为唯一的应答。
If the terminationID cannot be reliably determined, it will send 442 - Syntax Error in Command as the action reply.
如果不能可靠地确定terminationID,它将在命令中发送442-Syntax Error作为操作应答。
If the end of a command cannot be reliably determined, it will return 442 - Syntax Error in Command as the reply to the last action it can parse.
如果无法可靠地确定命令的结尾,它将在命令中返回442-Syntax Error,作为对它可以解析的最后一个操作的回复。
The receiver invokes the TransactionPending. A TransactionPending indicates that the Transaction is actively being processed, but has not been completed. It is used to prevent the sender from assuming the TransactionRequest was lost where the Transaction will take some time to complete.
接收方调用TransactionPending。TransactionPending表示事务正在处理中,但尚未完成。它用于防止发送方假设TransactionRequest丢失,因为事务需要一些时间才能完成。
TransactionPending(TransactionID { } )
TransactionPending(TransactionID { } )
The TransactionID parameter must be the same as that of the corresponding TransactionRequest. A property of root (normalMGExecutionTime) is settable by the MGC to indicate the interval within which the MGC expects a response to any transaction from the MG. Another property (normalMGCExecutionTime) is settable by the MGC to indicate the interval within which the MG should expect a response to any transaction from the MGC. Senders may receive more than one TransactionPending for a command. If a duplicate request is
TransactionID参数必须与相应TransactionRequest的参数相同。MGC可以设置root属性(normalMGExecutionTime),以指示MGC期望MG对任何事务做出响应的时间间隔。MGC可以设置另一个属性(NormalMgceExecutionTime),以指示MG应该期望MGC对任何事务做出响应的时间间隔。发件人可能会收到一个命令的多个TransactionPending。如果需要重复的请求
received when pending, the responder may send a duplicate pending immediately, or continue waiting for its timer to trigger another TransactionPending.
在挂起时收到,响应者可以立即发送重复的挂起,或者继续等待其计时器触发另一个TransactionPending。
Multiple Transactions can be concatenated into a Message. Messages have a header, which includes the identity of the sender. The Message Identifier (MID) of a message is set to a provisioned name (e.g., domain address/domain name/device name) of the entity transmitting the message. Domain name is a suggested default. An H.248.1 entity (MG/MGC) must consistently use the same MID in all messages it originates for the duration of control association with the peer (MGC/MG).
多个事务可以连接到一条消息中。邮件有一个标头,其中包含发件人的标识。消息的消息标识符(MID)被设置为发送消息的实体的规定名称(例如,域地址/域名/设备名)。域名是建议的默认名称。H.248.1实体(MG/MGC)在与对等方(MGC/MG)的控制关联期间,必须在其发出的所有消息中始终使用相同的MID。
Every Message contains a Version Number identifying the version of the protocol the message conforms to. Versions consist of one or two digits, beginning with version 1 for the present version of the protocol.
每条消息都包含一个版本号,标识消息所遵循的协议版本。版本由一个或两个数字组成,对于协议的当前版本,从版本1开始。
The transactions in a message are treated independently. There is no order implied; there is no application or protocol acknowledgement of a message. A message is essentially a transport mechanism. For example, message X containing transaction requests A, B, and C may be responded to with message Y containing replies to A and C and message Z containing the reply to B. Likewise, message L containing request D and message M containing request E may be responded to with message N containing replies to both D and E.
消息中的事务是独立处理的。没有隐含的命令;消息没有应用程序或协议确认。消息本质上是一种传输机制。例如,包含事务请求A、B和C的消息X可以用包含对A和C的答复的消息Y和包含对B的答复的消息Z来响应。同样,包含请求D的消息L和包含请求E的消息M可以用包含对D和E的答复的消息N来响应。
9 Transport
9运输
The transport mechanism for the protocol should allow the reliable transport of transactions between a MGC and MG. The transport shall remain independent of what particular commands are being sent and shall be applicable to all application states. There are several transports defined for the protocol, which are defined in Annexes to this RFC and other Recommendations of the H.248 sub-series. Additional Transports may be defined as additional
协议的传输机制应允许在MGC和MG之间可靠地传输事务。传输应保持独立于发送的特定命令,并应适用于所有应用状态。本RFC附件和H.248子系列的其他建议中定义了本协议的几种传输方式。附加运输可定义为附加运输
Recommendations of the H.248 sub-series. For transport of the protocol over IP, MGCs shall implement both TCP and UDP/ALF, a MG shall implement TCP or UDP/ALF or both.
H.248子系列的建议。对于通过IP传输协议,MGCs应实现TCP和UDP/ALF,MG应实现TCP或UDP/ALF或两者。
The MG is provisioned with a name or address (such as DNS name or IP address) of a primary and zero or more secondary MGCs (see 7.2.8) that is the address the MG uses to send messages to the MGC. If TCP or UDP is used as the protocol transport and the port to which the initial ServiceChange request is to be sent is not otherwise known,
MG配备有主MGC的名称或地址(如DNS名称或IP地址)和零个或多个辅助MGC(见7.2.8),即MG用于向MGC发送消息的地址。如果TCP或UDP用作协议传输,并且初始ServiceChange请求要发送到的端口未知,
that request should be sent to the default port number for the protocol. This port number is 2944 for text-encoded operation or 2945 for binary-encoded operation, for either UDP or TCP. The MGC receives the message containing the ServiceChange request from the MG and can determine the MG's address from it. As described in 7.2.8, either the MG or the MGC may supply an address in the ServiceChangeAddress parameter to which subsequent transaction requests must be addressed, but responses (including the response to the initial ServiceChange request) must always be sent back to the address which was the source of the corresponding request. For example, in IP networks, this is the source address in the IP header and the source port number in the TCP/UDP/SCTP header.
该请求应发送到协议的默认端口号。对于UDP或TCP,文本编码操作的端口号为2944,二进制编码操作的端口号为2945。MGC从MG接收包含ServiceChange请求的消息,并可以从中确定MG的地址。如7.2.8所述,MG或MGC可在ServiceChangeAddress参数中提供一个地址,后续事务请求必须发送到该地址,但响应(包括对初始ServiceChange请求的响应)必须始终发送回作为相应请求源的地址。例如,在IP网络中,这是IP头中的源地址和TCP/UDP/SCTP头中的源端口号。
This RFC does not mandate that the underlying transport protocol guarantees the sequencing of transactions sent to an entity. This property tends to maximize the timeliness of actions, but it has a few drawbacks. For example:
此RFC并不要求底层传输协议保证发送给实体的事务的顺序。此属性倾向于最大化操作的及时性,但它有一些缺点。例如:
- Notify commands may be delayed and arrive at the MGC after the transmission of a new command changing the EventsDescriptor.
- 在传输更改EventsDescriptor的新命令后,Notify命令可能会延迟并到达MGC。
- If a new command is transmitted before a previous one is acknowledged, there is no guarantee that prior command will be executed before the new one.
- 如果在确认前一个命令之前发送新命令,则不能保证在新命令之前执行前一个命令。
Media Gateway Controllers that want to guarantee consistent operation of the Media Gateway may use the following rules. These rules are with respect to commands that are in different transactions. Commands that are in the same transaction are executed in order (see clause 8).
要保证媒体网关一致运行的媒体网关控制器可以使用以下规则。这些规则适用于不同事务中的命令。同一事务中的命令按顺序执行(参见第8条)。
1) When a Media Gateway handles several Terminations, commands pertaining to the different Terminations may be sent in parallel, for example following a model where each Termination (or group of Terminations) is controlled by its own process or its own thread.
1) 当媒体网关处理多个终端时,可以并行发送与不同终端相关的命令,例如,遵循一种模型,其中每个终端(或终端组)由其自己的进程或线程控制。
2) On a Termination, there should normally be at most one outstanding command (Add or Modify or Move), unless the outstanding commands are in the same transaction. However, a Subtract command may be issued at any time. In consequence, a Media Gateway may sometimes receive a Modify command that applies to a previously subtracted Termination. Such commands should be ignored, and an error code should be returned.
2) 在终止时,通常最多应有一个未完成的命令(添加、修改或移动),除非未完成的命令在同一事务中。但是,可以随时发出减法命令。因此,媒体网关有时可能会收到适用于先前减去的终止的修改命令。应忽略此类命令,并返回错误代码。
3) For transports that do not guarantee in-sequence delivery of messages (i.e., UDP), there should normally be on a given Termination at most one outstanding Notify command at any time.
3) 对于不保证按顺序传递消息(即UDP)的传输,通常在给定的终端上,任何时候最多应有一个未完成的Notify命令。
4) In some cases, an implicitly or explicitly wildcarded Subtract command that applies to a group of Terminations may step in front of a pending Add command. The Media Gateway Controller should individually delete all Terminations for which an Add command was pending at the time of the global Subtract command. Also, new Add commands for Terminations named by the wildcarding (or implied in a Multiplex descriptor) should not be sent until the wildcarded Subtract command is acknowledged.
4) 在某些情况下,应用于一组终止的隐式或显式通配符减法命令可能位于挂起的Add命令之前。媒体网关控制器应单独删除在执行全局减法命令时Add命令挂起的所有终端。此外,在通配符减法命令得到确认之前,不应发送由通配符命名(或在多路复用描述符中隐含)的终端的新Add命令。
5) AuditValue and AuditCapability are not subject to any sequencing.
5) AuditValue和AuditCapability不受任何排序的约束。
6) ServiceChange shall always be the first command sent by a MG as defined by the restart procedure. Any other command or response must be delivered after this ServiceChange command.
6) ServiceChange应始终是MG按照重启程序的定义发送的第一个命令。任何其他命令或响应必须在此ServiceChange命令之后传递。
These rules do not affect the command responder, which should always respond to commands.
这些规则不会影响命令响应程序,它应该始终响应命令。
In the event that a large number of Media Gateways are powered on simultaneously and they were to all initiate a ServiceChange transaction, the Media Gateway Controller would very likely be swamped, leading to message losses and network congestion during the critical period of service restoration. In order to prevent such avalanches, the following behaviour is suggested:
如果大量媒体网关同时通电,并且它们都要启动ServiceChange事务,则媒体网关控制器很可能会被淹没,从而在服务恢复的关键时期导致消息丢失和网络拥塞。为了防止此类雪崩,建议采取以下措施:
1) When a Media Gateway is powered on, it should initiate a restart timer to a random value, uniformly distributed between 0 and a maximum waiting delay (MWD). Care should be taken to avoid synchronicity of the random number generation between multiple Media Gateways that would use the same algorithm.
1) 当媒体网关通电时,它应启动一个随机值的重启计时器,该值均匀分布在0和最大等待延迟(MWD)之间。应注意避免使用相同算法的多个媒体网关之间随机数生成的同步性。
2) The Media Gateway should then wait for either the end of this timer or the detection of a local user activity, such as for example an off-hook transition on a residential Media Gateway.
2) 然后,媒体网关应等待该计时器结束或检测到本地用户活动,例如住宅媒体网关上的脱钩转换。
3) When the timer elapses, or when an activity is detected, the Media Gateway should initiate the restart procedure.
3) 当计时器超时或检测到活动时,媒体网关应启动重启过程。
The restart procedure simply requires the MG to guarantee that the first message that the Media Gateway Controller sees from this MG is a ServiceChange message informing the Media Gateway Controller about the restart.
重启过程只需要MG保证媒体网关控制器从此MG看到的第一条消息是一条ServiceChange消息,通知媒体网关控制器重启。
NOTE - The value of MWD is a configuration parameter that depends on the type of the Media Gateway. The following reasoning may be used to determine the value of this delay on residential gateways.
注意-MWD的值是一个配置参数,取决于媒体网关的类型。以下推理可用于确定住宅网关上该延迟的值。
Media Gateway Controllers are typically dimensioned to handle the peak hour traffic load, during which, in average, 10% of the lines will be busy, placing calls whose average duration is typically 3 minutes. The processing of a call typically involves 5 to 6 Media Gateway Controller transactions between each Media Gateway and the Media Gateway Controller. This simple calculation shows that the Media Gateway Controller is expected to handle 5 to 6 transactions for each Termination, every 30 minutes on average, or, to put it otherwise, about one transaction per Termination every 5 to 6 minutes on average. This suggests that a reasonable value of MWD for a residential gateway would be 10 to 12 minutes. In the absence of explicit configuration, residential gateways should adopt a value of 600 seconds for MWD.
媒体网关控制器通常用于处理高峰时段的流量负载,在此期间,平均有10%的线路处于繁忙状态,呼叫的平均持续时间通常为3分钟。呼叫处理通常涉及每个媒体网关和媒体网关控制器之间的5到6个媒体网关控制器事务。这个简单的计算表明,媒体网关控制器平均每30分钟为每个终端处理5到6个事务,或者,换句话说,平均每5到6分钟为每个终端处理一个事务。这表明住宅网关的MWD合理值为10至12分钟。在没有明确配置的情况下,住宅网关的MWD值应为600秒。
The same reasoning suggests that the value of MWD should be much shorter for trunking gateways or for business gateways, because they handle a large number of Terminations, and also because the usage rate of these Terminations is much higher than 10% during the peak busy hour, a typical value being 60%. These Terminations, during the peak hour, are this expected to contribute about one transaction per minute to the Media Gateway Controller load. A reasonable algorithm is to make the value of MWD per "trunk" Termination six times shorter than the MWD per residential gateway, and also inversely proportional to the number of Terminations that are being restarted. For example MWD should be set to 2.5 seconds for a gateway that handles a T1 line, or to 60 milliseconds for a gateway that handles a T3 line.
同样的推理表明,对于中继网关或业务网关,MWD的值应该短得多,因为它们处理大量终端,而且在高峰繁忙时间,这些终端的使用率远远高于10%,典型值为60%。在高峰时段,这些终止预计将为媒体网关控制器负载每分钟贡献大约一个事务。一个合理的算法是使每个“中继”终端的MWD值比每个住宅网关的MWD值短六倍,并且与正在重新启动的终端数量成反比。例如,对于处理T1线路的网关,MWD应设置为2.5秒;对于处理T3线路的网关,MWD应设置为60毫秒。
10 Security Considerations
10安全考虑
This clause covers security when using the protocol in an IP environment.
本条款涵盖在IP环境中使用协议时的安全性。
A security mechanism is clearly needed to prevent unauthorized entities from using the protocol defined in this RFC for setting up unauthorized calls or interfering with authorized calls. The security mechanism for the protocol when transported over IP networks is IPsec [RFC 2401 to RFC 2411].
显然需要一种安全机制来防止未经授权的实体使用本RFC中定义的协议来设置未经授权的呼叫或干扰已授权的呼叫。通过IP网络传输协议时的安全机制为IPsec[RFC 2401至RFC 2411]。
The AH header [RFC 2402] affords data origin authentication, connectionless integrity and optional anti-replay protection of messages passed between the MG and the MGC. The ESP header [RFC 2406] provides confidentiality of messages, if desired. For
The AH header [RFC 2402] affords data origin authentication, connectionless integrity and optional anti-replay protection of messages passed between the MG and the MGC. The ESP header [RFC 2406] provides confidentiality of messages, if desired. Fortranslate error, please retry
instance, the ESP encryption service should be requested if the session descriptions are used to carry session keys, as defined in SDP.
例如,如果会话描述用于携带SDP中定义的会话密钥,则应请求ESP加密服务。
Implementations of the protocol defined in this RFC employing the ESP header SHALL comply with section 5 of [RFC 2406], which defines a minimum set of algorithms for integrity checking and encryption. Similarly, implementations employing the AH header SHALL comply with section 5 of [RFC 2402], which defines a minimum set of algorithms for integrity checking using manual keys.
采用ESP报头的本RFC中定义的协议实施应符合[RFC 2406]第5节的规定,该节规定了完整性检查和加密的最小算法集。同样,采用AH报头的实施应符合[RFC 2402]第5节的规定,该节规定了使用手动键进行完整性检查的最小算法集。
Implementations SHOULD use IKE [RFC 2409] to permit more robust keying options. Implementations employing IKE SHOULD support authentication with RSA signatures and RSA public key encryption.
实现应该使用IKE[RFC 2409]来允许更健壮的键控选项。采用IKE的实现应该支持使用RSA签名和RSA公钥加密的身份验证。
Implementation of IPsec requires that the AH or ESP header be inserted immediately after the IP header. This cannot be easily done at the application level. Therefore, this presents a deployment problem for the protocol defined in this RFC where the underlying network implementation does not support IPsec.
IPsec的实现要求AH或ESP头立即插入IP头之后。这在应用程序级别上是不容易做到的。因此,这会导致此RFC中定义的协议出现部署问题,其中底层网络实现不支持IPsec。
As an interim solution, an optional AH header is defined within the H.248.1 protocol header. The header fields are exactly those of the SPI, SEQUENCE NUMBER and DATA fields as defined in [RFC 2402]. The semantics of the header fields are the same as the "transport mode" of [RFC 2402], except for the calculation of the Integrity Check Value (ICV). In IPsec, the ICV is calculated over the entire IP packet including the IP header. This prevents spoofing of the IP addresses. To retain the same functionality, the ICV calculation should be performed across all the transactions (concatenated) in the message prepended by a synthesized IP header consisting of a 32-bit source IP address, a 32-bit destination address and a 16-bit UDP destination port encoded as 20 hex digits. When the interim AH mechanism is employed when TCP is the transport Layer, the UDP Port above becomes the TCP port, and all other operations are the same.
作为临时解决方案,在H.248.1协议头中定义了可选AH头。标题字段与[RFC 2402]中定义的SPI、序列号和数据字段完全相同。标题字段的语义与[RFC 2402]的“传输模式”相同,但完整性检查值(ICV)的计算除外。在IPsec中,ICV是在包括IP报头的整个IP数据包上计算的。这可以防止IP地址被欺骗。为了保持相同的功能,ICV计算应在消息中的所有事务(连接)上执行,该事务由一个合成的IP头组成,该头由一个32位源IP地址、一个32位目标地址和一个编码为20个十六进制数字的16位UDP目标端口组成。当TCP为传输层时采用临时AH机制时,上面的UDP端口将成为TCP端口,所有其他操作都相同。
Implementations of the H.248.1 protocol SHALL implement IPsec where the underlying operating system and the transport network supports IPsec. Implementations of the protocol using IPv4 SHALL implement the interim AH scheme. However, this interim scheme SHALL NOT be used when the underlying network layer supports IPsec. IPv6 implementations are assumed to support IPsec and SHALL NOT use the interim AH scheme.
在底层操作系统和传输网络支持IPsec的情况下,H.248.1协议的实现应实现IPsec。使用IPv4协议的实施应实施临时AH方案。但是,当底层网络层支持IPsec时,不应使用此临时方案。假定IPv6实现支持IPsec,不应使用临时AH方案。
All implementations of the interim AH mechanism SHALL comply with section 5 of RFC 2402 which defines a minimum set of algorithms for integrity checking using manual keys.
临时AH机制的所有实现应符合RFC 2402第5节的要求,该节定义了使用手动键进行完整性检查的最小算法集。
The interim AH interim scheme does not provide protection against eavesdropping, thus forbidding third parties from monitoring the connections set up by a given Termination. Also, it does not provide protection against replay attacks. These procedures do not necessarily protect against denial of service attacks by misbehaving MGs or misbehaving MGCs. However, they will provide an identification of these misbehaving entities, which should then be deprived of their authorization through maintenance procedures.
临时AH临时方案不提供防止窃听的保护,因此禁止第三方监控给定终端建立的连接。此外,它不提供针对重播攻击的保护。这些过程不一定能防止行为不当的MGs或MGC的拒绝服务攻击。但是,他们将提供这些行为不端实体的身份证明,然后通过维护程序剥夺这些实体的授权。
The protocol allows the MGC to provide MGs with "session keys" that can be used to encrypt the audio messages, protecting against eavesdropping.
该协议允许MGC向MGs提供可用于加密音频消息的“会话密钥”,以防止窃听。
A specific problem of packet networks is "uncontrolled barge-in". This attack can be performed by directing media packets to the IP address and UDP port used by a connection. If no protection is implemented, the packets must be decompressed and the signals must be played on the "line side".
分组网络的一个具体问题是“不受控制的闯入”。可以通过将媒体数据包定向到连接使用的IP地址和UDP端口来执行此攻击。如果未实施保护,则必须解压缩数据包,并且必须在“线路侧”播放信号。
A basic protection against this attack is to only accept packets from known sources, checking for example that the IP source address and UDP source port match the values announced in the Remote descriptor. This has two inconveniences: it slows down connection establishment and it can be fooled by source spoofing:
针对此攻击的一个基本保护是仅接受来自已知源的数据包,例如检查IP源地址和UDP源端口是否与远程描述符中宣布的值匹配。这有两个不便之处:它会减慢连接的建立速度,并且可能被源欺骗所愚弄:
- To enable the address-based protection, the MGC must obtain the remote session description of the egress MG and pass it to the ingress MG. This requires at least one network round trip, and leaves us with a dilemma: either allow the call to proceed without waiting for the round trip to complete, and risk for example, "clipping" a remote announcement, or wait for the full round trip and settle for slower call-set up procedures.
- 为了启用基于地址的保护,MGC必须获得出口MG的远程会话描述,并将其传递给入口MG。这至少需要一次网络往返,让我们陷入两难境地:要么允许呼叫继续进行而不等待往返完成,并冒着“剪辑”远程公告等风险,要么等待完整的往返并满足于较慢的呼叫设置过程。
- Source spoofing is only effective if the attacker can obtain valid pairs of source destination addresses and ports, for example by listening to a fraction of the traffic. To fight source spoofing, one could try to control all access points to the network. But this is in practice very hard to achieve.
- 源欺骗只有在攻击者能够获得有效的源-目标地址和端口对时才有效,例如,通过监听一小部分流量。为了打击源欺骗,可以尝试控制网络的所有接入点。但这在实践中很难实现。
An alternative to checking the source address is to encrypt and authenticate the packets, using a secret key that is conveyed during the call set-up procedure. This will not slow down the call set-up, and provides strong protection against address spoofing.
检查源地址的另一种方法是使用在呼叫建立过程中传递的密钥对数据包进行加密和身份验证。这不会减慢呼叫设置,并提供强大的地址欺骗保护。
11 MG-MGC Control Interface
11 MG-MGC控制接口
The control association between MG and MGC is initiated at MG cold start, and announced by a ServiceChange message, but can be changed by subsequent events, such as failures or manual service events. While the protocol does not have an explicit mechanism to support multiple MGCs controlling a physical MG, it has been designed to support the multiple logical MG (within a single physical MG) that can be associated with different MGCs.
MG和MGC之间的控制关联在MG冷启动时启动,并通过ServiceChange消息宣布,但可以通过后续事件(如故障或手动维修事件)进行更改。虽然该协议没有支持多个MGC控制一个物理MG的明确机制,但它被设计为支持可与不同MGC关联的多个逻辑MG(在单个物理MG内)。
A physical Media Gateway may be partitioned into one or more Virtual MGs. A virtual MG consists of a set of statically partitioned physical Terminations and/or sets of ephemeral Terminations. A physical Termination is controlled by one MGC. The model does not require that other resources be statically allocated, just Terminations. The mechanism for allocating Terminations to virtual MGs is a management method outside the scope of the protocol. Each of the virtual MGs appears to the MGC as a complete MG client.
物理媒体网关可划分为一个或多个虚拟MG。虚拟MG由一组静态分区的物理终端和/或一组临时终端组成。物理终端由一个MGC控制。该模型不需要静态分配其他资源,只需要终止。将终端分配给虚拟MG的机制是协议范围之外的一种管理方法。每个虚拟MG在MGC看来都是一个完整的MG客户端。
A physical MG may have only one network interface, which must be shared across virtual MGs. In such a case, the packet/cell side Termination is shared. It should be noted however, that in use, such interfaces require an ephemeral instance of the Termination to be created per flow, and thus sharing the Termination is straightforward. This mechanism does lead to a complication, namely that the MG must always know which of its controlling MGCs should be notified if an event occurs on the interface.
物理MG可能只有一个网络接口,必须在虚拟MG之间共享。在这种情况下,分组/小区端接是共享的。然而,应该注意的是,在使用中,这样的接口需要为每个流创建一个短暂的终止实例,因此共享终止非常简单。这种机制确实会导致复杂性,即MG必须始终知道,如果接口上发生事件,应通知其控制MGC中的哪一个。
In normal operation, the Virtual MG will be instructed by the MGC to create network flows (if it is the originating side), or to expect flow requests (if it is the terminating side), and no confusion will arise. However, if an unexpected event occurs, the Virtual MG must know what to do with respect to the physical resources it is controlling.
在正常操作中,MGC将指示虚拟MG创建网络流(如果它是发起端)或期望流请求(如果它是终止端),并且不会出现混淆。但是,如果发生意外事件,虚拟MG必须知道如何处理其控制的物理资源。
If recovering from the event requires manipulation of a physical interface's state, only one MGC should do so. These issues are resolved by allowing any of the MGCs to create EventsDescriptors to be notified of such events, but only one MGC can have read/write
如果从事件中恢复需要操纵物理接口的状态,则只有一个MGC可以这样做。这些问题可以通过允许任何MGC创建事件脚本来解决,脚本将收到此类事件的通知,但只有一个MGC可以进行读/写操作
access to the physical interface properties; all other MGCs have read-only access. The management mechanism is used to designate which MGC has read/write capability, and is designated the Master MGC.
访问物理接口属性;所有其他MGC都具有只读访问权限。管理机制用于指定哪个MGC具有读/写能力,并指定为主MGC。
Each virtual MG has its own Root Termination. In most cases the values for the properties of the Root Termination are independently settable by each MGC. Where there can only be one value, the parameter is read-only to all but the Master MGC.
每个虚拟MG都有自己的根终止。在大多数情况下,根终止的属性值可由每个MGC独立设置。如果只有一个值,则该参数对除主MGC之外的所有人都是只读的。
ServiceChange may only be applied to a Termination or set of Terminations partitioned to the Virtual MG or created (in the case of ephemeral Terminations) by that Virtual MG.
ServiceChange只能应用于分割到虚拟MG或由该虚拟MG创建(在临时终止的情况下)的终止或一组终止。
A MG is pre-provisioned by a management mechanism outside the scope of this protocol with a primary and (optionally) an ordered list of secondary MGCs. Upon a cold start of the MG, it will issue a ServiceChange command with a "Restart" method, on the Root Termination to its primary MGC. If the MGC accepts the MG, it sends a Transaction Reply not including a ServiceChangeMgcId parameter. If the MGC does not accept the MG's registration, it sends a Transaction Reply, providing the address of an alternate MGC to be contacted by including a ServiceChangeMgcId parameter.
MG由本协议范围之外的管理机制预先配置,具有主MGC和(可选)辅助MGC的有序列表。MG冷启动后,它将在根终止时向其主MGC发出带有“重启”方法的ServiceChange命令。如果MGC接受MG,它将发送不包括ServiceChangeMgcId参数的事务回复。如果MGC不接受MG的注册,它将发送一个事务回复,通过包含ServiceChangeMgcId参数提供要联系的备用MGC的地址。
If the MG receives a Transaction Reply that includes a ServiceChangeMgcId parameter, it sends a ServiceChange to the MGC specified in the ServiceChangeMgcId. It continues this process until it gets a controlling MGC to accept its registration, or it fails to get a reply. Upon failure to obtain a reply, either from the primary MGC, or a designated successor, the MG tries its pre-provisioned secondary MGCs, in order. If the MG is unable to establish a control relationship with any MGC, it shall wait a random amount of time as described in 9.2 and then start contacting its primary, and if necessary, its secondary MGCs again.
如果MG接收到包含ServiceChangeMgcId参数的事务回复,它将向ServiceChangeMgcId中指定的MGC发送ServiceChange。它将继续此过程,直到获得控制MGC以接受其注册,或者无法获得回复。在无法从主MGC或指定的继任者处获得回复时,MG会依次尝试其预配置的辅助MGC。如果MG无法与任何MGC建立控制关系,则应按照9.2所述随机等待一段时间,然后开始再次联系其主要MGC,如有必要,联系其次要MGC。
It is possible that the reply to a ServiceChange with Restart will be lost, and a command will be received by the MG prior to the receipt of the ServiceChange response. The MG shall issue Error 505 - Command Received before a ServiceChange Reply has been received.
可能会丢失对重新启动的ServiceChange的回复,并且MG会在收到ServiceChange响应之前收到命令。MG应在收到ServiceChange回复之前发出错误505-接收到的命令。
The first ServiceChange command from a MG shall contain the version number of the protocol supported by the MG in the ServiceChangeVersion parameter. Upon receiving such a message, if the MGC supports only a lower version, then the MGC shall send a
来自MG的第一个ServiceChange命令应在ServiceChangeVersion参数中包含MG支持的协议的版本号。收到此类消息后,如果MGC仅支持较低版本,则MGC应发送
ServiceChangeReply with the lower version and thereafter all the messages between MG and MGC shall conform to the lower version of the protocol. If the MG is unable to comply and it has established a transport connection to the MGC, it should close that connection. In any event, it should reject all subsequent requests from the MGC with error 406 - Version Not Supported.
ServiceChangeReply具有较低版本,此后MG和MGC之间的所有消息应符合协议的较低版本。如果MG无法遵守,并且已经与MGC建立了传输连接,则应关闭该连接。在任何情况下,它都应该拒绝来自MGC的所有后续请求,错误为406-版本不受支持。
If the MGC supports a higher version than the MG but is able to support the lower version proposed by the MG, it shall send a ServiceChangeReply with the lower version and thereafter all the messages between MG and MGC shall conform to the lower version of the protocol. If the MGC is unable to comply, it shall reject the association, with error 406 - Version Not Supported.
如果MGC支持高于MG的版本,但能够支持MG提出的较低版本,则MGC应发送具有较低版本的ServiceChangeReply,此后MG和MGC之间的所有消息应符合协议的较低版本。如果MGC无法遵守,则应拒绝关联,错误为406-版本不受支持。
Protocol version negotiation may also occur at "handoff" and "failover" ServiceChanges.
协议版本协商也可能在“切换”和“故障转移”服务更改时发生。
When extending the protocol with new versions, the following rules should be followed:
使用新版本扩展协议时,应遵循以下规则:
1) Existing protocol elements, i.e., procedures, parameters, descriptor, property, values, should not be changed unless a protocol error needs to be corrected or it becomes necessary to change the operation of the service that is being supported by the protocol.
1) 除非需要更正协议错误或有必要更改协议支持的服务的操作,否则不应更改现有协议元素,即过程、参数、描述符、属性、值。
2) The semantics of a command, a parameter, a descriptor, a property, or a value should not be changed.
2) 命令、参数、描述符、属性或值的语义不应更改。
3) Established rules for formatting and encoding messages and parameters should not be modified.
3) 不应修改已建立的消息和参数格式化和编码规则。
4) When information elements are found to be obsolete they can be marked as not used. However, the identifier for that information element will be marked as reserved. In that way it can not be used in future versions.
4) 当发现信息元素过时时,可以将其标记为未使用。但是,该信息元素的标识符将标记为保留。这样,它就不能在将来的版本中使用。
If a MG fails, but is capable of sending a message to the MGC, it sends a ServiceChange with an appropriate method (graceful or forced) and specifies the Root TerminationID. When it returns to service, it sends a ServiceChange with a "Restart" method.
如果MG失败,但能够向MGC发送消息,它将使用适当的方法(优雅或强制)发送ServiceChange,并指定根TerminationID。当它返回服务时,它使用“重启”方法发送ServiceChange。
Allowing the MGC to send duplicate messages to both MGs accommodates pairs of MGs that are capable of redundant failover of one of the MGs. Only the Working MG shall accept or reject transactions. Upon failover, the primary MG sends a ServiceChange command with a
允许MGC向两个MG发送重复消息可容纳能够对其中一个MG进行冗余故障切换的MG对。只有工作MG才能接受或拒绝交易。故障转移时,主MG发送带有
"Failover" method and a "MG Impending Failure" reason. The MGC then uses the secondary MG as the active MG. When the error condition is repaired, the Working MG can send a "ServiceChange" with a "Restart" method.
“故障转移”方法和“MG即将发生故障”原因。然后,MGC使用辅助MG作为活动MG。修复错误条件后,工作MG可以使用“重新启动”方法发送“ServiceChange”。
Note: Redundant failover MGs require a reliable transport, because the protocol provides no means for a secondary MG running ALF to acknowledge messages sent from the MGC.
注意:冗余故障切换MG需要可靠的传输,因为协议没有为运行ALF的辅助MG提供确认从MGC发送的消息的方法。
If the MG detects a failure of its controlling MGC, it attempts to contact the next MGC on its pre-provisioned list. It starts its attempts at the beginning (primary MGC), unless that was the MGC that failed, in which case it starts at its first secondary MGC. It sends a ServiceChange message with a "Failover" method and a "MGC Impending Failure" reason. If the MG is unable to establish a control relationship with any MGC, it shall wait a random amount of time as described in section 9.2 and then start again contacting its primary, and (if necessary) its secondary MGCs. When contacting its previously controlling MGC, the MG sends the ServiceChange message with "Disconnected" method.
如果MG检测到其控制MGC出现故障,它将尝试联系其预配置列表上的下一个MGC。它在开始时开始尝试(主MGC),除非失败的是MGC,在这种情况下,它从第一个辅助MGC开始。它发送带有“故障转移”方法和“MGC即将发生故障”原因的ServiceChange消息。如果MG无法与任何MGC建立控制关系,则应按照第9.2节所述随机等待一段时间,然后再次开始联系其主要MGC和(如有必要)次要MGC。当联系其先前的控制MGC时,MG使用“断开连接”方法发送ServiceChange消息。
In partial failure, or for manual maintenance reasons, an MGC may wish to direct its controlled MGs to use a different MGC. To do so, it sends a ServiceChange method to the MG with a "HandOff" method, and its designated replacement in ServiceChangeMgcId. If "HandOff" is supported, the MG shall send a ServiceChange message with a "Handoff" method and a "MGC directed change" reason to the designated MGC. If it fails to get a reply from the designated MGC, the MG shall behave as if its MGC failed, and start contacting secondary MGCs as specified in the previous paragraph. If the MG is unable to establish a control relationship with any MGC, it shall wait a random amount of time as described in 9.2 and then start contacting its primary, and if necessary, its secondary MGCs again.
在部分故障或出于手动维护原因,MGC可能希望指示其受控MG使用不同的MGC。为此,它向MG发送带有“切换”方法的ServiceChange方法,并在ServiceChangeMgcId中指定替换方法。如果支持“切换”,MG应向指定的MGC发送带有“切换”方法和“MGC指示的变更”原因的ServiceChange消息。如果MG未能获得指定MGC的回复,MG应表现为其MGC失败,并按照上一段的规定开始联系二级MGC。如果MG无法与任何MGC建立控制关系,则应按照9.2所述随机等待一段时间,然后开始再次联系其主要MGC,如有必要,联系其次要MGC。
No recommendation is made on how the MGCs involved in the Handoff maintain state information; this is considered to be out of scope of this RFC. The MGC and MG may take the following steps when Handoff occurs. When the MGC initiates a HandOff, the handover should be transparent to Operations on the Media Gateway. Transactions can be executed in any order, and could be in progress when the ServiceChange is executed. Accordingly, commands in progress continue and replies to all commands from the original MGC must be sent to the transport address from which they were sent. If the service relationship with the sending MGC has ended, the replies should be discarded. The MG may receive outstanding transaction replies from the new MGC. No new messages shall be sent to the new
未就切换中涉及的MGC如何维护状态信息提出建议;这被认为超出了本RFC的范围。当发生切换时,MGC和MG可以采取以下步骤。当MGC启动切换时,切换对媒体网关上的操作应该是透明的。事务可以按任何顺序执行,并且可以在执行ServiceChange时进行。因此,正在执行的命令将继续执行,并且对原始MGC中所有命令的回复必须发送到发送这些命令的传输地址。如果与发送MGC的服务关系已结束,则应放弃回复。MG可能会收到来自新MGC的未完成交易回复。不得向新用户发送新消息
MGC until the control association is established. Repeated transaction requests shall be directed to the new MGC. The MG shall maintain state on all Terminations and Contexts.
MGC,直到建立控制关联。重复的交易请求应提交给新的MGC。MG应保持所有终端和上下文的状态。
It is possible that the MGC could be implemented in such a way that a failed MGC is replaced by a working MGC where the identity of the new MGC is the same as the failed one. In such a case, ServiceChangeMgcId would be specified with the previous value and the MG shall behave as if the value was changed, and send a ServiceChange message, as above.
MGC的实现方式可能是将故障MGC替换为工作MGC,其中新MGC的标识与故障MGC相同。在这种情况下,ServiceChangeMgcId将使用先前的值指定,MG的行为应与值已更改一样,并发送ServiceChange消息,如上所述。
Pairs of MGCs that are capable of redundant failover can notify the controlled MGs of the failover by the above mechanism.
能够进行冗余故障切换的MGC对可以通过上述机制将故障切换通知受控MG。
12 Package definition
12包定义
The primary mechanism for extension is by means of Packages. Packages define additional Properties, Events, Signals and Statistics that may occur on Terminations.
扩展的主要机制是通过包。包定义可能在终止时发生的其他属性、事件、信号和统计信息。
Packages defined by IETF will appear in separate RFCs.
IETF定义的包将出现在单独的RFC中。
Packages defined by ITU-T may appear in the relevant Recommendations (e.g., as Recommendations of the H.248 sub-series).
ITU-T定义的包可能出现在相关建议中(例如,作为H.248子系列的建议)。
1) A public document or a standard forum document, which can be referenced as the document that describes the package following the guideline above, should be specified.
1) 应指定公共文件或标准论坛文件,该文件可作为描述符合上述指南的文件包的参考文件。
2) The document shall specify the version of the Package that it describes.
2) 文件应规定其所描述的文件包版本。
3) The document should be available on a public web server and should have a stable URL. The site should provide a mechanism to provide comments and appropriate responses should be returned.
3) 文档应该在公共web服务器上可用,并且应该有一个稳定的URL。网站应提供提供评论的机制,并应返回适当的回复。
Packages define Properties, Events, Signals, and Statistics.
包定义属性、事件、信号和统计信息。
Packages may also define new error codes according to the guidelines given in 13.2. This is a matter of documentary convenience: the package documentation is submitted to IANA in support of the error code registration. If a package is modified, it is unnecessary to provide IANA with a new document reference in support of the error code unless the description of the error code itself is modified.
软件包也可以根据13.2中给出的指南定义新的错误代码。这是一个文档方便的问题:包文档提交给IANA以支持错误代码注册。如果修改了程序包,则无需向IANA提供新的文档引用以支持错误代码,除非修改了错误代码本身的描述。
Names of all such defined constructs shall consist of the PackageID (which uniquely identifies the package) and the ID of the item (which uniquely identifies the item in that package). In the text encoding the two shall be separated by a forward slash ("/") character. Example: togen/playtone is the text encoding to refer to the play tone signal in the tone generation package.
所有此类定义结构的名称应包括PackageID(唯一标识该包)和项目ID(唯一标识该包中的项目)。在文本编码中,两个字符应以正斜杠(“/”)分隔。示例:togen/playtone是指音调生成包中播放音调信号的文本编码。
A Package will contain the following sections:
包将包含以下部分:
Overall description of the package, specifying:
包的总体说明,具体说明:
Package Name: only descriptive
包名称:仅用于说明
PackageID: is an identifier
PackageID:是一个标识符
Description:
说明:
Version:
版本:
A new version of a package can only add additional Properties, Events, Signals, Statistics and new possible values for an existing parameter described in the original package. No deletions or modifications shall be allowed. A version is an integer in the range from 1 to 99.
新版本的包只能为原始包中描述的现有参数添加其他属性、事件、信号、统计信息和新的可能值。不允许删除或修改。版本是1到99之间的整数。
Designed to be extended only (Optional):
仅设计为扩展(可选):
This indicates that the package has been expressly designed to be extended by others, not to be directly referenced. For example, the package may not have any function on its own or be nonsensical on its own. The MG SHOULD NOT publish this PackageID when reporting packages.
这表明该软件包已明确设计为可由其他人扩展,而不是直接引用。例如,包本身可能没有任何功能,或者本身没有任何意义。MG在报告软件包时不应发布此软件包ID。
Extends (Optional): existing package Descriptor
扩展(可选):现有包描述符
A package may extend an existing package. The version of the original package must be specified. When a package extends another package it shall only add additional Properties, Events, Signals, Statistics and new possible values for an existing parameter described in the original package. An extended package shall not redefine or overload an identifier defined in the original package and packages it may have extended (multiple levels of extension). Hence, if package B version 1 extends package A version 1, version 2 of B will not be able to extend the A version 2 if A version 2 defines a name already in B version 1.
包可以扩展现有包。必须指定原始软件包的版本。当一个包扩展另一个包时,它只能为原始包中描述的现有参数添加额外的属性、事件、信号、统计信息和新的可能值。扩展包不得重新定义或重载原始包和扩展包中定义的标识符(多级扩展)。因此,如果包B版本1扩展了包A版本1,那么如果版本2定义了B版本1中已有的名称,则B版本2将无法扩展A版本2。
Properties defined by the package, specifying:
由包定义的属性,指定:
Property Name: only descriptive
属性名称:仅具有描述性
PropertyID: is an identifier
PropertyID:是一个标识符
Description:
说明:
Type: One of:
类型:以下类型之一:
Boolean
布尔值
String: UTF-8 string
字符串:UTF-8字符串
Octet String: A number of octets. See Annex A and Annex B.3 for encoding
八位字节字符串:八位字节的数目。编码见附录A和附录B.3
Integer: 4 byte signed integer
整数:4字节有符号整数
Double: 8 byte signed integer
双精度:8字节有符号整数
Character: unicode UTF-8 encoding of a single letter. Could be more than one octet.
字符:单个字母的unicode UTF-8编码。可能不止一个八位组。
Enumeration: one of a list of possible unique values (see 12.3)
枚举:可能的唯一值列表之一(见12.3)
Sub-list: a list of several values from a list. The type of sub-list SHALL also be specified. The type shall be chosen from the types specified in this section (with the exception of sub-list). For example, Type: sub-list of enumeration. The encoding of sub-lists is specified in Annexes A and B.3.
子列表:列表中多个值的列表。还应规定子列表的类型。类型应从本节规定的类型中选择(子列表除外)。例如,Type:枚举的子列表。附件A和B.3规定了子列表的编码。
Possible values:
可能值:
A package MUST specify either a specific set of values or a description of how values are determined. A package MUST also specify a default value or the default behaviour when the value is omitted from its descriptor. For example, a package may specify that procedures related to the property are suspended when its value is omitted. A default value (but not procedures) may be specified as provisionable.
包必须指定一组特定的值,或说明如何确定值。包还必须指定默认值或从其描述符中忽略该值时的默认行为。例如,包可以指定在省略属性值时挂起与该属性相关的过程。可以将默认值(但不是过程)指定为可设置。
Defined in:
定义于:
Which H.248.1 descriptor the property is defined in.
定义属性的H.248.1描述符。
LocalControl is for stream dependent properties. TerminationState is for stream independent properties. These are expected to be the most common cases, but it is possible for properties to be defined in other descriptors.
LocalControl用于流相关属性。TerminationState用于流独立属性。这些可能是最常见的情况,但也可以在其他描述符中定义属性。
Characteristics: Read/Write or both, and (optionally), global:
特征:读/写或同时读/写,以及(可选)全局:
Indicates whether a property is read-only, or read-write, and if it is global. If Global is omitted, the property is not global. If a property is declared as global, the value of the property is shared by all Terminations realizing the package.
指示属性是只读还是读写,以及是否为全局属性。如果省略“全局”,则该属性不是全局的。如果一个属性被声明为全局属性,那么该属性的值将由实现该包的所有终端共享。
Events defined by the package, specifying:
由包定义的事件,指定:
Event name: only descriptive
事件名称:仅描述性
EventID: is an identifier
EventID:是一个标识符
Description:
说明:
EventsDescriptor Parameters:
EventsDescriptor参数:
Parameters used by the MGC to configure the event, and found in the EventsDescriptor. See 12.2.
MGC用于配置事件的参数,可在EventsDescriptor中找到。见12.2。
ObservedEventsDescriptor Parameters:
ObservedEventsDescriptor参数:
Parameters returned to the MGC in Notify requests and in replies to command requests from the MGC that audit ObservedEventsDescriptor, and found in the ObservedEventsDescriptor. See 12.2.
在Notify请求中返回给MGC的参数,以及在对来自MGC的审核ObservedEventsDescriptor的命令请求的答复中返回给MGC的参数,这些参数在ObservedEventsDescriptor中找到。见12.2。
Signals defined by the package, specifying:
由包定义的信号,规定:
Signal Name: only descriptive
信号名称:仅描述
SignalID: is an identifier. SignalID is used in a SignalsDescriptor
SignalID:是一个标识符。SignalID用于SignalsDescriptor中
Description
描述
SignalType: one of:
信号类型:以下类型之一:
OO (On/Off)
OO(开/关)
TO (TimeOut)
到(超时)
BR (Brief)
BR(简介)
NOTE - SignalType may be defined such that it is dependent on the value of one or more parameters. The package MUST specify a default signal type. If the default type is TO, the package MUST specify a default duration which may be provisioned. A default duration is meaningless for BR.
注-可以定义信号类型,使其取决于一个或多个参数的值。软件包必须指定默认信号类型。如果默认类型为TO,则包必须指定可设置的默认持续时间。默认的持续时间对BR来说没有意义。
Duration: in hundredths of seconds
持续时间:以百分之一秒为单位
Additional Parameters: see 12.2
其他参数:见12.2
Statistics defined by the package, specifying:
由包定义的统计信息,指定:
Statistic name: only descriptive
统计名称:仅描述性
StatisticID: is an identifier
统计学家:是一个标识符
StatisticID is used in a StatisticsDescriptor
Statisticad用于统计描述符中
Description:
说明:
Units: unit of measure, e.g., milliseconds, packets
单位:度量单位,例如毫秒、数据包
Additional guidance on the use of the package.
关于包装使用的附加指南。
Parameter Name: only descriptive
参数名称:仅描述性
ParameterID: is an identifier. The textual ParameterID of parameters to Events and Signals shall not start with "EPA" and "SPA", respectively. The textual ParameterID shall also not be "ST", "Stream", "SY", "SignalType", "DR", "Duration", "NC", "NotifyCompletion", "KA", "Keepactive", "EB", "Embed", "DM" or "DigitMap".
ParameterID:是一个标识符。事件和信号参数的文本参数ID不得分别以“EPA”和“SPA”开头。文本参数也不得为“ST”、“Stream”、“SY”、“SignalType”、“DR”、“Duration”、“NC”、“NotifyCompletion”、“KA”、“Keepacitive”、“EB”、“Embed”、“DM”或“DigitMap”。
Type: One of:
类型:以下类型之一:
Boolean
布尔值
String: UTF-8 octet string
字符串:UTF-8八位字节字符串
Octet String: A number of octets. See Annex A and Annex B.3 for encoding
八位字节字符串:八位字节的数目。编码见附录A和附录B.3
Integer: 4-octet signed integer
整数:4个八位带符号整数
Double: 8-octet signed integer
双精度:8个八位带符号整数
Character: unicode UTF-8 encoding of a single letter. Could be more than one octet.
字符:单个字母的unicode UTF-8编码。可能不止一个八位组。
Enumeration: one of a list of possible unique values (see 12.3)
枚举:可能的唯一值列表之一(见12.3)
Sub-list: a list of several values from a list (not supported for statistics). The type of sub-list SHALL also be specified. The type shall be chosen from the types specified in this section (with the exception of sub-list). For example, Type: sub-list of enumeration. The encoding of sub-lists is specified in Annexes A and B.3.
子列表:列表中多个值的列表(统计不支持)。还应规定子列表的类型。类型应从本节规定的类型中选择(子列表除外)。例如,Type:枚举的子列表。附件A和B.3规定了子列表的编码。
Possible values:
可能值:
A package MUST specify either a specific set of values or a description of how values are determined. A package MUST also specify a default value or the default behavior when the value is omitted from its descriptor. For example, a package may specify that procedures related to the parameter are suspended when it value is omitted. A default value (but not procedures) may be specified as provisionable.
包必须指定一组特定的值,或说明如何确定值。包还必须指定默认值或从其描述符中忽略该值时的默认行为。例如,一个包可以指定当忽略该参数的值时,与该参数相关的过程被挂起。可以将默认值(但不是过程)指定为可设置。
Description:
说明:
Possible values for parameters include enumerations. Enumerations may be defined in a list. It is recommended that the list be IANA registered so that packages that extend the list can be defined without concern for conflicting names.
参数的可能值包括枚举。枚举可以在列表中定义。建议对列表进行IANA注册,以便可以定义扩展列表的包,而不必担心名称冲突。
Identifiers in text encoding shall be strings of up to 64 characters, containing no spaces, starting with an alphabetic character and consisting of alphanumeric characters and/or digits, and possibly including the special character underscore ("_").
文本编码中的标识符应为最多64个字符的字符串,不含空格,以字母字符开头,由字母数字字符和/或数字组成,并可能包括特殊字符下划线(“33;”)。
Identifiers in binary encoding are 2 octets long.
二进制编码中的标识符长度为2个八位字节。
Both text and binary values shall be specified for each identifier, including identifiers used as values in enumerated types.
应为每个标识符指定文本值和二进制值,包括用作枚举类型值的标识符。
A package can be registered with IANA for interoperability reasons. See clause 13 for IANA Considerations.
出于互操作性原因,可以向IANA注册包。IANA考虑因素见第13条。
13 IANA Considerations
13 IANA考虑因素
The following considerations SHALL be met to register a package with IANA:
向IANA注册软件包时应满足以下考虑:
1) A unique string name, unique serial number and version number is registered for each package. The string name is used with text encoding. The serial number shall be used with binary encoding. Serial Numbers 0x8000 to 0xFFFF are reserved for private use. Serial number 0 is reserved.
1) 为每个包注册唯一的字符串名称、唯一的序列号和版本号。字符串名称与文本编码一起使用。序列号应使用二进制编码。序列号0x8000至0xFFFF保留供私人使用。保留序列号0。
2) A contact name, email and postal addresses for that contact shall be specified. The contact information shall be updated by the defining organization as necessary.
2) 应指定该联系人的联系人姓名、电子邮件和邮政地址。必要时,定义组织应更新联系信息。
3) A reference to a document that describes the package, which should be public:
3) 对描述软件包的文档的引用,该文档应为公共文档:
The document shall specify the version of the Package that it describes.
文件应规定其所描述的文件包版本。
If the document is public, it should be located on a public web server and should have a stable URL. The site should provide a mechanism to provide comments and appropriate responses should be returned.
如果文档是公共的,它应该位于公共web服务器上,并且应该有一个稳定的URL。网站应提供提供评论的机制,并应返回适当的回复。
4) Packages registered by other than recognized standards bodies shall have a minimum package name length of 8 characters.
4) 由非公认标准机构注册的包装应至少具有8个字符的包装名称长度。
5) All other package names are first come-first served if all other conditions are met.
5) 如果满足所有其他条件,则所有其他包裹名称均为先到先得。
The following considerations SHALL be met to register an error code with IANA:
在IANA注册错误代码时,应满足以下注意事项:
1) An error number and a one-line (80-character maximum) string is registered for each error.
1) 为每个错误注册一个错误号和一行(最多80个字符)字符串。
2) A complete description of the conditions under which the error is detected shall be included in a publicly available document. The description shall be sufficiently clear to differentiate the error from all other existing error codes.
2) 应在公开文件中完整描述检测到错误的条件。描述应足够清晰,以区分错误与所有其他现有错误代码。
3) The document should be available on a public web server and should have a stable URL.
3) 文档应该在公共web服务器上可用,并且应该有一个稳定的URL。
4) Error numbers registered by recognized standards bodies shall have 3- or 4-character error numbers.
4) 由公认标准机构登记的错误号应具有3个或4个字符的错误号。
5) Error numbers registered by all other organizations or individuals shall have 4-character error numbers.
5) 所有其他组织或个人登记的错误号应具有4个字符的错误号。
6) An error number shall not be redefined nor modified except by the organization or individual that originally defined it, or their successors or assigns.
6) 除非最初定义错误号的组织或个人或其继任者或受让人,否则不得重新定义或修改错误号。
The following considerations SHALL be met to register service change reason with IANA:
向IANA登记服务变更原因应满足以下考虑:
1) A one-phrase, 80-character maximum, unique reason code is registered for each reason.
1) 为每个原因注册一个短语,最多80个字符,唯一的原因代码。
2) A complete description of the conditions under which the reason is used is detected shall be included in a publicly available document. The description shall be sufficiently clear to differentiate the reason from all other existing reasons.
2) 应在公开文件中包含对使用原因的条件的完整描述。说明应足够清晰,以区分原因与所有其他现有原因。
3) The document should be available on a public web server and should have a stable URL.
3) 文档应该在公共web服务器上可用,并且应该有一个稳定的URL。
ANNEX A - Binary encoding of the protocol
附件A——议定书的二进制编码
This annex specifies the syntax of messages using the notation defined in Recommendation X.680; Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation. Messages shall be encoded for transmission by applying the basic encoding rules specified in Recommendation X.690, Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules.
本附件使用建议X.680中定义的符号规定了电文的语法;信息技术.抽象语法符号1(ASN.1):基本符号规范。应通过应用建议X.690《信息技术-ASN.1编码规则:基本编码规则(BER)、规范编码规则(CER)和区分编码规则》中规定的基本编码规则对消息进行编码以进行传输。
The use of wildcards ALL and CHOOSE is allowed in the protocol. This allows a MGC to partially specify Termination IDs and to let the MG choose from the values that conform to the partial specification. Termination IDs may encode a hierarchy of names. This hierarchy is provisioned. For instance, a TerminationID may consist of a trunk group, a trunk within the group and a circuit. Wildcarding must be possible at all levels. The following paragraphs explain how this is achieved.
协议中允许使用通配符ALL和CHOOSE。这允许MGC部分指定终止ID,并允许MG从符合部分规范的值中进行选择。终端ID可以对名称的层次结构进行编码。此层次结构已设置。例如,TerminationID可以由中继组、组内的中继和电路组成。必须在所有级别都可以进行通配符。以下段落解释了如何实现这一点。
The ASN.1 description uses octet strings of up to 8 octets in length for Termination IDs. This means that Termination IDs consist of at most 64 bits. A fully specified Termination ID may be preceded by a sequence of wildcarding fields. A wildcarding field is one octet in length. Bit 7 (the most significant bit) of this octet specifies what type of wildcarding is invoked: if the bit value equals 1, then the ALL wildcard is used; if the bit value if 0, then the CHOOSE wildcard is used. Bit 6 of the wildcarding field specifies whether the wildcarding pertains to one level in the hierarchical naming scheme (bit value 0) or to the level of the hierarchy specified in the wildcarding field plus all lower levels (bit value 1). Bits 0 through 5 of the wildcarding field specify the bit position in the Termination ID at which the wildcarding starts.
ASN.1描述使用长度最多为8个八位字节的八位字节字符串作为终止ID。这意味着终端ID最多由64位组成。完全指定的终止ID前面可以有一系列通配符字段。通配符字段的长度为一个八位字节。此八位字节的第7位(最高有效位)指定调用的通配符类型:如果位值等于1,则使用ALL通配符;如果位值为0,则使用CHOOSE通配符。通配符字段的第6位指定通配符是属于层次命名方案中的一个级别(位值0)还是属于通配符字段中指定的层次级别加上所有较低级别(位值1)。通配符字段的位0到5指定通配符开始的终止ID中的位位置。
We illustrate this scheme with some examples. In these examples, the most significant bit in a string of bits appears on the left hand side.
我们用一些例子来说明这个方案。在这些示例中,一串位中的最高有效位出现在左侧。
Assume that Termination IDs are three octets long and that each octet represents a level in a hierarchical naming scheme. A valid Termination ID is:
假设终止ID有三个八位字节长,每个八位字节表示分层命名方案中的一个级别。有效的终止ID为:
00000001 00011110 01010101.
00000001 00011110 01010101.
Addressing ALL names with prefix 00000001 00011110 is done as follows:
按如下方式寻址前缀为0000000 1 0001110的所有名称:
wildcarding field: 10000111
通配符字段:10000111
Termination ID: 00000001 00011110 xxxxxxxx.
终止ID:00000001 0001110 xxxxxxxx。
The values of the bits labeled "x" is irrelevant and shall be ignored by the receiver.
标记为“x”的位的值不相关,接收器应忽略。
Indicating to the receiver that it must choose a name with 00011110 as the second octet is done as follows:
指示接收器必须选择0001110作为第二个八位字节的名称,如下所示:
wildcarding fields: 00010111 followed by 00000111
通配符字段:00010111后跟00000111
Termination ID: xxxxxxxx 00011110 xxxxxxxx.
终止ID:XXXXXXXX0001110 xxxxxxxx。
The first wildcard field indicates a CHOOSE wildcard for the level in the naming hierarchy starting at bit 23, the highest level in our assumed naming scheme. The second wildcard field indicates a CHOOSE wildcard for the level in the naming hierarchy starting at bit 7, the lowest level in our assumed naming scheme.
第一个通配符字段表示命名层次结构中从第23位开始的级别的选择通配符,这是我们假设的命名方案中的最高级别。第二个通配符字段表示从第7位开始的命名层次结构中的级别的选择通配符,这是假定命名方案中的最低级别。
Finally, a CHOOSE-wildcarded name with the highest level of the name equal to 00000001 is specified as follows:
最后,按如下方式指定名称的最高级别等于0000000 1的CHOOSE通配符名称:
wildcard field: 01001111
通配符字段:01001111
Termination ID: 0000001 xxxxxxxx xxxxxxxx .
终止ID:0000001 xxxxxxxxxxxxxxxx。
Bit value 1 at bit position 6 of the first octet of the wildcard field indicates that the wildcarding pertains to the specified level in the naming hierarchy and all lower levels.
通配符字段第一个八位字节第6位的位值1表示通配符属于命名层次结构中的指定级别和所有较低级别。
Context IDs may also be wildcarded. In the case of Context IDs, however, specifying partial names is not allowed. Context ID 0x0 SHALL be used to indicate the NULL Context, Context ID 0xFFFFFFFE SHALL be used to indicate a CHOOSE wildcard, and Context ID 0xFFFFFFFF SHALL be used to indicate an ALL wildcard.
上下文ID也可以是通配符。但是,对于上下文ID,不允许指定部分名称。上下文ID 0x0用于表示空上下文,上下文ID 0xFFFFFFFE用于表示选择通配符,上下文ID 0xFFFFFF用于表示全通配符。
TerminationID 0xFFFFFFFFFFFFFFFF SHALL be used to indicate the ROOT Termination.
终端ID 0xFFFFFFFFFFFFFF应用于指示根终端。
This subclause contains the ASN.1 specification of the H.248.1 protocol syntax.
本款包含H.248.1协议语法的ASN.1规范。
NOTE 1 - In case a transport mechanism is used that employs application level framing, the definition of Transaction below changes. Refer to the annex or to the Recommendation of the H.248 sub-series defining the transport mechanism for the definition that applies in that case.
注1-如果使用了采用应用程序级框架的传输机制,则下面的事务定义将发生变化。有关适用于该情况的定义,请参阅附录或定义运输机制的H.248子系列的建议。
NOTE 2 - The ASN.1 specification below contains a clause defining TerminationIDList as a sequence of TerminationIDs. The length of this sequence SHALL be one, except possibly when used in contextAuditResult.
注2-下面的ASN.1规范包含一个将TerminationIDList定义为TerminationID序列的子句。此序列的长度应为一,除非可能在contextAuditResult中使用。
NOTE 3 - This syntax specification does not enforce all restrictions on element inclusions and values. Some additional restrictions are stated in comments and other restrictions appear in the text of this RFC. These additional restrictions are part of the protocol even though not enforced by this specification.
注3-本语法规范并未对元素包含和值实施所有限制。注释中说明了一些附加限制,本RFC文本中也出现了其他限制。这些附加限制是协议的一部分,即使本规范未强制执行。
NOTE 4 - The ASN.1 module in this Annex uses octet string types to encode values for property parameter, signal parameter and event parameter values and statistics. The actual types of these values vary and are specified in Annex C or the relevant package definition.
注4-本附录中的ASN.1模块使用八位字节字符串类型对属性参数、信号参数和事件参数值和统计信息的值进行编码。这些值的实际类型各不相同,并在附录C或相关包装定义中规定。
A value is first BER-encoded based on its type using the table below. The result of this BER-encoding is then encoded as an ASN.1 octet string, "double wrapping" the value. The format specified in Annex C or the package relates to BER encoding according to the following table:
首先使用下表根据其类型对值进行BER编码。然后,该BER编码的结果被编码为ASN.1八位字节字符串,“双重包装”该值。附录C或包装中规定的格式与下表中的BER编码有关:
Type Specified in Package ASN.1 BER Type
在包ASN.1 BER类型中指定的类型
String IA5String or UTF8String (Note 4)
字符串IA5String或UTF8String(注4)
Integer (4 Octet) INTEGER
整数(4个八位组)整数
Double (8 octet signed int) INTEGER (Note 3)
双(8个八位带符号整数)整数(注3)
Character (UTF-8, Note 1) IA5String
字符(UTF-8,注释1)IA5String
Enumeration ENUMERATED
枚举
Boolean BOOLEAN
布尔布尔
Unsigned Integer (Note 2) INTEGER (Note 3)
无符号整数(注2)整数(注3)
Octet (String) OCTET STRING
八位字节(字符串)八位字节字符串
Note 1: Can be more than one byte
注1:可以超过一个字节
Note 2: Unsigned integer is referenced in Annex C
注2:附录C中引用了无符号整数
Note 3: The BER encoding of INTEGER does not imply the use of 4 bytes.
注3:整数的BER编码并不意味着使用4字节。
Note 4: String should be encoded as IA5String when the contents are all ASCII characters, but as UTF8String if it contains any Non-ASCII characters.
注4:当内容均为ASCII字符时,字符串应编码为IA5String,但如果包含任何非ASCII字符,则应编码为UTF8String。
See ITU-T Rec. X.690, 8.7, for the definition of the encoding of an octet string value.
有关八位字节字符串值编码的定义,请参见ITU-T Rec.X.690,8.7。
MEDIA-GATEWAY-CONTROL DEFINITIONS AUTOMATIC TAGS::= BEGIN
MEDIA-GATEWAY-CONTROL DEFINITIONS AUTOMATIC TAGS::= BEGIN
MegacoMessage ::= SEQUENCE { authHeader AuthenticationHeader OPTIONAL, mess Message }
MegacoMessage ::= SEQUENCE { authHeader AuthenticationHeader OPTIONAL, mess Message }
AuthenticationHeader ::= SEQUENCE { secParmIndex SecurityParmIndex, seqNum SequenceNum, ad AuthData }
AuthenticationHeader ::= SEQUENCE { secParmIndex SecurityParmIndex, seqNum SequenceNum, ad AuthData }
SecurityParmIndex ::= OCTET STRING(SIZE(4))
SecurityParmIndex ::= OCTET STRING(SIZE(4))
SequenceNum ::= OCTET STRING(SIZE(4))
SequenceNum ::= OCTET STRING(SIZE(4))
AuthData ::= OCTET STRING (SIZE (12..32))
AuthData ::= OCTET STRING (SIZE (12..32))
Message ::= SEQUENCE { version INTEGER(0..99), -- The version of the protocol defined here is equal to 1. mId MId, -- Name/address of message originator messageBody CHOICE { messageError ErrorDescriptor,
Message ::= SEQUENCE { version INTEGER(0..99), -- The version of the protocol defined here is equal to 1. mId MId, -- Name/address of message originator messageBody CHOICE { messageError ErrorDescriptor,
transactions SEQUENCE OF Transaction }, ... }
事务},…}的事务序列
MId ::= CHOICE { ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2..4)), -- Addressing structure of mtpAddress: -- 25 - 15 0 -- | PC | NI | -- 24 - 14 bits 2 bits -- Note: 14 bits are defined for international use. -- Two national options exist where the point code is 16 or 24 -- bits. -- To octet align the mtpAddress, the MSBs shall be encoded as 0s. ... }
MId ::= CHOICE { ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2..4)), -- Addressing structure of mtpAddress: -- 25 - 15 0 -- | PC | NI | -- 24 - 14 bits 2 bits -- Note: 14 bits are defined for international use. -- Two national options exist where the point code is 16 or 24 -- bits. -- To octet align the mtpAddress, the MSBs shall be encoded as 0s. ... }
DomainName ::= SEQUENCE { name IA5String, -- The name starts with an alphanumeric digit followed by a -- sequence of alphanumeric digits, hyphens and dots. No two -- dots shall occur consecutively. portNumber INTEGER(0..65535) OPTIONAL }
DomainName ::= SEQUENCE { name IA5String, -- The name starts with an alphanumeric digit followed by a -- sequence of alphanumeric digits, hyphens and dots. No two -- dots shall occur consecutively. portNumber INTEGER(0..65535) OPTIONAL }
IP4Address ::= SEQUENCE { address OCTET STRING (SIZE(4)), portNumber INTEGER(0..65535) OPTIONAL }
IP4Address ::= SEQUENCE { address OCTET STRING (SIZE(4)), portNumber INTEGER(0..65535) OPTIONAL }
IP6Address ::= SEQUENCE { address OCTET STRING (SIZE(16)), portNumber INTEGER(0..65535) OPTIONAL }
IP6Address ::= SEQUENCE { address OCTET STRING (SIZE(16)), portNumber INTEGER(0..65535) OPTIONAL }
PathName ::= IA5String(SIZE (1..64)) -- See A.3
PathName ::= IA5String(SIZE (1..64)) -- See A.3
Transaction ::= CHOICE
Transaction ::= CHOICE
{ transactionRequest TransactionRequest, transactionPending TransactionPending, transactionReply TransactionReply, transactionResponseAck TransactionResponseAck, -- use of response acks is dependent on underlying transport ... }
{ transactionRequest TransactionRequest, transactionPending TransactionPending, transactionReply TransactionReply, transactionResponseAck TransactionResponseAck, -- use of response acks is dependent on underlying transport ... }
TransactionId ::= INTEGER(0..4294967295) -- 32-bit unsigned integer
TransactionId ::= INTEGER(0..4294967295) -- 32-bit unsigned integer
TransactionRequest ::= SEQUENCE { transactionId TransactionId, actions SEQUENCE OF ActionRequest, ... }
TransactionRequest ::= SEQUENCE { transactionId TransactionId, actions SEQUENCE OF ActionRequest, ... }
TransactionPending ::= SEQUENCE { transactionId TransactionId, ... }
TransactionPending ::= SEQUENCE { transactionId TransactionId, ... }
TransactionReply ::= SEQUENCE { transactionId TransactionId, immAckRequired NULL OPTIONAL, transactionResult CHOICE { transactionError ErrorDescriptor, actionReplies SEQUENCE OF ActionReply }, ... }
TransactionReply ::= SEQUENCE { transactionId TransactionId, immAckRequired NULL OPTIONAL, transactionResult CHOICE { transactionError ErrorDescriptor, actionReplies SEQUENCE OF ActionReply }, ... }
TransactionResponseAck ::= SEQUENCE OF TransactionAck TransactionAck ::= SEQUENCE { firstAck TransactionId, lastAck TransactionId OPTIONAL }
TransactionResponseAck ::= SEQUENCE OF TransactionAck TransactionAck ::= SEQUENCE { firstAck TransactionId, lastAck TransactionId OPTIONAL }
ErrorDescriptor ::= SEQUENCE { errorCode ErrorCode, errorText ErrorText OPTIONAL }
ErrorDescriptor ::= SEQUENCE { errorCode ErrorCode, errorText ErrorText OPTIONAL }
ErrorCode ::= INTEGER(0..65535) -- See clause 13 for IANA Considerations with respect to error codes
ErrorCode ::= INTEGER(0..65535) -- See clause 13 for IANA Considerations with respect to error codes
ErrorText ::= IA5String
ErrorText ::= IA5String
ContextID ::= INTEGER(0..4294967295)
ContextID ::= INTEGER(0..4294967295)
-- Context NULL Value: 0 -- Context CHOOSE Value: 4294967294 (0xFFFFFFFE) -- Context ALL Value: 4294967295 (0xFFFFFFFF)
-- Context NULL Value: 0 -- Context CHOOSE Value: 4294967294 (0xFFFFFFFE) -- Context ALL Value: 4294967295 (0xFFFFFFFF)
ActionRequest ::= SEQUENCE { contextId ContextID, contextRequest ContextRequest OPTIONAL, contextAttrAuditReq ContextAttrAuditRequest OPTIONAL, commandRequests SEQUENCE OF CommandRequest }
ActionRequest ::= SEQUENCE { contextId ContextID, contextRequest ContextRequest OPTIONAL, contextAttrAuditReq ContextAttrAuditRequest OPTIONAL, commandRequests SEQUENCE OF CommandRequest }
ActionReply ::= SEQUENCE { contextId ContextID, errorDescriptor ErrorDescriptor OPTIONAL, contextReply ContextRequest OPTIONAL, commandReply SEQUENCE OF CommandReply }
ActionReply ::= SEQUENCE { contextId ContextID, errorDescriptor ErrorDescriptor OPTIONAL, contextReply ContextRequest OPTIONAL, commandReply SEQUENCE OF CommandReply }
ContextRequest ::= SEQUENCE { priority INTEGER(0..15) OPTIONAL, emergency BOOLEAN OPTIONAL, topologyReq SEQUENCE OF TopologyRequest OPTIONAL, ... }
ContextRequest ::= SEQUENCE { priority INTEGER(0..15) OPTIONAL, emergency BOOLEAN OPTIONAL, topologyReq SEQUENCE OF TopologyRequest OPTIONAL, ... }
ContextAttrAuditRequest ::= SEQUENCE { topology NULL OPTIONAL, emergency NULL OPTIONAL, priority NULL OPTIONAL, ... }
ContextAttrAuditRequest ::= SEQUENCE { topology NULL OPTIONAL, emergency NULL OPTIONAL, priority NULL OPTIONAL, ... }
CommandRequest ::= SEQUENCE { command Command,
CommandRequest ::= SEQUENCE { command Command,
optional NULL OPTIONAL, wildcardReturn NULL OPTIONAL, ... }
可选空可选,通配符返回空可选,…}
Command ::= CHOICE { addReq AmmRequest, moveReq AmmRequest, modReq AmmRequest, -- Add, Move, Modify requests have the same parameters subtractReq SubtractRequest, auditCapRequest AuditRequest, auditValueRequest AuditRequest, notifyReq NotifyRequest, serviceChangeReq ServiceChangeRequest, ... }
Command ::= CHOICE { addReq AmmRequest, moveReq AmmRequest, modReq AmmRequest, -- Add, Move, Modify requests have the same parameters subtractReq SubtractRequest, auditCapRequest AuditRequest, auditValueRequest AuditRequest, notifyReq NotifyRequest, serviceChangeReq ServiceChangeRequest, ... }
CommandReply ::= CHOICE { addReply AmmsReply, moveReply AmmsReply, modReply AmmsReply, subtractReply AmmsReply, -- Add, Move, Modify, Subtract replies have the same parameters auditCapReply AuditReply, auditValueReply AuditReply, notifyReply NotifyReply, serviceChangeReply ServiceChangeReply, ... }
CommandReply ::= CHOICE { addReply AmmsReply, moveReply AmmsReply, modReply AmmsReply, subtractReply AmmsReply, -- Add, Move, Modify, Subtract replies have the same parameters auditCapReply AuditReply, auditValueReply AuditReply, notifyReply NotifyReply, serviceChangeReply ServiceChangeReply, ... }
TopologyRequest ::= SEQUENCE { terminationFrom TerminationID, terminationTo TerminationID, topologyDirection ENUMERATED { bothway(0), isolate(1), oneway(2) }, ... }
TopologyRequest ::= SEQUENCE { terminationFrom TerminationID, terminationTo TerminationID, topologyDirection ENUMERATED { bothway(0), isolate(1), oneway(2) }, ... }
AmmRequest ::= SEQUENCE {
AmmRequest ::= SEQUENCE {
terminationID TerminationIDList, descriptors SEQUENCE OF AmmDescriptor, -- At most one descriptor of each type (see AmmDescriptor) -- allowed in the sequence. ... }
terminationID TerminationIDList, descriptors SEQUENCE OF AmmDescriptor, -- At most one descriptor of each type (see AmmDescriptor) -- allowed in the sequence. ... }
AmmDescriptor ::= CHOICE { mediaDescriptor MediaDescriptor, modemDescriptor ModemDescriptor, muxDescriptor MuxDescriptor, eventsDescriptor EventsDescriptor, eventBufferDescriptor EventBufferDescriptor, signalsDescriptor SignalsDescriptor, digitMapDescriptor DigitMapDescriptor, auditDescriptor AuditDescriptor, ... }
AmmDescriptor ::= CHOICE { mediaDescriptor MediaDescriptor, modemDescriptor ModemDescriptor, muxDescriptor MuxDescriptor, eventsDescriptor EventsDescriptor, eventBufferDescriptor EventBufferDescriptor, signalsDescriptor SignalsDescriptor, digitMapDescriptor DigitMapDescriptor, auditDescriptor AuditDescriptor, ... }
AmmsReply ::= SEQUENCE { terminationID TerminationIDList, terminationAudit TerminationAudit OPTIONAL, ... }
AmmsReply ::= SEQUENCE { terminationID TerminationIDList, terminationAudit TerminationAudit OPTIONAL, ... }
SubtractRequest ::= SEQUENCE { terminationID TerminationIDList, auditDescriptor AuditDescriptor OPTIONAL, ... }
SubtractRequest ::= SEQUENCE { terminationID TerminationIDList, auditDescriptor AuditDescriptor OPTIONAL, ... }
AuditRequest ::= SEQUENCE { terminationID TerminationID, auditDescriptor AuditDescriptor, ... }
AuditRequest ::= SEQUENCE { terminationID TerminationID, auditDescriptor AuditDescriptor, ... }
AuditReply ::= CHOICE { contextAuditResult TerminationIDList, error ErrorDescriptor, auditResult AuditResult, ... }
AuditReply ::= CHOICE { contextAuditResult TerminationIDList, error ErrorDescriptor, auditResult AuditResult, ... }
AuditResult ::= SEQUENCE {
AuditResult ::= SEQUENCE {
terminationID TerminationID, terminationAuditResult TerminationAudit }
terminationID terminationID,terminationAuditResult TerminationAudit}
TerminationAudit ::= SEQUENCE OF AuditReturnParameter
TerminationAudit ::= SEQUENCE OF AuditReturnParameter
AuditReturnParameter ::= CHOICE { errorDescriptor ErrorDescriptor, mediaDescriptor MediaDescriptor, modemDescriptor ModemDescriptor, muxDescriptor MuxDescriptor, eventsDescriptor EventsDescriptor, eventBufferDescriptor EventBufferDescriptor, signalsDescriptor SignalsDescriptor, digitMapDescriptor DigitMapDescriptor, observedEventsDescriptor ObservedEventsDescriptor, statisticsDescriptor StatisticsDescriptor, packagesDescriptor PackagesDescriptor, emptyDescriptors AuditDescriptor, ... }
AuditReturnParameter ::= CHOICE { errorDescriptor ErrorDescriptor, mediaDescriptor MediaDescriptor, modemDescriptor ModemDescriptor, muxDescriptor MuxDescriptor, eventsDescriptor EventsDescriptor, eventBufferDescriptor EventBufferDescriptor, signalsDescriptor SignalsDescriptor, digitMapDescriptor DigitMapDescriptor, observedEventsDescriptor ObservedEventsDescriptor, statisticsDescriptor StatisticsDescriptor, packagesDescriptor PackagesDescriptor, emptyDescriptors AuditDescriptor, ... }
AuditDescriptor ::= SEQUENCE { auditToken BIT STRING { muxToken(0), modemToken(1), mediaToken(2), eventsToken(3), signalsToken(4), digitMapToken(5), statsToken(6), observedEventsToken(7), packagesToken(8), eventBufferToken(9) } OPTIONAL, ... }
AuditDescriptor ::= SEQUENCE { auditToken BIT STRING { muxToken(0), modemToken(1), mediaToken(2), eventsToken(3), signalsToken(4), digitMapToken(5), statsToken(6), observedEventsToken(7), packagesToken(8), eventBufferToken(9) } OPTIONAL, ... }
NotifyRequest ::= SEQUENCE { terminationID TerminationIDList, observedEventsDescriptor ObservedEventsDescriptor, errorDescriptor ErrorDescriptor OPTIONAL, ... }
NotifyRequest ::= SEQUENCE { terminationID TerminationIDList, observedEventsDescriptor ObservedEventsDescriptor, errorDescriptor ErrorDescriptor OPTIONAL, ... }
NotifyReply ::= SEQUENCE { terminationID TerminationIDList, errorDescriptor ErrorDescriptor OPTIONAL, ... }
NotifyReply ::= SEQUENCE { terminationID TerminationIDList, errorDescriptor ErrorDescriptor OPTIONAL, ... }
ObservedEventsDescriptor ::= SEQUENCE { requestId RequestID, observedEventLst SEQUENCE OF ObservedEvent }
ObservedEventsDescriptor ::= SEQUENCE { requestId RequestID, observedEventLst SEQUENCE OF ObservedEvent }
ObservedEvent ::= SEQUENCE { eventName EventName, streamID StreamID OPTIONAL, eventParList SEQUENCE OF EventParameter, timeNotation TimeNotation OPTIONAL, ... }
ObservedEvent ::= SEQUENCE { eventName EventName, streamID StreamID OPTIONAL, eventParList SEQUENCE OF EventParameter, timeNotation TimeNotation OPTIONAL, ... }
EventName ::= PkgdName
EventName ::= PkgdName
EventParameter ::= SEQUENCE { eventParameterName Name, value Value, -- For use of extraInfo see the comment related to PropertyParm extraInfo CHOICE { relation Relation, range BOOLEAN, sublist BOOLEAN } OPTIONAL, ... }
EventParameter ::= SEQUENCE { eventParameterName Name, value Value, -- For use of extraInfo see the comment related to PropertyParm extraInfo CHOICE { relation Relation, range BOOLEAN, sublist BOOLEAN } OPTIONAL, ... }
ServiceChangeRequest ::= SEQUENCE { terminationID TerminationIDList, serviceChangeParms ServiceChangeParm, ... }
ServiceChangeRequest ::= SEQUENCE { terminationID TerminationIDList, serviceChangeParms ServiceChangeParm, ... }
ServiceChangeReply ::= SEQUENCE { terminationID TerminationIDList,
ServiceChangeReply ::= SEQUENCE { terminationID TerminationIDList,
serviceChangeResult ServiceChangeResult, ... }
serviceChangeResult serviceChangeResult,…}
-- For ServiceChangeResult, no parameters are mandatory. Hence the -- distinction between ServiceChangeParm and ServiceChangeResParm.
-- For ServiceChangeResult, no parameters are mandatory. Hence the -- distinction between ServiceChangeParm and ServiceChangeResParm.
ServiceChangeResult ::= CHOICE { errorDescriptor ErrorDescriptor, serviceChangeResParms ServiceChangeResParm }
ServiceChangeResult ::= CHOICE { errorDescriptor ErrorDescriptor, serviceChangeResParms ServiceChangeResParm }
WildcardField ::= OCTET STRING(SIZE(1))
WildcardField ::= OCTET STRING(SIZE(1))
TerminationID ::= SEQUENCE { wildcard SEQUENCE OF WildcardField, id OCTET STRING(SIZE(1..8)), ... } -- See A.1 for explanation of wildcarding mechanism. -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.
TerminationID ::= SEQUENCE { wildcard SEQUENCE OF WildcardField, id OCTET STRING(SIZE(1..8)), ... } -- See A.1 for explanation of wildcarding mechanism. -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.
TerminationIDList ::= SEQUENCE OF TerminationID
TerminationIDList ::= SEQUENCE OF TerminationID
MediaDescriptor ::= SEQUENCE {
MediaDescriptor ::= SEQUENCE {
termStateDescr TerminationStateDescriptor OPTIONAL, streams CHOICE { oneStream StreamParms, multiStream SEQUENCE OF StreamDescriptor } OPTIONAL, ... }
termStateDescr TerminationStateDescriptor OPTIONAL, streams CHOICE { oneStream StreamParms, multiStream SEQUENCE OF StreamDescriptor } OPTIONAL, ... }
StreamDescriptor ::= SEQUENCE { streamID StreamID, streamParms StreamParms }
StreamDescriptor ::= SEQUENCE { streamID StreamID, streamParms StreamParms }
StreamParms ::= SEQUENCE { localControlDescriptor LocalControlDescriptor OPTIONAL, localDescriptor LocalRemoteDescriptor OPTIONAL,
StreamParms ::= SEQUENCE { localControlDescriptor LocalControlDescriptor OPTIONAL, localDescriptor LocalRemoteDescriptor OPTIONAL,
remoteDescriptor LocalRemoteDescriptor OPTIONAL, ... }
remoteDescriptor LocalRemoteDescriptor可选,…}
LocalControlDescriptor ::= SEQUENCE {
LocalControlDescriptor ::= SEQUENCE {
streamMode StreamMode OPTIONAL, reserveValue BOOLEAN OPTIONAL, reserveGroup BOOLEAN OPTIONAL, propertyParms SEQUENCE OF PropertyParm, ... }
streamMode streamMode OPTIONAL、reserveValue BOOLEAN OPTIONAL、reserveGroup BOOLEAN OPTIONAL、PropertyParts的PropertyParts序列,…}
StreamMode ::= ENUMERATED { sendOnly(0), recvOnly(1), sendRecv(2), inactive(3), loopBack(4), ... }
StreamMode ::= ENUMERATED { sendOnly(0), recvOnly(1), sendRecv(2), inactive(3), loopBack(4), ... }
-- In PropertyParm, value is a SEQUENCE OF octet string. When sent -- by an MGC the interpretation is as follows: -- empty sequence means CHOOSE -- one element sequence specifies value -- If the sublist field is not selected, a longer sequence means -- "choose one of the values" (i.e., value1 OR value2 OR ...) -- If the sublist field is selected, -- a sequence with more than one element encodes the value of a -- list-valued property (i.e., value1 AND value2 AND ...). -- The relation field may only be selected if the value sequence -- has length 1. It indicates that the MG has to choose a value -- for the property. E.g., x > 3 (using the greaterThan -- value for relation) instructs the MG to choose any value larger -- than 3 for property x. -- The range field may only be selected if the value sequence -- has length 2. It indicates that the MG has to choose a value -- in the range between the first octet in the value sequence and -- the trailing octet in the value sequence, including the -- boundary values. -- When sent by the MG, only responses to an AuditCapability request -- may contain multiple values, a range, or a relation field.
-- In PropertyParm, value is a SEQUENCE OF octet string. When sent -- by an MGC the interpretation is as follows: -- empty sequence means CHOOSE -- one element sequence specifies value -- If the sublist field is not selected, a longer sequence means -- "choose one of the values" (i.e., value1 OR value2 OR ...) -- If the sublist field is selected, -- a sequence with more than one element encodes the value of a -- list-valued property (i.e., value1 AND value2 AND ...). -- The relation field may only be selected if the value sequence -- has length 1. It indicates that the MG has to choose a value -- for the property. E.g., x > 3 (using the greaterThan -- value for relation) instructs the MG to choose any value larger -- than 3 for property x. -- The range field may only be selected if the value sequence -- has length 2. It indicates that the MG has to choose a value -- in the range between the first octet in the value sequence and -- the trailing octet in the value sequence, including the -- boundary values. -- When sent by the MG, only responses to an AuditCapability request -- may contain multiple values, a range, or a relation field.
PropertyParm ::= SEQUENCE {
PropertyParm ::= SEQUENCE {
name PkgdName, value SEQUENCE OF OCTET STRING, extraInfo CHOICE { relation Relation, range BOOLEAN, sublist BOOLEAN } OPTIONAL, ... }
name PkgdName, value SEQUENCE OF OCTET STRING, extraInfo CHOICE { relation Relation, range BOOLEAN, sublist BOOLEAN } OPTIONAL, ... }
Name ::= OCTET STRING(SIZE(2))
Name ::= OCTET STRING(SIZE(2))
PkgdName ::= OCTET STRING(SIZE(4)) -- represents Package Name (2 octets) plus Property, Event, -- Signal Names or Statistics ID. (2 octets) -- To wildcard a package use 0xFFFF for first two octets, choose -- is not allowed. To reference native property tag specified in -- Annex C, use 0x0000 as first two octets. -- To wildcard a Property, Event, Signal, or Statistics ID, use -- 0xFFFF for last two octets, choose is not allowed. -- Wildcarding of Package Name is permitted only if Property, -- Event, Signal, or Statistics ID are -- also wildcarded.
PkgdName ::= OCTET STRING(SIZE(4)) -- represents Package Name (2 octets) plus Property, Event, -- Signal Names or Statistics ID. (2 octets) -- To wildcard a package use 0xFFFF for first two octets, choose -- is not allowed. To reference native property tag specified in -- Annex C, use 0x0000 as first two octets. -- To wildcard a Property, Event, Signal, or Statistics ID, use -- 0xFFFF for last two octets, choose is not allowed. -- Wildcarding of Package Name is permitted only if Property, -- Event, Signal, or Statistics ID are -- also wildcarded.
Relation ::= ENUMERATED { greaterThan(0), smallerThan(1), unequalTo(2), ... }
Relation ::= ENUMERATED { greaterThan(0), smallerThan(1), unequalTo(2), ... }
LocalRemoteDescriptor ::= SEQUENCE { propGrps SEQUENCE OF PropertyGroup, ... }
LocalRemoteDescriptor ::= SEQUENCE { propGrps SEQUENCE OF PropertyGroup, ... }
PropertyGroup ::= SEQUENCE OF PropertyParm
PropertyGroup ::= SEQUENCE OF PropertyParm
TerminationStateDescriptor ::= SEQUENCE { propertyParms SEQUENCE OF PropertyParm, eventBufferControl EventBufferControl OPTIONAL, serviceState ServiceState OPTIONAL, ... }
TerminationStateDescriptor ::= SEQUENCE { propertyParms SEQUENCE OF PropertyParm, eventBufferControl EventBufferControl OPTIONAL, serviceState ServiceState OPTIONAL, ... }
EventBufferControl ::= ENUMERATED { off(0), lockStep(1), ... }
EventBufferControl ::= ENUMERATED { off(0), lockStep(1), ... }
ServiceState ::= ENUMERATED
ServiceState ::= ENUMERATED
{ test(0), outOfSvc(1), inSvc(2), ... }
{ test(0), outOfSvc(1), inSvc(2), ... }
MuxDescriptor ::= SEQUENCE { muxType MuxType, termList SEQUENCE OF TerminationID, nonStandardData NonStandardData OPTIONAL, ... }
MuxDescriptor ::= SEQUENCE { muxType MuxType, termList SEQUENCE OF TerminationID, nonStandardData NonStandardData OPTIONAL, ... }
MuxType ::= ENUMERATED { h221(0), h223(1), h226(2), v76(3), ... }
MuxType ::= ENUMERATED { h221(0), h223(1), h226(2), v76(3), ... }
StreamID ::= INTEGER(0..65535) -- 16-bit unsigned integer
StreamID ::= INTEGER(0..65535) -- 16-bit unsigned integer
EventsDescriptor ::= SEQUENCE { requestID RequestID OPTIONAL, -- RequestID must be present if eventList -- is non empty eventList SEQUENCE OF RequestedEvent, ... }
EventsDescriptor ::= SEQUENCE { requestID RequestID OPTIONAL, -- RequestID must be present if eventList -- is non empty eventList SEQUENCE OF RequestedEvent, ... }
RequestedEvent ::= SEQUENCE { pkgdName PkgdName,
RequestedEvent ::= SEQUENCE { pkgdName PkgdName,
streamID StreamID OPTIONAL, eventAction RequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter, ... }
streamID streamID可选,eventAction RequestedActions可选,evParList EventParameter序列,…}
RequestedActions ::= SEQUENCE { keepActive BOOLEAN OPTIONAL, eventDM EventDM OPTIONAL, secondEvent SecondEventsDescriptor OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
RequestedActions ::= SEQUENCE { keepActive BOOLEAN OPTIONAL, eventDM EventDM OPTIONAL, secondEvent SecondEventsDescriptor OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
EventDM ::= CHOICE { digitMapName DigitMapName, digitMapValue DigitMapValue }
EventDM ::= CHOICE { digitMapName DigitMapName, digitMapValue DigitMapValue }
SecondEventsDescriptor ::= SEQUENCE { requestID RequestID OPTIONAL, eventList SEQUENCE OF SecondRequestedEvent, ... }
SecondEventsDescriptor ::= SEQUENCE { requestID RequestID OPTIONAL, eventList SEQUENCE OF SecondRequestedEvent, ... }
SecondRequestedEvent ::= SEQUENCE { pkgdName PkgdName, streamID StreamID OPTIONAL, eventAction SecondRequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter, ... }
SecondRequestedEvent ::= SEQUENCE { pkgdName PkgdName, streamID StreamID OPTIONAL, eventAction SecondRequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter, ... }
SecondRequestedActions ::= SEQUENCE { keepActive BOOLEAN OPTIONAL, eventDM EventDM OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
SecondRequestedActions ::= SEQUENCE { keepActive BOOLEAN OPTIONAL, eventDM EventDM OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
EventBufferDescriptor ::= SEQUENCE OF EventSpec
EventBufferDescriptor ::= SEQUENCE OF EventSpec
EventSpec ::= SEQUENCE {
EventSpec ::= SEQUENCE {
eventName EventName, streamID StreamID OPTIONAL, eventParList SEQUENCE OF EventParameter, ... }
eventName eventName,streamID streamID可选,eventParList EventParameter序列,…}
SignalsDescriptor ::= SEQUENCE OF SignalRequest
SignalsDescriptor ::= SEQUENCE OF SignalRequest
SignalRequest ::=CHOICE { signal Signal, seqSigList SeqSigList, ... }
SignalRequest ::=CHOICE { signal Signal, seqSigList SeqSigList, ... }
SeqSigList ::= SEQUENCE { id INTEGER(0..65535), signalList SEQUENCE OF Signal }
SeqSigList ::= SEQUENCE { id INTEGER(0..65535), signalList SEQUENCE OF Signal }
Signal ::= SEQUENCE { signalName SignalName, streamID StreamID OPTIONAL, sigType SignalType OPTIONAL, duration INTEGER (0..65535) OPTIONAL, notifyCompletion NotifyCompletion OPTIONAL, keepActive BOOLEAN OPTIONAL, sigParList SEQUENCE OF SigParameter, ... }
Signal ::= SEQUENCE { signalName SignalName, streamID StreamID OPTIONAL, sigType SignalType OPTIONAL, duration INTEGER (0..65535) OPTIONAL, notifyCompletion NotifyCompletion OPTIONAL, keepActive BOOLEAN OPTIONAL, sigParList SEQUENCE OF SigParameter, ... }
SignalType ::= ENUMERATED { brief(0), onOff(1), timeOut(2), ... }
SignalType ::= ENUMERATED { brief(0), onOff(1), timeOut(2), ... }
SignalName ::= PkgdName
SignalName ::= PkgdName
NotifyCompletion ::= BIT STRING { onTimeOut(0), onInterruptByEvent(1), onInterruptByNewSignalDescr(2), otherReason(3) }
NotifyCompletion ::= BIT STRING { onTimeOut(0), onInterruptByEvent(1), onInterruptByNewSignalDescr(2), otherReason(3) }
SigParameter ::= SEQUENCE { sigParameterName Name, value Value, -- For use of extraInfo see the comment related to PropertyParm extraInfo CHOICE { relation Relation, range BOOLEAN, sublist BOOLEAN
SigParameter ::= SEQUENCE { sigParameterName Name, value Value, -- For use of extraInfo see the comment related to PropertyParm extraInfo CHOICE { relation Relation, range BOOLEAN, sublist BOOLEAN
} OPTIONAL, ... }
}可选,…}
-- For an AuditCapReply with all events, the RequestID SHALL be ALL. -- ALL is represented by 0xffffffff.
-- For an AuditCapReply with all events, the RequestID SHALL be ALL. -- ALL is represented by 0xffffffff.
RequestID ::= INTEGER(0..4294967295) -- 32-bit unsigned integer
RequestID ::= INTEGER(0..4294967295) -- 32-bit unsigned integer
ModemDescriptor ::= SEQUENCE { mtl SEQUENCE OF ModemType, mpl SEQUENCE OF PropertyParm, nonStandardData NonStandardData OPTIONAL }
ModemDescriptor ::= SEQUENCE { mtl SEQUENCE OF ModemType, mpl SEQUENCE OF PropertyParm, nonStandardData NonStandardData OPTIONAL }
ModemType ::= ENUMERATED { v18(0), v22(1), v22bis(2), v32(3), v32bis(4), v34(5), v90(6), v91(7), synchISDN(8), ... }
ModemType ::= ENUMERATED { v18(0), v22(1), v22bis(2), v32(3), v32bis(4), v34(5), v90(6), v91(7), synchISDN(8), ... }
DigitMapDescriptor ::= SEQUENCE { digitMapName DigitMapName OPTIONAL, digitMapValue DigitMapValue OPTIONAL }
DigitMapDescriptor ::= SEQUENCE { digitMapName DigitMapName OPTIONAL, digitMapValue DigitMapValue OPTIONAL }
DigitMapName ::= Name
DigitMapName ::= Name
DigitMapValue ::= SEQUENCE { startTimer INTEGER(0..99) OPTIONAL, shortTimer INTEGER(0..99) OPTIONAL, longTimer INTEGER(0..99) OPTIONAL, digitMapBody IA5String, -- Units are seconds for start, short and long timers, and -- hundreds of milliseconds for duration timer. Thus start, -- short, and long range from 1 to 99 seconds and duration -- from 100 ms to 9.9 s -- See A.3 for explanation of digit map syntax ... }
DigitMapValue ::= SEQUENCE { startTimer INTEGER(0..99) OPTIONAL, shortTimer INTEGER(0..99) OPTIONAL, longTimer INTEGER(0..99) OPTIONAL, digitMapBody IA5String, -- Units are seconds for start, short and long timers, and -- hundreds of milliseconds for duration timer. Thus start, -- short, and long range from 1 to 99 seconds and duration -- from 100 ms to 9.9 s -- See A.3 for explanation of digit map syntax ... }
ServiceChangeParm ::= SEQUENCE { serviceChangeMethod ServiceChangeMethod, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL, serviceChangeReason Value, -- A serviceChangeReason consists of a numeric reason code -- and an optional text description. -- The serviceChangeReason SHALL be a string consisting of -- a decimal reason code, optionally followed by a single -- space character and a textual description string. -- This string is first BER-encoded as an IA5String. -- The result of this BER-encoding is then encoded as -- an ASN.1 OCTET STRING type, "double wrapping" the -- value as was done for package elements. serviceChangeDelay INTEGER(0..4294967295) OPTIONAL, -- 32-bit unsigned integer serviceChangeMgcId MId OPTIONAL, timeStamp TimeNotation OPTIONAL, nonStandardData NonStandardData OPTIONAL, ... }
ServiceChangeParm ::= SEQUENCE { serviceChangeMethod ServiceChangeMethod, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL, serviceChangeReason Value, -- A serviceChangeReason consists of a numeric reason code -- and an optional text description. -- The serviceChangeReason SHALL be a string consisting of -- a decimal reason code, optionally followed by a single -- space character and a textual description string. -- This string is first BER-encoded as an IA5String. -- The result of this BER-encoding is then encoded as -- an ASN.1 OCTET STRING type, "double wrapping" the -- value as was done for package elements. serviceChangeDelay INTEGER(0..4294967295) OPTIONAL, -- 32-bit unsigned integer serviceChangeMgcId MId OPTIONAL, timeStamp TimeNotation OPTIONAL, nonStandardData NonStandardData OPTIONAL, ... }
ServiceChangeAddress ::= CHOICE { portNumber INTEGER(0..65535), -- TCP/UDP port number ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2..4)),
ServiceChangeAddress ::= CHOICE { portNumber INTEGER(0..65535), -- TCP/UDP port number ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2..4)),
... }
... }
ServiceChangeResParm ::= SEQUENCE { serviceChangeMgcId MId OPTIONAL, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL, timestamp TimeNotation OPTIONAL, ... }
ServiceChangeResParm ::= SEQUENCE { serviceChangeMgcId MId OPTIONAL, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL, timestamp TimeNotation OPTIONAL, ... }
ServiceChangeMethod ::= ENUMERATED
ServiceChangeMethod ::= ENUMERATED
{ failover(0), forced(1), graceful(2), restart(3), disconnected(4), handOff(5), ... }
{ failover(0), forced(1), graceful(2), restart(3), disconnected(4), handOff(5), ... }
ServiceChangeProfile ::= SEQUENCE { profileName IA5String(SIZE (1..67)) -- 64 characters for name, 1 for "/", 2 for version to match ABNF }
ServiceChangeProfile ::= SEQUENCE { profileName IA5String(SIZE (1..67)) -- 64 characters for name, 1 for "/", 2 for version to match ABNF }
PackagesDescriptor ::= SEQUENCE OF PackagesItem
PackagesDescriptor ::= SEQUENCE OF PackagesItem
PackagesItem ::= SEQUENCE { packageName Name, packageVersion INTEGER(0..99), ... }
PackagesItem ::= SEQUENCE { packageName Name, packageVersion INTEGER(0..99), ... }
StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter
StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter
StatisticsParameter ::= SEQUENCE { statName PkgdName, statValue Value OPTIONAL }
StatisticsParameter ::= SEQUENCE { statName PkgdName, statValue Value OPTIONAL }
NonStandardData ::= SEQUENCE { nonStandardIdentifier NonStandardIdentifier, data OCTET STRING }
NonStandardData ::= SEQUENCE { nonStandardIdentifier NonStandardIdentifier, data OCTET STRING }
NonStandardIdentifier ::= CHOICE { object OBJECT IDENTIFIER, h221NonStandard H221NonStandard, experimental IA5String(SIZE(8)), -- first two characters should be "X-" or "X+" ... }
NonStandardIdentifier ::= CHOICE { object OBJECT IDENTIFIER, h221NonStandard H221NonStandard, experimental IA5String(SIZE(8)), -- first two characters should be "X-" or "X+" ... }
H221NonStandard ::= SEQUENCE { t35CountryCode1 INTEGER(0..255), t35CountryCode2 INTEGER(0..255), -- country, as per T.35 t35Extension INTEGER(0..255), -- assigned nationally manufacturerCode INTEGER(0..65535), -- assigned nationally ... }
H221NonStandard ::= SEQUENCE { t35CountryCode1 INTEGER(0..255), t35CountryCode2 INTEGER(0..255), -- country, as per T.35 t35Extension INTEGER(0..255), -- assigned nationally manufacturerCode INTEGER(0..65535), -- assigned nationally ... }
TimeNotation ::= SEQUENCE { date IA5String(SIZE(8)), -- yyyymmdd format time IA5String(SIZE(8)) -- hhmmssss format -- per ISO 8601:1988 }
TimeNotation ::= SEQUENCE { date IA5String(SIZE(8)), -- yyyymmdd format time IA5String(SIZE(8)) -- hhmmssss format -- per ISO 8601:1988 }
Value ::= SEQUENCE OF OCTET STRING
Value ::= SEQUENCE OF OCTET STRING
END
终止
From a syntactic viewpoint, digit maps are strings with syntactic restrictions imposed upon them. The syntax of valid digit maps is specified in ABNF [RFC 2234]. The syntax for digit maps presented in this subclause is for illustrative purposes only. The definition of digitMap in Annex B takes precedence in the case of differences between the two.
从语法的角度来看,数字映射是带有语法限制的字符串。ABNF[RFC 2234]中规定了有效数字映射的语法。本款中数字映射的语法仅用于说明目的。如果两者之间存在差异,则以附录B中的数字地图定义为准。
digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)
digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)
digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP)) digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter) digitMapLetter = DIGIT ;digits 0-9 / %x41-4B / %x61-6B ;a-k and A-K / "L"/ "S" ;Inter-event timers ;(long, short) / "Z" ;Long duration event DOT = %x2E ; "." LWSP = *(WSP / COMMENT / EOL) WSP = SP / HTAB COMMENT = ";" *(SafeChar / RestChar / WSP) EOL EOL = (CR [LF]) / LF SP = %x20 HTAB = %x09 CR = %x0D LF = %x0A SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "." RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "=" / %x22 DIGIT = %x30-39 ; digits 0 through 9 ALPHA = %x41-5A / %x61-7A; A-Z, a-z
digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP)) digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter) digitMapLetter = DIGIT ;digits 0-9 / %x41-4B / %x61-6B ;a-k and A-K / "L"/ "S" ;Inter-event timers ;(long, short) / "Z" ;Long duration event DOT = %x2E ; "." LWSP = *(WSP / COMMENT / EOL) WSP = SP / HTAB COMMENT = ";" *(SafeChar / RestChar / WSP) EOL EOL = (CR [LF]) / LF SP = %x20 HTAB = %x09 CR = %x0D LF = %x0A SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "." RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "=" / %x22 DIGIT = %x30-39 ; digits 0 through 9 ALPHA = %x41-5A / %x61-7A; A-Z, a-z
A path name is also a string with syntactic restrictions imposed upon it. The ABNF production defining it is copied from Annex B.
路径名也是一个带有语法限制的字符串。ABNF产品定义见附录B。
; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]
; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]
; ABNF allows two or more consecutive "." although it is ; meaningless in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" NAME = ALPHA *63(ALPHA / DIGIT / "_" )
; ABNF allows two or more consecutive "." although it is ; meaningless in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" NAME = ALPHA *63(ALPHA / DIGIT / "_" )
ANNEX B - Text encoding of the protocol
附件B——议定书的文本编码
In a text encoding of the protocol, while TerminationIDs are arbitrary, by judicious choice of names, the wildcard character, "*" may be made more useful. When the wildcard character is encountered, it will "match" all TerminationIDs having the same previous and following characters (if appropriate). For example, if there were TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID R13/3/* would match all of them. There are some circumstances where ALL Terminations must be referred to. The TerminationID "*" suffices, and is referred to as ALL. The CHOOSE TerminationID "$" may be used to signal to the MG that it has to create an ephemeral Termination or select an idle physical Termination.
In a text encoding of the protocol, while TerminationIDs are arbitrary, by judicious choice of names, the wildcard character, "*" may be made more useful. When the wildcard character is encountered, it will "match" all TerminationIDs having the same previous and following characters (if appropriate). For example, if there were TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID R13/3/* would match all of them. There are some circumstances where ALL Terminations must be referred to. The TerminationID "*" suffices, and is referred to as ALL. The CHOOSE TerminationID "$" may be used to signal to the MG that it has to create an ephemeral Termination or select an idle physical Termination.
The protocol syntax is presented in ABNF according to RFC 2234.
协议语法根据RFC 2234在ABNF中给出。
Note 1 - This syntax specification does not enforce all restrictions on element inclusions and values. Some additional restrictions are stated in comments and other restrictions appear in the text of this RFC. These additional restrictions are part of the protocol even though not enforced by this specification.
注1-本语法规范并未对元素包含项和值实施所有限制。注释中说明了一些附加限制,本RFC文本中也出现了其他限制。这些附加限制是协议的一部分,即使本规范未强制执行。
Note 2 - The syntax is context-dependent. For example, "Add" can be the AddToken or a NAME depending on the context in which it occurs.
注2-语法取决于上下文。例如,“Add”可以是AddToken或名称,具体取决于它出现的上下文。
Everything in the ABNF and text encoding is case insensitive. This includes TerminationIDs, digitmap Ids etc. SDP is case sensitive as per RFC 2327.
ABNF和文本编码中的所有内容都不区分大小写。这包括TerminationID、digitmap ID等。根据RFC 2327,SDP区分大小写。
; NOTE -- The ABNF in this section uses the VALUE construct (or lists ; of VALUE constructs) to encode various package element values ; (properties, signal parameters, etc.). The types of these values ; vary and are specified the relevant package definition. Several ; such types are described in section 12.2. ; ; The ABNF specification for VALUE allows a quotedString form or a ; collection of SafeChars. The encoding of package element values ; into ABNF VALUES is specified below. If a type's encoding allows ; characters other than SafeChars, the quotedString form MUST be used ; for all values of that type, even for specific values that consist ; only of SafeChars. ;
; NOTE -- The ABNF in this section uses the VALUE construct (or lists ; of VALUE constructs) to encode various package element values ; (properties, signal parameters, etc.). The types of these values ; vary and are specified the relevant package definition. Several ; such types are described in section 12.2. ; ; The ABNF specification for VALUE allows a quotedString form or a ; collection of SafeChars. The encoding of package element values ; into ABNF VALUES is specified below. If a type's encoding allows ; characters other than SafeChars, the quotedString form MUST be used ; for all values of that type, even for specific values that consist ; only of SafeChars. ;
; String: A string MUST use the quotedString form of VALUE and can ; contain anything allowable in the quotedString form. ; ; Integer, Double, and Unsigned Integer: Decimal values can be ; encoded using characters 0-9. Hexadecimal values must be prefixed ; with '0x' and can use characters 0-9,a-f,A-F. An octal format is ; not supported. Negative integers start with '-' and MUST be ; Decimal. The SafeChar form of VALUE MUST be used. ; ; Character: A UTF-8 encoding of a single letter surrounded by ; double quotes. ; ; Enumeration: An enumeration MUST use the SafeChar form of VALUE ; and can contain anything allowable in the SafeChar form. ; ; Boolean: Boolean values are encoded as "on" and "off" and are ; case insensitive. The SafeChar form of VALUE MUST be used. ; ; Future types: Any defined types MUST fit within ; the ABNF specification of VALUE. Specifically, if a type's ; encoding allows characters other than SafeChars, the quotedString ; form MUST be used for all values of that type, even for specific ; values that consist only of SafeChars. ; ; Note that there is no way to use the double quote character within ; a value. ; ; Note that SDP disallows whitespace at the beginning of a line, ; Megaco ABNF allows whitespace before the beginning of the SDP in ; the Local/Remote descriptor. Parsers should accept whitespace ; between the LBRKT following the Local/Remote token and the ; beginning of the SDP.
; String: A string MUST use the quotedString form of VALUE and can ; contain anything allowable in the quotedString form. ; ; Integer, Double, and Unsigned Integer: Decimal values can be ; encoded using characters 0-9. Hexadecimal values must be prefixed ; with '0x' and can use characters 0-9,a-f,A-F. An octal format is ; not supported. Negative integers start with '-' and MUST be ; Decimal. The SafeChar form of VALUE MUST be used. ; ; Character: A UTF-8 encoding of a single letter surrounded by ; double quotes. ; ; Enumeration: An enumeration MUST use the SafeChar form of VALUE ; and can contain anything allowable in the SafeChar form. ; ; Boolean: Boolean values are encoded as "on" and "off" and are ; case insensitive. The SafeChar form of VALUE MUST be used. ; ; Future types: Any defined types MUST fit within ; the ABNF specification of VALUE. Specifically, if a type's ; encoding allows characters other than SafeChars, the quotedString ; form MUST be used for all values of that type, even for specific ; values that consist only of SafeChars. ; ; Note that there is no way to use the double quote character within ; a value. ; ; Note that SDP disallows whitespace at the beginning of a line, ; Megaco ABNF allows whitespace before the beginning of the SDP in ; the Local/Remote descriptor. Parsers should accept whitespace ; between the LBRKT following the Local/Remote token and the ; beginning of the SDP.
megacoMessage = LWSP [authenticationHeader SEP ] message
MegaComMessage=LWSP[authenticationHeader SEP]消息
authenticationHeader = AuthToken EQUAL SecurityParmIndex COLON SequenceNum COLON AuthData
authenticationHeader=AuthToken EQUAL SecurityParamIndex COLON SequenceNum COLON AuthData
SecurityParmIndex = "0x" 8(HEXDIG) SequenceNum = "0x" 8(HEXDIG) AuthData = "0x" 24*64(HEXDIG)
SecurityParmIndex = "0x" 8(HEXDIG) SequenceNum = "0x" 8(HEXDIG) AuthData = "0x" 24*64(HEXDIG)
message = MegacopToken SLASH Version SEP mId SEP messageBody ; The version of the protocol defined here is equal to 1.
message=MegacopToken斜杠版本SEP mId SEP messageBody;此处定义的协议版本等于1。
messageBody = ( errorDescriptor / transactionList )
messageBody = ( errorDescriptor / transactionList )
transactionList = 1*( transactionRequest / transactionReply / transactionPending / transactionResponseAck ) ;Use of response acks is dependent on underlying transport
transactionList = 1*( transactionRequest / transactionReply / transactionPending / transactionResponseAck ) ;Use of response acks is dependent on underlying transport
transactionPending = PendingToken EQUAL TransactionID LBRKT RBRKT
transactionPending=PendingToken等于TransactionID LBRKT RBRKT
transactionResponseAck = ResponseAckToken LBRKT transactionAck *(COMMA transactionAck) RBRKT transactionAck = transactionID / (transactionID "-" transactionID)
transactionResponseAck=ResponseAckToken LBRKT transactionAck*(逗号transactionAck)RBRKT transactionAck=transactionID/(transactionID“-”transactionID)
transactionRequest = TransToken EQUAL TransactionID LBRKT actionRequest *(COMMA actionRequest) RBRKT
transactionRequest=TransToken EQUAL TransactionID LBRKT actionRequest*(逗号actionRequest)RBRKT
actionRequest = CtxToken EQUAL ContextID LBRKT (( contextRequest [COMMA commandRequestList]) / commandRequestList) RBRKT
actionRequest=CtxToken EQUAL ContextID LBRKT((contextRequest[COMMA commandRequestList])/commandRequestList)RBRKT
contextRequest = ((contextProperties [COMMA contextAudit]) / contextAudit)
contextRequest = ((contextProperties [COMMA contextAudit]) / contextAudit)
contextProperties = contextProperty *(COMMA contextProperty)
contextProperties=contextProperty*(逗号contextProperty)
; at-most-once contextProperty = (topologyDescriptor / priority / EmergencyToken)
; at-most-once contextProperty = (topologyDescriptor / priority / EmergencyToken)
contextAudit = ContextAuditToken LBRKT contextAuditProperties *(COMMA contextAuditProperties) RBRKT
contextAudit=ContextAuditToken LBRKT contextAuditProperties*(逗号contextAuditProperties)RBRKT
; at-most-once contextAuditProperties = ( TopologyToken / EmergencyToken / PriorityToken )
; at-most-once contextAuditProperties = ( TopologyToken / EmergencyToken / PriorityToken )
; "O-" indicates an optional command ; "W-" indicates a wildcarded response to a command commandRequestList = ["O-"] ["W-"] commandRequest *(COMMA ["O-"] ["W-"]commandRequest)
; "O-" indicates an optional command ; "W-" indicates a wildcarded response to a command commandRequestList = ["O-"] ["W-"] commandRequest *(COMMA ["O-"] ["W-"]commandRequest)
commandRequest = ( ammRequest / subtractRequest / auditRequest / notifyRequest / serviceChangeRequest)
commandRequest = ( ammRequest / subtractRequest / auditRequest / notifyRequest / serviceChangeRequest)
transactionReply = ReplyToken EQUAL TransactionID LBRKT [ ImmAckRequiredToken COMMA] ( errorDescriptor / actionReplyList ) RBRKT
transactionReply=ReplyToken EQUAL TransactionID LBRKT[ImmAckRequiredToken逗号](errorDescriptor/actionReplyList)RBRKT
actionReplyList = actionReply *(COMMA actionReply )
actionReplyList=actionReply*(逗号actionReply)
actionReply = CtxToken EQUAL ContextID LBRKT ( errorDescriptor / commandReply ) / (commandReply COMMA errorDescriptor) ) RBRKT
actionReply=CtxToken EQUAL ContextID LBRKT(errorDescriptor/commandReply)/(commandReply逗号errorDescriptor))RBRKT
commandReply = (( contextProperties [COMMA commandReplyList] ) / commandReplyList )
commandReply = (( contextProperties [COMMA commandReplyList] ) / commandReplyList )
commandReplyList = commandReplys *(COMMA commandReplys )
commandReplyList=commandReplys*(逗号commandReplys)
commandReplys = (serviceChangeReply / auditReply / ammsReply / notifyReply )
commandReplys = (serviceChangeReply / auditReply / ammsReply / notifyReply )
;Add Move and Modify have the same request parameters ammRequest = (AddToken / MoveToken / ModifyToken ) EQUAL TerminationID [LBRKT ammParameter *(COMMA ammParameter) RBRKT]
;Add Move and Modify have the same request parameters ammRequest = (AddToken / MoveToken / ModifyToken ) EQUAL TerminationID [LBRKT ammParameter *(COMMA ammParameter) RBRKT]
;at-most-once ammParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / eventBufferDescriptor / auditDescriptor)
;at-most-once ammParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / eventBufferDescriptor / auditDescriptor)
ammsReply = (AddToken / MoveToken / ModifyToken / SubtractToken ) EQUAL TerminationID [ LBRKT terminationAudit RBRKT ]
ammsReply = (AddToken / MoveToken / ModifyToken / SubtractToken ) EQUAL TerminationID [ LBRKT terminationAudit RBRKT ]
subtractRequest = SubtractToken EQUAL TerminationID [ LBRKT auditDescriptor RBRKT]
subtractRequest=SubtractToken相等终止ID[LBRKT审核描述符RBRKT]
auditRequest = (AuditValueToken / AuditCapToken ) EQUAL TerminationID LBRKT auditDescriptor RBRKT
auditRequest = (AuditValueToken / AuditCapToken ) EQUAL TerminationID LBRKT auditDescriptor RBRKT
auditReply = (AuditValueToken / AuditCapToken ) ( contextTerminationAudit / auditOther)
auditReply = (AuditValueToken / AuditCapToken ) ( contextTerminationAudit / auditOther)
auditOther = EQUAL TerminationID [LBRKT terminationAudit RBRKT]
auditOther=相等终止ID[LBRKT terminationAudit RBRKT]
terminationAudit = auditReturnParameter *(COMMA auditReturnParameter)
terminationAudit=auditReturnParameter*(逗号auditReturnParameter)
contextTerminationAudit = EQUAL CtxToken ( terminationIDList / LBRKT errorDescriptor RBRKT )
contextTerminationAudit=EQUAL CtxToken(terminationIDList/LBRKT errorDescriptor RBRKT)
auditReturnParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor /
auditReturnParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor /
observedEventsDescriptor / eventBufferDescriptor / statisticsDescriptor / packagesDescriptor / errorDescriptor / auditItem)
observedEventsDescriptor / eventBufferDescriptor / statisticsDescriptor / packagesDescriptor / errorDescriptor / auditItem)
auditDescriptor = AuditToken LBRKT [ auditItem *(COMMA auditItem) ] RBRKT
auditDescriptor=AuditToken LBRKT[auditItem*(逗号auditItem)]RBRKT
notifyRequest = NotifyToken EQUAL TerminationID LBRKT ( observedEventsDescriptor [ COMMA errorDescriptor ] ) RBRKT
notifyRequest=NotifyToken EQUAL TerminationID LBRKT(observedEventsDescriptor[逗号错误描述符])RBRKT
notifyReply = NotifyToken EQUAL TerminationID [ LBRKT errorDescriptor RBRKT ]
notifyReply=NotifyToken相等终止ID[LBRKT errorDescriptor RBRKT]
serviceChangeRequest = ServiceChangeToken EQUAL TerminationID LBRKT serviceChangeDescriptor RBRKT
serviceChangeRequest=ServiceChangeToken相等终止ID LBRKT serviceChangeDescriptor RBRKT
serviceChangeReply = ServiceChangeToken EQUAL TerminationID [LBRKT (errorDescriptor / serviceChangeReplyDescriptor) RBRKT]
serviceChangeReply=ServiceChangeToken相等终止ID[LBRKT(errorDescriptor/serviceChangeReplyDescriptor)RBRKT]
errorDescriptor = ErrorToken EQUAL ErrorCode LBRKT [quotedString] RBRKT
errorDescriptor=ErrorToken等于错误代码LBRKT[quotedString]RBRKT
ErrorCode = 1*4(DIGIT) ; could be extended
ErrorCode = 1*4(DIGIT) ; could be extended
TransactionID = UINT32
TransactionID = UINT32
mId = (( domainAddress / domainName ) [":" portNumber]) / mtpAddress / deviceName
mId = (( domainAddress / domainName ) [":" portNumber]) / mtpAddress / deviceName
; ABNF allows two or more consecutive "." although it is meaningless ; in a domain name. domainName = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" / ".") ">" deviceName = pathNAME
; ABNF allows two or more consecutive "." although it is meaningless ; in a domain name. domainName = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" / ".") ">" deviceName = pathNAME
;The values 0x0, 0xFFFFFFFE and 0xFFFFFFFF are reserved. ContextID = (UINT32 / "*" / "-" / "$")
;The values 0x0, 0xFFFFFFFE and 0xFFFFFFFF are reserved. ContextID = (UINT32 / "*" / "-" / "$")
domainAddress = "[" (IPv4address / IPv6address) "]" ;RFC2373 contains the definition of IP6Addresses. IPv6address = hexpart [ ":" IPv4address ] IPv4address = V4hex DOT V4hex DOT V4hex DOT V4hex V4hex = 1*3(DIGIT) ; "0".."255" ; this production, while occurring in RFC2373, is not referenced ; IPv6prefix = hexpart SLASH 1*2DIGIT hexpart = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq
domainAddress = "[" (IPv4address / IPv6address) "]" ;RFC2373 contains the definition of IP6Addresses. IPv6address = hexpart [ ":" IPv4address ] IPv4address = V4hex DOT V4hex DOT V4hex DOT V4hex V4hex = 1*3(DIGIT) ; "0".."255" ; this production, while occurring in RFC2373, is not referenced ; IPv6prefix = hexpart SLASH 1*2DIGIT hexpart = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq
hexseq = hex4 *( ":" hex4) hex4 = 1*4HEXDIG
hexseq = hex4 *( ":" hex4) hex4 = 1*4HEXDIG
portNumber = UINT16
portNumber = UINT16
; Addressing structure of mtpAddress: ; 25 - 15 0 ; | PC | NI | ; 24 - 14 bits 2 bits ; Note: 14 bits are defined for international use. ; Two national options exist where the point code is 16 or 24 bits. ; To octet align the mtpAddress the MSBs shall be encoded as 0s. ; An octet shall be represented by 2 hex digits. mtpAddress = MTPToken LBRKT 4*8 (HEXDIG) RBRKT
; Addressing structure of mtpAddress: ; 25 - 15 0 ; | PC | NI | ; 24 - 14 bits 2 bits ; Note: 14 bits are defined for international use. ; Two national options exist where the point code is 16 or 24 bits. ; To octet align the mtpAddress the MSBs shall be encoded as 0s. ; An octet shall be represented by 2 hex digits. mtpAddress = MTPToken LBRKT 4*8 (HEXDIG) RBRKT
terminationIDList = LBRKT TerminationID *(COMMA TerminationID) RBRKT
terminationIDList=LBRKT TerminationID*(逗号TerminationID)RBRKT
; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]
; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]
; ABNF allows two or more consecutive "." although it is meaningless ; in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" / "*" / ".")
; ABNF allows two or more consecutive "." although it is meaningless ; in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" / "*" / ".")
TerminationID = "ROOT" / pathNAME / "$" / "*"
TerminationID = "ROOT" / pathNAME / "$" / "*"
mediaDescriptor = MediaToken LBRKT mediaParm *(COMMA mediaParm) RBRKT
mediaDescriptor=MediaToken LBRKT mediaParm*(逗号mediaParm)RBRKT
; at-most one terminationStateDescriptor ; and either streamParm(s) or streamDescriptor(s) but not both mediaParm = (streamParm / streamDescriptor / terminationStateDescriptor)
; at-most one terminationStateDescriptor ; and either streamParm(s) or streamDescriptor(s) but not both mediaParm = (streamParm / streamDescriptor / terminationStateDescriptor)
; at-most-once per item streamParm = ( localDescriptor / remoteDescriptor / localControlDescriptor )
; at-most-once per item streamParm = ( localDescriptor / remoteDescriptor / localControlDescriptor )
streamDescriptor = StreamToken EQUAL StreamID LBRKT streamParm *(COMMA streamParm) RBRKT
streamDescriptor=StreamToken相等StreamID LBRKT streamParm*(逗号streamParm)RBRKT
localControlDescriptor = LocalControlToken LBRKT localParm *(COMMA localParm) RBRKT
localControlDescriptor=LocalControlToken LBRKT localParm*(逗号localParm)RBRKT
; at-most-once per item except for propertyParm localParm = ( streamMode / propertyParm / reservedValueMode / reservedGroupMode )
; at-most-once per item except for propertyParm localParm = ( streamMode / propertyParm / reservedValueMode / reservedGroupMode )
reservedValueMode = ReservedValueToken EQUAL ( "ON" / "OFF" ) reservedGroupMode = ReservedGroupToken EQUAL ( "ON" / "OFF" )
reservedValueMode = ReservedValueToken EQUAL ( "ON" / "OFF" ) reservedGroupMode = ReservedGroupToken EQUAL ( "ON" / "OFF" )
streamMode = ModeToken EQUAL streamModes
streamMode = ModeToken EQUAL streamModes
streamModes = (SendonlyToken / RecvonlyToken / SendrecvToken / InactiveToken / LoopbackToken )
streamModes = (SendonlyToken / RecvonlyToken / SendrecvToken / InactiveToken / LoopbackToken )
propertyParm = pkgdName parmValue parmValue = (EQUAL alternativeValue/ INEQUAL VALUE) alternativeValue = ( VALUE / LSBRKT VALUE *(COMMA VALUE) RSBRKT ; sublist (i.e., A AND B AND ...) / LBRKT VALUE *(COMMA VALUE) RBRKT ; alternatives (i.e., A OR B OR ...) / LSBRKT VALUE COLON VALUE RSBRKT ) ; range
propertyParm = pkgdName parmValue parmValue = (EQUAL alternativeValue/ INEQUAL VALUE) alternativeValue = ( VALUE / LSBRKT VALUE *(COMMA VALUE) RSBRKT ; sublist (i.e., A AND B AND ...) / LBRKT VALUE *(COMMA VALUE) RBRKT ; alternatives (i.e., A OR B OR ...) / LSBRKT VALUE COLON VALUE RSBRKT ) ; range
INEQUAL = LWSP (">" / "<" / "#" ) LWSP LSBRKT = LWSP "[" LWSP RSBRKT = LWSP "]" LWSP
INEQUAL = LWSP (">" / "<" / "#" ) LWSP LSBRKT = LWSP "[" LWSP RSBRKT = LWSP "]" LWSP
; Note - The octet zero is not among the permitted characters in ; octet string. As the current definition is limited to SDP, and a ; zero octet would not be a legal character in SDP, this is not a ; concern.
; Note - The octet zero is not among the permitted characters in ; octet string. As the current definition is limited to SDP, and a ; zero octet would not be a legal character in SDP, this is not a ; concern.
localDescriptor = LocalToken LBRKT octetString RBRKT
localDescriptor = LocalToken LBRKT octetString RBRKT
remoteDescriptor = RemoteToken LBRKT octetString RBRKT
remoteDescriptor = RemoteToken LBRKT octetString RBRKT
eventBufferDescriptor= EventBufferToken [ LBRKT eventSpec *( COMMA eventSpec) RBRKT ]
eventBufferDescriptor=EventBufferToken[LBRKT eventSpec*(逗号eventSpec)RBRKT]
eventSpec = pkgdName [ LBRKT eventSpecParameter *(COMMA eventSpecParameter) RBRKT ] eventSpecParameter = (eventStream / eventOther)
eventSpec = pkgdName [ LBRKT eventSpecParameter *(COMMA eventSpecParameter) RBRKT ] eventSpecParameter = (eventStream / eventOther)
eventBufferControl = BufferToken EQUAL ( "OFF" / LockStepToken )
eventBufferControl=BufferToken相等(“关闭”/LockStepToken)
terminationStateDescriptor = TerminationStateToken LBRKT terminationStateParm *( COMMA terminationStateParm ) RBRKT
terminationStateDescriptor=TerminationStateToken LBRKT terminationStateParm*(逗号terminationStateParm)RBRKT
; at-most-once per item except for propertyParm terminationStateParm = (propertyParm / serviceStates / eventBufferControl )
; at-most-once per item except for propertyParm terminationStateParm = (propertyParm / serviceStates / eventBufferControl )
serviceStates = ServiceStatesToken EQUAL ( TestToken / OutOfSvcToken / InSvcToken )
serviceStates=ServiceStatesToken相等(TestToken/OutOfSvcToken/InSvcToken)
muxDescriptor = MuxToken EQUAL MuxType terminationIDList
muxDescriptor=MuxToken相等MuxType terminationIDList
MuxType = ( H221Token / H223Token / H226Token / V76Token / extensionParameter )
MuxType = ( H221Token / H223Token / H226Token / V76Token / extensionParameter )
StreamID = UINT16 pkgdName = (PackageName SLASH ItemID) ;specific item / (PackageName SLASH "*") ;all items in package / ("*" SLASH "*") ; all items supported by the MG PackageName = NAME ItemID = NAME
StreamID = UINT16 pkgdName = (PackageName SLASH ItemID) ;specific item / (PackageName SLASH "*") ;all items in package / ("*" SLASH "*") ; all items supported by the MG PackageName = NAME ItemID = NAME
eventsDescriptor = EventsToken [ EQUAL RequestID LBRKT requestedEvent *( COMMA requestedEvent ) RBRKT ]
eventsDescriptor=EventsToken[相等请求ID LBRKT请求事件*(逗号请求事件)RBRKT]
requestedEvent = pkgdName [ LBRKT eventParameter *( COMMA eventParameter ) RBRKT ]
requestedEvent=pkgdName[LBRKT事件参数*(逗号事件参数)RBRKT]
; at-most-once each of KeepActiveToken , eventDM and eventStream ;at most one of either embedWithSig or embedNoSig but not both ;KeepActiveToken and embedWithSig must not both be present eventParameter = ( embedWithSig / embedNoSig / KeepActiveToken /eventDM / eventStream / eventOther )
; at-most-once each of KeepActiveToken , eventDM and eventStream ;at most one of either embedWithSig or embedNoSig but not both ;KeepActiveToken and embedWithSig must not both be present eventParameter = ( embedWithSig / embedNoSig / KeepActiveToken /eventDM / eventStream / eventOther )
embedWithSig = EmbedToken LBRKT signalsDescriptor [COMMA embedFirst ] RBRKT embedNoSig = EmbedToken LBRKT embedFirst RBRKT
EmbeddeWithSig=EmbeddeToken LBRKT信号描述符[逗号EmbeddeFirst]RBRKT EmbeddeNoSig=EmbeddeToken LBRKT EmbeddeFirst RBRKT
; at-most-once of each embedFirst = EventsToken [ EQUAL RequestID LBRKT secondRequestedEvent *(COMMA secondRequestedEvent) RBRKT ]
; 每个embedFirst=EventsToken[相等请求ID LBRKT secondRequestedEvent*(逗号secondRequestedEvent)RBRKT]最多一次
secondRequestedEvent = pkgdName [ LBRKT secondEventParameter *( COMMA secondEventParameter ) RBRKT ]
secondRequestedEvent=pkgdName[LBRKT secondEventParameter*(逗号secondEventParameter)RBRKT]
; at-most-once each of embedSig , KeepActiveToken, eventDM or ; eventStream ; KeepActiveToken and embedSig must not both be present secondEventParameter = ( embedSig / KeepActiveToken / eventDM / eventStream / eventOther )
; at-most-once each of embedSig , KeepActiveToken, eventDM or ; eventStream ; KeepActiveToken and embedSig must not both be present secondEventParameter = ( embedSig / KeepActiveToken / eventDM / eventStream / eventOther )
embedSig = EmbedToken LBRKT signalsDescriptor RBRKT
embedSig = EmbedToken LBRKT signalsDescriptor RBRKT
eventStream = StreamToken EQUAL StreamID
eventStream = StreamToken EQUAL StreamID
eventOther = eventParameterName parmValue
eventOther = eventParameterName parmValue
eventParameterName = NAME
eventParameterName = NAME
eventDM = DigitMapToken EQUAL(( digitMapName ) / (LBRKT digitMapValue RBRKT ))
eventDM=DigitMapToken EQUAL((digitMapName)/(LBRKT digitMapValue RBRKT))
signalsDescriptor = SignalsToken LBRKT [ signalParm *(COMMA signalParm)] RBRKT
signalsDescriptor=SignalsToken LBRKT[signalParm*(逗号signalParm)]RBRKT
signalParm = signalList / signalRequest
signalParm = signalList / signalRequest
signalRequest = signalName [ LBRKT sigParameter *(COMMA sigParameter) RBRKT ]
signalRequest=signalName[LBRKT SIGSParameter*(逗号SIGSParameter)RBRKT]
signalList = SignalListToken EQUAL signalListId LBRKT signalListParm *(COMMA signalListParm) RBRKT
signalList=SignalListToken等于signalListId LBRKT signalListParm*(逗号signalListParm)RBRKT
signalListId = UINT16
signalListId = UINT16
;exactly once signalType, at most once duration and every signal ;parameter signalListParm = signalRequest
;仅一个信号类型,最多一个持续时间和每个信号;参数signalListParm=signalRequest
signalName = pkgdName ;at-most-once sigStream, at-most-once sigSignalType, ;at-most-once sigDuration, every signalParameterName at most once sigParameter = sigStream / sigSignalType / sigDuration / sigOther / notifyCompletion / KeepActiveToken sigStream = StreamToken EQUAL StreamID sigOther = sigParameterName parmValue sigParameterName = NAME sigSignalType = SignalTypeToken EQUAL signalType signalType = (OnOffToken / TimeOutToken / BriefToken) sigDuration = DurationToken EQUAL UINT16 notifyCompletion = NotifyCompletionToken EQUAL (LBRKT notificationReason *(COMMA notificationReason) RBRKT)
signalName = pkgdName ;at-most-once sigStream, at-most-once sigSignalType, ;at-most-once sigDuration, every signalParameterName at most once sigParameter = sigStream / sigSignalType / sigDuration / sigOther / notifyCompletion / KeepActiveToken sigStream = StreamToken EQUAL StreamID sigOther = sigParameterName parmValue sigParameterName = NAME sigSignalType = SignalTypeToken EQUAL signalType signalType = (OnOffToken / TimeOutToken / BriefToken) sigDuration = DurationToken EQUAL UINT16 notifyCompletion = NotifyCompletionToken EQUAL (LBRKT notificationReason *(COMMA notificationReason) RBRKT)
notificationReason = ( TimeOutToken / InterruptByEventToken / InterruptByNewSignalsDescrToken / OtherReasonToken ) observedEventsDescriptor = ObservedEventsToken EQUAL RequestID LBRKT observedEvent *(COMMA observedEvent) RBRKT
notificationReason = ( TimeOutToken / InterruptByEventToken / InterruptByNewSignalsDescrToken / OtherReasonToken ) observedEventsDescriptor = ObservedEventsToken EQUAL RequestID LBRKT observedEvent *(COMMA observedEvent) RBRKT
;time per event, because it might be buffered observedEvent = [ TimeStamp LWSP COLON] LWSP pkgdName [ LBRKT observedEventParameter *(COMMA observedEventParameter) RBRKT ]
;time per event, because it might be buffered observedEvent = [ TimeStamp LWSP COLON] LWSP pkgdName [ LBRKT observedEventParameter *(COMMA observedEventParameter) RBRKT ]
;at-most-once eventStream, every eventParameterName at most once observedEventParameter = eventStream / eventOther
;最多一次eventStream,每个eventParameterName最多观察一次EventParameter=eventStream/eventOther
; For an AuditCapReply with all events, the RequestID should be ALL. RequestID = ( UINT32 / "*" )
; For an AuditCapReply with all events, the RequestID should be ALL. RequestID = ( UINT32 / "*" )
modemDescriptor = ModemToken (( EQUAL modemType) / (LSBRKT modemType *(COMMA modemType) RSBRKT)) [ LBRKT propertyParm *(COMMA propertyParm) RBRKT ]
modemDescriptor = ModemToken (( EQUAL modemType) / (LSBRKT modemType *(COMMA modemType) RSBRKT)) [ LBRKT propertyParm *(COMMA propertyParm) RBRKT ]
; at-most-once except for extensionParameter modemType = (V32bisToken / V22bisToken / V18Token / V22Token / V32Token / V34Token / V90Token / V91Token / SynchISDNToken / extensionParameter)
; at-most-once except for extensionParameter modemType = (V32bisToken / V22bisToken / V18Token / V22Token / V32Token / V34Token / V90Token / V91Token / SynchISDNToken / extensionParameter)
digitMapDescriptor = DigitMapToken EQUAL ( ( LBRKT digitMapValue RBRKT ) / (digitMapName [ LBRKT digitMapValue RBRKT ]) ) digitMapName = NAME digitMapValue = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA] ["L" COLON Timer COMMA] digitMap Timer = 1*2DIGIT ; Units are seconds for T, S, and L timers, and hundreds of ; milliseconds for Z timer. Thus T, S, and L range from 1 to 99 ; seconds and Z from 100 ms to 9.9 s digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP) digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP)) digitLetter = *((DIGIT "-" DIGIT ) / digitMapLetter) digitMapLetter = DIGIT ;Basic event symbols / %x41-4B / %x61-6B ; a-k, A-K / "L" / "S" ;Inter-event timers (long, short) / "Z" ;Long duration modifier
digitMapDescriptor = DigitMapToken EQUAL ( ( LBRKT digitMapValue RBRKT ) / (digitMapName [ LBRKT digitMapValue RBRKT ]) ) digitMapName = NAME digitMapValue = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA] ["L" COLON Timer COMMA] digitMap Timer = 1*2DIGIT ; Units are seconds for T, S, and L timers, and hundreds of ; milliseconds for Z timer. Thus T, S, and L range from 1 to 99 ; seconds and Z from 100 ms to 9.9 s digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP) digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP)) digitLetter = *((DIGIT "-" DIGIT ) / digitMapLetter) digitMapLetter = DIGIT ;Basic event symbols / %x41-4B / %x61-6B ; a-k, A-K / "L" / "S" ;Inter-event timers (long, short) / "Z" ;Long duration modifier
;at-most-once, and DigitMapToken and PackagesToken are not allowed ;in AuditCapabilities command auditItem = ( MuxToken / ModemToken / MediaToken / SignalsToken / EventBufferToken / DigitMapToken / StatsToken / EventsToken / ObservedEventsToken / PackagesToken )
;at-most-once, and DigitMapToken and PackagesToken are not allowed ;in AuditCapabilities command auditItem = ( MuxToken / ModemToken / MediaToken / SignalsToken / EventBufferToken / DigitMapToken / StatsToken / EventsToken / ObservedEventsToken / PackagesToken )
serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm *(COMMA serviceChangeParm) RBRKT
serviceChangeDescriptor=ServicesToken LBRKT serviceChangeParm*(逗号serviceChangeParm)RBRKT
; each parameter at-most-once ; at most one of either serviceChangeAddress or serviceChangeMgcId ; but not both ; serviceChangeMethod and serviceChangeReason are REQUIRED serviceChangeParm = (serviceChangeMethod / serviceChangeReason / serviceChangeDelay / serviceChangeAddress / serviceChangeProfile / extension / TimeStamp / serviceChangeMgcId / serviceChangeVersion )
; each parameter at-most-once ; at most one of either serviceChangeAddress or serviceChangeMgcId ; but not both ; serviceChangeMethod and serviceChangeReason are REQUIRED serviceChangeParm = (serviceChangeMethod / serviceChangeReason / serviceChangeDelay / serviceChangeAddress / serviceChangeProfile / extension / TimeStamp / serviceChangeMgcId / serviceChangeVersion )
serviceChangeReplyDescriptor = ServicesToken LBRKT servChgReplyParm *(COMMA servChgReplyParm) RBRKT
serviceChangeReplyDescriptor=ServicesToken LBRKT servChgReplyParm*(逗号servChgReplyParm)RBRKT
; at-most-once. Version is REQUIRED on first ServiceChange response ; at most one of either serviceChangeAddress or serviceChangeMgcId ; but not both servChgReplyParm = (serviceChangeAddress / serviceChangeMgcId / serviceChangeProfile / serviceChangeVersion / TimeStamp) serviceChangeMethod = MethodToken EQUAL (FailoverToken / ForcedToken / GracefulToken / RestartToken / DisconnectedToken / HandOffToken / extensionParameter) ; A serviceChangeReason consists of a numeric reason code ; and an optional text description. ; A serviceChangeReason MUST be encoded using the quotedString ; form of VALUE. ; The quotedString SHALL contain a decimal reason code, ; optionally followed by a single space character and a ; textual description string.
; at-most-once. Version is REQUIRED on first ServiceChange response ; at most one of either serviceChangeAddress or serviceChangeMgcId ; but not both servChgReplyParm = (serviceChangeAddress / serviceChangeMgcId / serviceChangeProfile / serviceChangeVersion / TimeStamp) serviceChangeMethod = MethodToken EQUAL (FailoverToken / ForcedToken / GracefulToken / RestartToken / DisconnectedToken / HandOffToken / extensionParameter) ; A serviceChangeReason consists of a numeric reason code ; and an optional text description. ; A serviceChangeReason MUST be encoded using the quotedString ; form of VALUE. ; The quotedString SHALL contain a decimal reason code, ; optionally followed by a single space character and a ; textual description string.
serviceChangeReason = ReasonToken EQUAL VALUE serviceChangeDelay = DelayToken EQUAL UINT32 serviceChangeAddress = ServiceChangeAddressToken EQUAL ( mId / portNumber ) serviceChangeMgcId = MgcIdToken EQUAL mId serviceChangeProfile = ProfileToken EQUAL NAME SLASH Version serviceChangeVersion = VersionToken EQUAL Version extension = extensionParameter parmValue
serviceChangeReason=ReasonToken等值serviceChangeDelay=DelayToken等值UINT32 serviceChangeAddress=ServiceChangeAddressToken等值(mId/portNumber)serviceChangeMgcId=MgcIdToken EQUAL mId serviceChangeProfile=ProfileToken EQUAL NAME斜线版本serviceChangeVersion=VersionToken EQUAL Version extension=extensionParameter parmValue
packagesDescriptor = PackagesToken LBRKT packagesItem *(COMMA packagesItem) RBRKT
packagesDescriptor=PackagesToken LBRKT packagesItem*(逗号packagesItem)RBRKT
Version = 1*2(DIGIT) packagesItem = NAME "-" UINT16
Version = 1*2(DIGIT) packagesItem = NAME "-" UINT16
TimeStamp = Date "T" Time ; per ISO 8601:1988 ; Date = yyyymmdd Date = 8(DIGIT) ; Time = hhmmssss Time = 8(DIGIT) statisticsDescriptor = StatsToken LBRKT statisticsParameter *(COMMA statisticsParameter ) RBRKT
TimeStamp = Date "T" Time ; per ISO 8601:1988 ; Date = yyyymmdd Date = 8(DIGIT) ; Time = hhmmssss Time = 8(DIGIT) statisticsDescriptor = StatsToken LBRKT statisticsParameter *(COMMA statisticsParameter ) RBRKT
;at-most-once per item statisticsParameter = pkgdName [EQUAL VALUE]
;每个项目最多一次statisticsParameter=pkgdName[相等值]
topologyDescriptor = TopologyToken LBRKT topologyTriple *(COMMA topologyTriple) RBRKT topologyTriple = terminationA COMMA terminationB COMMA topologyDirection terminationA = TerminationID terminationB = TerminationID topologyDirection = BothwayToken / IsolateToken / OnewayToken
topologyDescriptor=TopologyToken LBRKT topologyTriple*(逗号topologyTriple)RBRKT topologyTriple=terminationA逗号terminationB逗号topologyDirection terminationA=TerminationID terminationB=TerminationID topologyDirection=BothwayToken/IsolateToken/OnewayToken
priority = PriorityToken EQUAL UINT16
priority = PriorityToken EQUAL UINT16
extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)
extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)
; octetString is used to describe SDP defined in RFC2327. ; Caution should be taken if CRLF in RFC2327 is used. ; To be safe, use EOL in this ABNF. ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}" octetString = *(nonEscapeChar) nonEscapeChar = ( "\}" / %x01-7C / %x7E-FF ) ; Note - The double-quote character is not allowed in quotedString. quotedString = DQUOTE *(SafeChar / RestChar/ WSP) DQUOTE
; octetString is used to describe SDP defined in RFC2327. ; Caution should be taken if CRLF in RFC2327 is used. ; To be safe, use EOL in this ABNF. ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}" octetString = *(nonEscapeChar) nonEscapeChar = ( "\}" / %x01-7C / %x7E-FF ) ; Note - The double-quote character is not allowed in quotedString. quotedString = DQUOTE *(SafeChar / RestChar/ WSP) DQUOTE
UINT16 = 1*5(DIGIT) ; %x0-FFFF UINT32 = 1*10(DIGIT) ; %x0-FFFFFFFF
UINT16 = 1*5(DIGIT) ; %x0-FFFF UINT32 = 1*10(DIGIT) ; %x0-FFFFFFFF
NAME = ALPHA *63(ALPHA / DIGIT / "_" ) VALUE = quotedString / 1*(SafeChar) SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "\'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "|" / "."
NAME = ALPHA *63(ALPHA / DIGIT / "_" ) VALUE = quotedString / 1*(SafeChar) SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "\'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "|" / "."
EQUAL = LWSP %x3D LWSP ; "=" COLON = %x3A ; ":" LBRKT = LWSP %x7B LWSP ; "{" RBRKT = LWSP %x7D LWSP ; "}" COMMA = LWSP %x2C LWSP ; ","
EQUAL = LWSP %x3D LWSP ; "=" COLON = %x3A ; ":" LBRKT = LWSP %x7B LWSP ; "{" RBRKT = LWSP %x7D LWSP ; "}" COMMA = LWSP %x2C LWSP ; ","
DOT = %x2E ; "." SLASH = %x2F ; "/" ALPHA = %x41-5A / %x61-7A ; A-Z / a-z DIGIT = %x30-39 ; 0-9 DQUOTE = %x22 ; " (Double Quote) HEXDIG = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" ) SP = %x20 ; space HTAB = %x09 ; horizontal tab CR = %x0D ; Carriage return LF = %x0A ; linefeed LWSP = *( WSP / COMMENT / EOL ) EOL = (CR [LF] / LF ) WSP = SP / HTAB ; white space SEP = ( WSP / EOL / COMMENT) LWSP COMMENT = ";" *(SafeChar/ RestChar / WSP / %x22) EOL RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "="
DOT = %x2E ; "." SLASH = %x2F ; "/" ALPHA = %x41-5A / %x61-7A ; A-Z / a-z DIGIT = %x30-39 ; 0-9 DQUOTE = %x22 ; " (Double Quote) HEXDIG = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" ) SP = %x20 ; space HTAB = %x09 ; horizontal tab CR = %x0D ; Carriage return LF = %x0A ; linefeed LWSP = *( WSP / COMMENT / EOL ) EOL = (CR [LF] / LF ) WSP = SP / HTAB ; white space SEP = ( WSP / EOL / COMMENT) LWSP COMMENT = ";" *(SafeChar/ RestChar / WSP / %x22) EOL RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "="
; New Tokens added to sigParameter must take the format of SPA* ; * may be of any form i.e., SPAM ; New Tokens added to eventParameter must take the form of EPA* ; * may be of any form i.e., EPAD
; New Tokens added to sigParameter must take the format of SPA* ; * may be of any form i.e., SPAM ; New Tokens added to eventParameter must take the form of EPA* ; * may be of any form i.e., EPAD
AddToken = ("Add" / "A") AuditToken = ("Audit" / "AT") AuditCapToken = ("AuditCapability" / "AC") AuditValueToken = ("AuditValue" / "AV") AuthToken = ("Authentication" / "AU") BothwayToken = ("Bothway" / "BW") BriefToken = ("Brief" / "BR") BufferToken = ("Buffer" / "BF") CtxToken = ("Context" / "C") ContextAuditToken = ("ContextAudit" / "CA") DigitMapToken = ("DigitMap" / "DM") DisconnectedToken = ("Disconnected" / "DC") DelayToken = ("Delay" / "DL") DurationToken = ("Duration" / "DR") EmbedToken = ("Embed" / "EM") EmergencyToken = ("Emergency" / "EG") ErrorToken = ("Error" / "ER") EventBufferToken = ("EventBuffer" / "EB") EventsToken = ("Events" / "E") FailoverToken = ("Failover" / "FL") ForcedToken = ("Forced" / "FO") GracefulToken = ("Graceful" / "GR") H221Token = ("H221" ) H223Token = ("H223" ) H226Token = ("H226" )
AddToken = ("Add" / "A") AuditToken = ("Audit" / "AT") AuditCapToken = ("AuditCapability" / "AC") AuditValueToken = ("AuditValue" / "AV") AuthToken = ("Authentication" / "AU") BothwayToken = ("Bothway" / "BW") BriefToken = ("Brief" / "BR") BufferToken = ("Buffer" / "BF") CtxToken = ("Context" / "C") ContextAuditToken = ("ContextAudit" / "CA") DigitMapToken = ("DigitMap" / "DM") DisconnectedToken = ("Disconnected" / "DC") DelayToken = ("Delay" / "DL") DurationToken = ("Duration" / "DR") EmbedToken = ("Embed" / "EM") EmergencyToken = ("Emergency" / "EG") ErrorToken = ("Error" / "ER") EventBufferToken = ("EventBuffer" / "EB") EventsToken = ("Events" / "E") FailoverToken = ("Failover" / "FL") ForcedToken = ("Forced" / "FO") GracefulToken = ("Graceful" / "GR") H221Token = ("H221" ) H223Token = ("H223" ) H226Token = ("H226" )
HandOffToken = ("HandOff" / "HO") ImmAckRequiredToken = ("ImmAckRequired" / "IA") InactiveToken = ("Inactive" / "IN") IsolateToken = ("Isolate" / "IS") InSvcToken = ("InService" / "IV") InterruptByEventToken = ("IntByEvent" / "IBE") InterruptByNewSignalsDescrToken = ("IntBySigDescr" / "IBS") KeepActiveToken = ("KeepActive" / "KA") LocalToken = ("Local" / "L") LocalControlToken = ("LocalControl" / "O") LockStepToken = ("LockStep" / "SP") LoopbackToken = ("Loopback" / "LB") MediaToken = ("Media" / "M") MegacopToken = ("MEGACO" / "!") MethodToken = ("Method" / "MT") MgcIdToken = ("MgcIdToTry" / "MG") ModeToken = ("Mode" / "MO") ModifyToken = ("Modify" / "MF") ModemToken = ("Modem" / "MD") MoveToken = ("Move" / "MV") MTPToken = ("MTP") MuxToken = ("Mux" / "MX") NotifyToken = ("Notify" / "N") NotifyCompletionToken = ("NotifyCompletion" / "NC") ObservedEventsToken = ("ObservedEvents" / "OE") OnewayToken = ("Oneway" / "OW") OnOffToken = ("OnOff" / "OO") OtherReasonToken = ("OtherReason" / "OR") OutOfSvcToken = ("OutOfService" / "OS") PackagesToken = ("Packages" / "PG") PendingToken = ("Pending" / "PN") PriorityToken = ("Priority" / "PR") ProfileToken = ("Profile" / "PF") ReasonToken = ("Reason" / "RE") RecvonlyToken = ("ReceiveOnly" / "RC") ReplyToken = ("Reply" / "P") RestartToken = ("Restart" / "RS") RemoteToken = ("Remote" / "R") ReservedGroupToken = ("ReservedGroup" / "RG") ReservedValueToken = ("ReservedValue" / "RV") SendonlyToken = ("SendOnly" / "SO") SendrecvToken = ("SendReceive" / "SR") ServicesToken = ("Services" / "SV") ServiceStatesToken = ("ServiceStates" / "SI") ServiceChangeToken = ("ServiceChange" / "SC") ServiceChangeAddressToken = ("ServiceChangeAddress" / "AD") SignalListToken = ("SignalList" / "SL")
HandOffToken = ("HandOff" / "HO") ImmAckRequiredToken = ("ImmAckRequired" / "IA") InactiveToken = ("Inactive" / "IN") IsolateToken = ("Isolate" / "IS") InSvcToken = ("InService" / "IV") InterruptByEventToken = ("IntByEvent" / "IBE") InterruptByNewSignalsDescrToken = ("IntBySigDescr" / "IBS") KeepActiveToken = ("KeepActive" / "KA") LocalToken = ("Local" / "L") LocalControlToken = ("LocalControl" / "O") LockStepToken = ("LockStep" / "SP") LoopbackToken = ("Loopback" / "LB") MediaToken = ("Media" / "M") MegacopToken = ("MEGACO" / "!") MethodToken = ("Method" / "MT") MgcIdToken = ("MgcIdToTry" / "MG") ModeToken = ("Mode" / "MO") ModifyToken = ("Modify" / "MF") ModemToken = ("Modem" / "MD") MoveToken = ("Move" / "MV") MTPToken = ("MTP") MuxToken = ("Mux" / "MX") NotifyToken = ("Notify" / "N") NotifyCompletionToken = ("NotifyCompletion" / "NC") ObservedEventsToken = ("ObservedEvents" / "OE") OnewayToken = ("Oneway" / "OW") OnOffToken = ("OnOff" / "OO") OtherReasonToken = ("OtherReason" / "OR") OutOfSvcToken = ("OutOfService" / "OS") PackagesToken = ("Packages" / "PG") PendingToken = ("Pending" / "PN") PriorityToken = ("Priority" / "PR") ProfileToken = ("Profile" / "PF") ReasonToken = ("Reason" / "RE") RecvonlyToken = ("ReceiveOnly" / "RC") ReplyToken = ("Reply" / "P") RestartToken = ("Restart" / "RS") RemoteToken = ("Remote" / "R") ReservedGroupToken = ("ReservedGroup" / "RG") ReservedValueToken = ("ReservedValue" / "RV") SendonlyToken = ("SendOnly" / "SO") SendrecvToken = ("SendReceive" / "SR") ServicesToken = ("Services" / "SV") ServiceStatesToken = ("ServiceStates" / "SI") ServiceChangeToken = ("ServiceChange" / "SC") ServiceChangeAddressToken = ("ServiceChangeAddress" / "AD") SignalListToken = ("SignalList" / "SL")
SignalsToken = ("Signals" / "SG") SignalTypeToken = ("SignalType" / "SY") StatsToken = ("Statistics" / "SA") StreamToken = ("Stream" / "ST") SubtractToken = ("Subtract" / "S") SynchISDNToken = ("SynchISDN" / "SN") TerminationStateToken = ("TerminationState" / "TS") TestToken = ("Test" / "TE") TimeOutToken = ("TimeOut" / "TO") TopologyToken = ("Topology" / "TP") TransToken = ("Transaction" / "T") ResponseAckToken = ("TransactionResponseAck" / "K") V18Token = ("V18") V22Token = ("V22") V22bisToken = ("V22b") V32Token = ("V32") V32bisToken = ("V32b") V34Token = ("V34") V76Token = ("V76") V90Token = ("V90") V91Token = ("V91") VersionToken = ("Version" / "V")
SignalsToken = ("Signals" / "SG") SignalTypeToken = ("SignalType" / "SY") StatsToken = ("Statistics" / "SA") StreamToken = ("Stream" / "ST") SubtractToken = ("Subtract" / "S") SynchISDNToken = ("SynchISDN" / "SN") TerminationStateToken = ("TerminationState" / "TS") TestToken = ("Test" / "TE") TimeOutToken = ("TimeOut" / "TO") TopologyToken = ("Topology" / "TP") TransToken = ("Transaction" / "T") ResponseAckToken = ("TransactionResponseAck" / "K") V18Token = ("V18") V22Token = ("V22") V22bisToken = ("V22b") V32Token = ("V32") V32bisToken = ("V32b") V34Token = ("V34") V76Token = ("V76") V90Token = ("V90") V91Token = ("V91") VersionToken = ("Version" / "V")
Hexadecimal octet coding is a means for representing a string of octets as a string of hexadecimal digits, with two digits representing each octet. This octet encoding should be used when encoding octet strings in the text version of the protocol. For each octet, the 8-bit sequence is encoded as two hexadecimal digits. Bit 0 is the first transmitted; bit 7 is the last. Bits 7-4 are encoded as the first hexadecimal digit, with Bit 7 as MSB and Bit 4 as LSB. Bits 3-0 are encoded as the second hexadecimal digit, with Bit 3 as MSB and Bit 0 as LSB. Examples:
十六进制八位字节编码是一种将八位字节串表示为十六进制数字串的方法,每个八位字节有两个数字。在协议文本版本中编码八位字符串时,应使用此八位编码。对于每个八位字节,8位序列编码为两个十六进制数字。第0位是第一次传输;第7位是最后一位。位7-4编码为第一个十六进制数字,位7为MSB,位4为LSB。位3-0编码为第二个十六进制数字,位3为MSB,位0为LSB。示例:
Octet bit pattern Hexadecimal coding 00011011 D8 11100100 27 10000011 10100010 11001000 00001001 C1451390
八位字节位模式十六进制编码0001011 D8 11100100 27 10000011 10100010 11001000 00001001 C1451390
A hexadecimal octet sequence is an even number of hexadecimal digits, terminated by a <CR> character.
十六进制八位字节序列是偶数个十六进制数字,以<CR>字符结尾。
ANNEX C - Tags for media stream properties
附录C-媒体流属性标签
Parameters for Local, Remote and LocalControl descriptors are specified as tag-value pairs if binary encoding is used for the protocol. This annex contains the property names (PropertyID), the tags (Property tag), type of the property (Type) and the values (Value). Values presented in the Value field when the field contains references shall be regarded as "information". The reference contains the normative values. If a value field does not contain a reference, then the values in that field can be considered as "normative".
如果协议使用二进制编码,则本地、远程和本地控制描述符的参数指定为标记值对。本附录包含属性名称(PropertyID)、标记(property tag)、属性类型(type)和值(Value)。当字段包含参考时,值字段中显示的值应视为“信息”。参考文件包含标准值。如果值字段不包含引用,则该字段中的值可视为“标准值”。
Tags are given as hexadecimal numbers in this annex. When setting the value of a property, a MGC may underspecify the value according to one of the mechanisms specified in 7.1.1.
标签在本附录中以十六进制数字给出。当设置属性值时,MGC可能会根据7.1.1中规定的一种机制对该值进行低估。
It is optional to support the properties in this Annex or any of its sub-sections. For example, only three properties from C.3 and only five properties from C.8 might be implemented.
支持本附录或其任何子章节中的属性是可选的。例如,只能实现C.3中的三个属性和C.8中的五个属性。
For type "enumeration" the value is represented by the value in brackets, e.g., Send(0), Receive(1). Annex C properties with the types "N bits" or "M Octets" should be treated as octet strings when encoding the protocol. Properties with "N bit integer" shall be treated as an integers. "String" shall be treated as an IA5String when encoding the protocol.
对于“枚举”类型,值由括号中的值表示,例如发送(0)、接收(1)。附录C编码协议时,应将类型为“N位”或“M八位字节”的属性视为八位字节字符串。具有“N位整数”的属性应视为整数。编码协议时,“字符串”应视为IA5String。
When a type is smaller than one octet, the value shall be stored in the low-order bits of an octet string of size 1.
当类型小于一个八位字节时,该值应存储在大小为1的八位字节字符串的低位。
PropertyID Property Type Value tag
PropertyID属性类型值标记
Media 1001 Enumeration Audio(0), Video(1), Data(2)
Media 1001 Enumeration Audio(0), Video(1), Data(2)
Transmission 1002 Enumeration Send(0), Receive(1), mode Send&Receive(2)
传输1002枚举发送(0)、接收(1)、模式发送和接收(2)
Number of 1003 Unsigned 0-255 Channels integer
1003个无符号0-255通道数整数
Sampling 1004 Unsigned 0-2^32 rate integer
采样1004无符号0-2^32速率整数
Bitrate 1005 Integer (0..4294967295)NOTE - Units of 100 bit/s.
比特率1005整数(0..4294967295)注-单位为100位/秒。
ACodec 1006 Octet string Audio Codec Type: Ref.: ITU-T Q.765 Non-ITU-T codecs are defined with the appropriate standards organization under a defined Organizational Identifier.
ACodec 1006八位字符串音频编解码器类型:参考:ITU-T Q.765非ITU-T编解码器由适当的标准组织在定义的组织标识符下定义。
Samplepp 1007 Unsigned Maximum samples or frames per integer packet: 0..65535
Samplepp 1007每个整数包的无符号最大采样数或帧数:0..65535
Silencesupp 1008 Boolean Silence Suppression: True/False
沉默抑制1008布尔沉默抑制:真/假
Encrypttype 1009 Octet string Ref.: ITU-T H.245
加密类型1009八位字节字符串参考:ITU-T H.245
Encryptkey 100A Octet string Encryption key size Ref.: ITU-T H.235 (0..65535)
Encryptkey 100A八位字符串加密密钥大小参考:ITU-T H.235(0..65535)
Echocanc 100B Not Used. See H.248.1 E.13 for an example of possible Echo Control properties.
Echocanc 100B未使用。有关可能的回波控制特性的示例,请参见H.248.1 E.13。
Gain 100C Unsigned Gain in dB: 0..65535 integer
增益100C无符号增益(dB):0..65535整数
Jitterbuff 100D Unsigned Jitter buffer size in ms: integer 0..65535
Jitterbuff 100D无符号抖动缓冲区大小(毫秒):整数0..65535
PropDelay 100E Unsigned Propagation Delay: 0..65535 integer Maximum propagation delay in milliseconds for the bearer connection between two media gateways. The maximum delay will be dependent on the bearer technology.
PropDelay 100E无符号传播延迟:两个媒体网关之间的承载连接的最大传播延迟为0..65535整数毫秒。最大延迟将取决于承载技术。
RTPpayload 100F Integer Payload type in RTP Profile for Audio and Video Conferences with Minimal Control Ref.: RFC 1890
RTP配置文件中的RTPpayload 100F整数有效负载类型,用于具有最小控制的音频和视频会议参考:RFC 1890
PropertyID Property tag Type Value
PropertyID属性标记类型值
H222 2001 Octet string H222LogicalChannelParameters Ref.: ITU-T H.245
H222 2001八位字符串H222逻辑通道参数参考:ITU-T H.245
H223 2002 Octet string H223LogicalChannelParameters Ref.: ITU-T H.245
H223 2002八位字节字符串H223逻辑通道参数参考:ITU-T H.245
V76 2003 Octet string V76LogicalChannelParameters Ref.: ITU-T H.245
V76 2003八位字符串V76逻辑通道参数参考:ITU-T H.245
H2250 2004 Octet string H2250LogicalChannelParameters Ref.: ITU-T H.245
H2250 2004八位字符串H2250逻辑通道参数参考:ITU-T H.245
PropertyID Property Type Value tag
PropertyID属性类型值标记
Mediatx 3001 Enumeration Media Transport TypeTDM Circuit(0), ATM(1), FR(2), Ipv4(3), Ipv6(4), ...
Mediatx 3001枚举媒体传输类型TDM电路(0)、ATM(1)、FR(2)、Ipv4(3)、Ipv6(4)、。。。
BIR 3002 4 octets Value depends on transport technology
BIR 3002 4个八位字节值取决于传输技术
NSAP 3003 1-20 octets See NSAP. Ref.: Annex A/X.213
NSAP 3003 1-20八位字节见NSAP。参考:附件A/X.213
PropertyID Property Type Value tag
PropertyID属性类型值标记
AESA 4001 20 octets ATM End System Address
AESA 4001 20八位字节ATM终端系统地址
VPVC 4002 4 octets: VPCI VPCI/VCI in first two least Ref.: ITU-T Q.2931 significant octets, VCI in second two octets
VPVC 4002 4个八位字节:前两个最小参考中的VPCI VPCI/VCI:ITU-T Q.2931有效八位字节,后两个八位字节中的VCI
SC 4003 Enumeration Service Category: CBR(0), nrt-VBR1(1), nrt VBR2(2), nrt-VBR3(3), rt-VBR1(4), rt VBR2(5), rt-VBR3(6), UBR1(7), UBR2(8), ABR(9). Ref.: ATM Forum UNI 4.0
SC 4003 Enumeration Service Category: CBR(0), nrt-VBR1(1), nrt VBR2(2), nrt-VBR3(3), rt-VBR1(4), rt VBR2(5), rt-VBR3(6), UBR1(7), UBR2(8), ABR(9). Ref.: ATM Forum UNI 4.0
BCOB 4004 5-bit integer Broadband Bearer Class Ref.: ITU-T Q.2961.2
BCOB 4004 5位整数宽带承载类参考:ITU-T Q.2961.2
BBTC 4005 7-bit integer Broadband Transfer Capability Ref.: ITU-T Q.2961.1
BBTC 4005 7位整数宽带传输能力参考:ITU-T Q.2961.1
ATC 4006 Enumeration I.371 ATM Traffic CapabilityDBR(0), SBR1(1), SBR2(2), SBR3(3), ABT/IT(4), ABT/DT(5), ABR(6) Ref.: ITU-T I.371
ATC 4006 Enumeration I.371 ATM Traffic CapabilityDBR(0), SBR1(1), SBR2(2), SBR3(3), ABT/IT(4), ABT/DT(5), ABR(6) Ref.: ITU-T I.371
STC 4007 2 bits Susceptibility to clipping: Bits 2 1 --- 0 0 not susceptible to clipping 0 1 susceptible to clipping Ref.: ITU-T Q.2931
STC 4007 2 bits Susceptibility to clipping: Bits 2 1 --- 0 0 not susceptible to clipping 0 1 susceptible to clipping Ref.: ITU-T Q.2931
UPCC 4008 2 bits User Plane Connection configuration: Bits 2 1 --- 0 0 point-to-point 0 1 point-to-multipoint Ref.: ITU-T Q.2931
UPCC 4008 2 bits User Plane Connection configuration: Bits 2 1 --- 0 0 point-to-point 0 1 point-to-multipoint Ref.: ITU-T Q.2931
PCR0 4009 24-bit integer Peak Cell Rate (For CLP = 0) Ref.: ITU-T Q.2931
PCR0 4009 24位整数峰值信元速率(对于CLP=0)参考:ITU-T Q.2931
SCR0 400A 24-bit integer Sustainable Cell Rate (For CLP = 0) Ref.: ITU-T Q.2961.1
SCR0 400A 24位整数可持续小区速率(对于CLP=0)参考:ITU-T Q.2961.1
MBS0 400B 24-bit integer Maximum Burst Size (For CLP = 0) Ref.: ITU-T Q.2961.1
MBS0 400B 24位整数最大突发大小(对于CLP=0)参考:ITU-T Q.2961.1
PCR1 400C 24-bit integer Peak Cell Rate (For CLP = 0 + 1) Ref.: ITU-T Q.2931
PCR1 400C 24位整数峰值信元速率(对于CLP=0+1)参考:ITU-T Q.2931
SCR1 400D 24-bit integer Sustainable Cell Rate (For CLP = 0 + 1) Ref.: ITU-T Q.2961.1
SCR1 400D 24位整数可持续小区速率(对于CLP=0+1)参考:ITU-T Q.2961.1
MBS1 400E 24-bit integer Maximum Burst Size (For CLP = 0 + 1) Ref.: ITU-T Q.2961.1
MBS1 400E 24位整数最大突发大小(对于CLP=0+1)参考:ITU-T Q.2961.1
BEI 400F Boolean Best Effort Indicator Value 1 indicates that BEI is to be included in the ATM signaling; value 0 indicates that BEI is not to be included in the ATM signaling. Ref.: ATM Forum UNI 4.0
BEI 400F布尔尽力指示符值1表示BEI将包括在ATM信令中;值0表示BEI不包括在ATM信令中。参考:ATM论坛UNI 4.0
TI 4010 Boolean Tagging Indicator Value 0 indicates that tagging is not allowed; value 1 indicates that tagging is requested. Ref.: ITU-T Q.2961.1
TI 4010布尔标记指示符值0表示不允许标记;值1表示请求标记。参考:ITU-T Q.2961.1
FD 4011 Boolean Frame Discard Value 0 indicates that no frame discard is allowed; value 1 indicates that frame discard is allowed. Ref.: ATM Forum UNI 4.0
FD 4011布尔帧丢弃值0表示不允许帧丢弃;值1表示允许帧丢弃。参考:ATM论坛UNI 4.0
A2PCDV 4012 24-bit integer Acceptable 2-point CDV Ref.: ITU-T Q.2965.2
A2PCDV 4012 24位整数可接受的2点CDV参考:ITU-T Q.2965.2
C2PCDV 4013 24-bit integer Cumulative 2-point CDV Ref.: ITU-T Q.2965.2
C2PCDV 4013 24位整数累积2点CDV参考:ITU-T Q.2965.2
APPCDV 4014 24-bit integer Acceptable P-P CDV Ref.: ATM Forum UNI 4.0
APPCDV 4014 24位整数可接受的P-P CDV参考:ATM论坛UNI 4.0
CPPCDV 4015 24-bit integer Cumulative P-P CDV Ref.: ATM Forum UNI 4.0
CPPCDV 4015 24位整数累计P-P CDV参考:ATM论坛大学4.0
ACLR 4016 8-bit integer Acceptable Cell Loss Ratio Ref.: ITU-T Q.2965.2, ATM Forum UNI 4.0
ACLR 4016 8位整数可接受信元丢失率参考:ITU-T Q.2965.2,ATM论坛UNI 4.0
MEETD 4017 16-bit integer Maximum End-to-end transit delay Ref.: ITU-T Q.2965.2, ATM Forum UNI 4.0
MEETD 4017 16位整数最大端到端传输延迟参考:ITU-T Q.2965.2,ATM论坛UNI 4.0
CEETD 4018 16-bit integer Cumulative End-to-end transit delay Ref.: ITU-T Q.2965.2, ATM Forum UNI 4.0
CEETD 4018 16位整数累积端到端传输延迟参考:ITU-T Q.2965.2,ATM论坛UNI 4.0
QosClass 4019 Integer 0-5 QoS Class
QosClass 4019整数0-5 QoS类
QoS Class Meaning
QoS类含义
0 Default QoS associated with the ATC as defined in ITU-T Q.2961.2
0 ITU-T Q.2961.2中定义的与ATC相关的默认QoS
1 Stringent
1严格的
2 Tolerant
2容忍
3 Bi-level
3双水平
4 Unbounded
4无界
5 Stringent Bi-level Ref.: ITU-T Q.2965.1
5严格的双层参考:ITU-T Q.2965.1
AALtype 401A 1 octet AAL Type Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 AAL for voice 0 0 0 0 0 0 0 1 AAL type 1 0 0 0 0 0 0 1 0 AAL type 2 0 0 0 0 0 0 1 1 AAL type 3/4 0 0 0 0 0 1 0 1 AAL type 5
AALtype 401A 1 octet AAL Type Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 AAL for voice 0 0 0 0 0 0 0 1 AAL type 1 0 0 0 0 0 0 1 0 AAL type 2 0 0 0 0 0 0 1 1 AAL type 3/4 0 0 0 0 0 1 0 1 AAL type 5
0 0 0 1 0 0 0 0 user-defined AAL Ref.: ITU-T Q.2931
0 0 1 0 0 0 0 0用户定义AAL参考:ITU-T Q.2931
PropertyID Property Type Value tag
PropertyID属性类型值标记
DLCI 5001 Unsigned Data link connection integer id
DLCI 5001无符号数据链路连接整数id
CID 5002 Unsigned sub-channel id integer
CID 5002无符号子信道id整数
SID/Noiselevel 5003 Unsigned silence insertion integer descriptor
SID/Noiselevel 5003无符号静默插入整数描述符
Primary Payload 5004 Unsigned Primary Payload Type type integer Covers FAX and codecs
主有效负载5004无符号主有效负载类型整数包括传真和编解码器
PropertyID Property tag Type Value
PropertyID属性标记类型值
IPv4 6001 32 bits Ipv4Address Ipv4Address Ref.: IETF RFC 791
IPv4 6001 32位IPv4地址IPv4地址参考:IETF RFC 791
IPv6 6002 128 bits IPv6 Address Ref.: IETF RFC 2460
IPv6 6002 128位IPv6地址参考:IETF RFC 2460
Port 6003 Unsigned integer 0..65535
端口6003无符号整数0..65535
Porttype 6004 Enumerated TCP(0), UDP(1), SCTP(2)
Porttype 6004 Enumerated TCP(0), UDP(1), SCTP(2)
PropertyID Property Type Value tag
PropertyID属性类型值标记
AESA 7001 20 octets AAL2 service endpoint address as defined in the referenced Recommendation. ESEANSEA Ref.: ITU-T Q.2630.1
参考建议中定义的AESA 7001 20八位字节AAL2服务端点地址。ESEANSEA参考号:ITU-T Q.2630.1
BIR See C.3 4 octets Served user generated reference as defined in the referenced Recommendation. SUGR Ref.: ITU-T Q.2630.1
BIR见C.3 4八位字节服务于参考建议中定义的用户生成参考。SUGR参考号:ITU-T Q.2630.1
ALC 7002 12 octets AAL2 link characteristics as defined in the referenced Recommendation. Maximum/Average CPS-SDU bit rate; Maximum/Average CPS-SDU size Ref.: ITU-T Q.2630.1
参考建议中定义的ALC 7002 12八位字节AAL2链路特性。最大/平均CPS-SDU比特率;最大/平均CPS-SDU尺寸参考:ITU-T Q.2630.1
SSCS 7003 I.366.2: Audio (8 Service specific octets); Multirate (3 convergence sublayer octets), or I.366.1: information as defined SAR-assured (14 in: octets);SAR-unassured - ITU-T Q.2630.1,and (7 octets). used in: - ITU-T I.366.2: Audio/Multirate; - ITU-T I.366.1: SAR- assured/unassured. Ref.: ITU-T Q.2630.1, I.366.1 and I.366.2
SSCS 7003 I.366.2: Audio (8 Service specific octets); Multirate (3 convergence sublayer octets), or I.366.1: information as defined SAR-assured (14 in: octets);SAR-unassured - ITU-T Q.2630.1,and (7 octets). used in: - ITU-T I.366.2: Audio/Multirate; - ITU-T I.366.1: SAR- assured/unassured. Ref.: ITU-T Q.2630.1, I.366.1 and I.366.2
SUT 7004 1..254 octets Served user transport parameter as defined in the referenced Recommendation. Ref.: ITU-T Q.2630.1
SUT 7004 1..254八位字节服务于参考建议中定义的用户传输参数。参考:ITU-T Q.2630.1
TCI 7005 Boolean Test connection indicator as defined in the referenced Recommendation. Ref.: ITU-T Q.2630.1
参考建议中定义的TCI 7005布尔测试连接指示器。参考:ITU-T Q.2630.1
Timer_CU 7006 32-bit integer Timer-CU Milliseconds to hold partially filled cell before sending.
定时器_CU 7006 32位整数定时器,用于在发送前保留部分填充的单元格。
MaxCPSSDU 7007 8-bit integer Maximum Common Part Sublayer Service Data Unit Ref.: ITU-T Q.2630.1
MaxCPSSDU 7007 8位整数最大公共部分子层服务数据单元参考:ITU-T Q.2630.1
CID 7008 8 bits subchannel id: 0-255 Ref.: ITU-T I.363.2 C.8 ATM AAL1
CID 7008 8位子信道id:0-255参考:ITU-T I.363.2 C.8 ATM AAL1
PropertyID Property Type Value tag
PropertyID属性类型值标记
BIR See table 4-29 octets GIT (Generic Identifier in C.3 Transport) Ref.: ITU-T Q.2941.1
BIR见表4-29八位字节GIT(C.3传输中的通用标识符)参考:ITU-T Q.2941.1
AAL1ST 8001 1 octet AAL1 Subtype Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 null 0 0 0 0 0 0 0 1 voiceband signal transport on 64 kbit/s 0 0 0 0 0 0 1 0 circuit transport 0 0 0 0 0 1 0 0 high-quality audio signal transport 0 0 0 0 0 1 0 1 video signal transport Ref.: ITU-T Q.2931
AAL1ST 8001 1 octet AAL1 Subtype Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 null 0 0 0 0 0 0 0 1 voiceband signal transport on 64 kbit/s 0 0 0 0 0 0 1 0 circuit transport 0 0 0 0 0 1 0 0 high-quality audio signal transport 0 0 0 0 0 1 0 1 video signal transport Ref.: ITU-T Q.2931
CBRR 8002 1 octet CBR Rate Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 1 64 kbit/s 0 0 0 0 0 1 0 0 1544 kbit/s 0 0 0 0 0 1 0 1 6312 kbit/s 0 0 0 0 0 1 1 0 32 064 kbit/s 0 0 0 0 0 1 1 1 44 736 kbit/s 0 0 0 0 1 0 0 0 97 728 kbit/s 0 0 0 1 0 0 0 0 2048 kbit/s 0 0 0 1 0 0 0 1 8448 kbit/s 0 0 0 1 0 0 1 0 34 368 kbit/s 0 0 0 1 0 0 1 1 139 264 kbit/s 0 1 0 0 0 0 0 0 n x 64 kbit/s 0 1 0 0 0 0 0 1 n x 8 kbit/s Ref.: ITU-T Q.2931
CBRR 8002 1 octet CBR Rate Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 1 64 kbit/s 0 0 0 0 0 1 0 0 1544 kbit/s 0 0 0 0 0 1 0 1 6312 kbit/s 0 0 0 0 0 1 1 0 32 064 kbit/s 0 0 0 0 0 1 1 1 44 736 kbit/s 0 0 0 0 1 0 0 0 97 728 kbit/s 0 0 0 1 0 0 0 0 2048 kbit/s 0 0 0 1 0 0 0 1 8448 kbit/s 0 0 0 1 0 0 1 0 34 368 kbit/s 0 0 0 1 0 0 1 1 139 264 kbit/s 0 1 0 0 0 0 0 0 n x 64 kbit/s 0 1 0 0 0 0 0 1 n x 8 kbit/s Ref.: ITU-T Q.2931
MULT See table Multiplier, or n x 64k/8k/300 in C.9 Ref.: ITU-T Q.2931
MULT见表乘数,或C.9参考:ITU-T Q.2931中的n x 64k/8k/300
SCRI 8003 1 octet Source Clock Frequency Recovery Method Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 null 0 0 0 0 0 0 0 1 SRTS 0 0 0 0 0 0 1 0 ACM Ref.: ITU-T Q.2931
SCRI 8003 1 octet Source Clock Frequency Recovery Method Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 null 0 0 0 0 0 0 0 1 SRTS 0 0 0 0 0 0 1 0 ACM Ref.: ITU-T Q.2931
ECM 8004 1 octet Error Correction Method Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 null 0 0 0 0 0 0 0 1 FEC - Loss 0 0 0 0 0 0 1 0 FEC - Delay Ref.: ITU-T Q.2931
ECM 8004 1 octet Error Correction Method Bits 8 7 6 5 4 3 2 1 --------------- 0 0 0 0 0 0 0 0 null 0 0 0 0 0 0 0 1 FEC - Loss 0 0 0 0 0 0 1 0 FEC - Delay Ref.: ITU-T Q.2931
SDTB 8005 16-bit Structured Data Transfer integer Blocksize Block size of SDT CBR service Ref.: ITU-T I.363.1
SDTB 8005 16位结构化数据传输整数块大小SDT CBR服务的块大小参考:ITU-T I.363.1
PFCI 8006 8-bit Partially filled cells identifier integer 1-47 Ref.: ITU-T I.363.1
PFCI 8006 8位部分填充单元标识符整数1-47参考:ITU-T I.363.1
The table entries referencing Recommendation Q.931 refer to the encoding in the bearer capability information element of Q.931, not to the low layer information element.
参考建议Q.931的表条目指的是Q.931的承载能力信息元素中的编码,而不是低层信息元素。
PropertyID Tag Type Value
PropertyID标记类型值
TMR 9001 1 octet Transmission Medium Requirement (Q.763) Bits 87654321 -------- 00000000 speech 00000001 spare 00000010 64 kbit/s unrestricted
TMR 9001 1 octet Transmission Medium Requirement (Q.763) Bits 87654321 -------- 00000000 speech 00000001 spare 00000010 64 kbit/s unrestricted
00000011 3.1 kHz audio 00000100 reserved for alternate speech (service 2)/64 kbit/s unrestricted (service 1) 00000101 reserved for alternate 64 kbit/s unrestricted (service 1)/speech (service 2) 00000110 64 kbit/s preferred
00000011 3.1 kHz音频00000100预留用于备用语音(服务2)/64 kbit/s非限制(服务1)00000101预留用于备用64 kbit/s非限制(服务1)/首选语音(服务2)00000110 64 kbit/s
The assigned codepoints listed below are all for unrestricted service. 00000111 2 x 64 kbit/s 00001000 384 kbit/s 00001001 1536 kbit/s 00001010 1920 kbit/s 00001011 through 00001111 spare 00010000 through 00101010: 3 x 64 kbit/s through 29 x 64 kbit/s except 00010011 spare 00100101 spare
下面列出的指定代码点都是用于不受限制的服务。00000111 2 x 64 kbit/s 0000100384 kbit/s 00001001 1536 kbit/s 00001010 1920 kbit/s 00001011至00001111备件00010000至00101010:3 x 64 kbit/s至29 x 64 kbit/s备件00100101备件除外
00101011 through 11111111 spare Ref.: ITU-T Q.763
00101011至11111111备用参考:ITU-T Q.763
TMRSR 9002 1 octet Transmission Medium Requirement Subrate 0 unspecified 1 8 kbit/s 2 16 kbit/s 3 32 kbit/s
TMRSR 9002 1八位字节传输介质要求子速率0未指定1 8 kbit/s 2 16 kbit/s 3 32 kbit/s
Contcheck 9003 Boolean Continuity Check 0 continuity check not required on this circuit 1 continuity check required on this circuit Ref.: ITU-T Q.763
Contcheck 9003布尔导通性检查0本电路不需要导通性检查1本电路需要导通性检查参考:ITU-T Q.763
ITC 9004 5 bits Information Transfer Capability Bits 5 4 3 2 1 --------- 0 0 0 0 0 Speech 0 1 0 0 0 Unrestricted digital information 0 1 0 0 1 Restricted digital information 1 0 0 0 0 3.1 kHz audio 1 0 0 0 1 Unrestricted digital information with tones/announcements 1 1 0 0 0 Video All other values are reserved. Ref.: ITU-T Q.763
ITC 9004 5 bits Information Transfer Capability Bits 5 4 3 2 1 --------- 0 0 0 0 0 Speech 0 1 0 0 0 Unrestricted digital information 0 1 0 0 1 Restricted digital information 1 0 0 0 0 3.1 kHz audio 1 0 0 0 1 Unrestricted digital information with tones/announcements 1 1 0 0 0 Video All other values are reserved. Ref.: ITU-T Q.763
TransMode 9005 2 bits Transfer Mode Bits 2 1 --- 0 0 Circuit mode 1 0 Packet mode Ref.: ITU-T Q.931
TransMode 9005 2 bits Transfer Mode Bits 2 1 --- 0 0 Circuit mode 1 0 Packet mode Ref.: ITU-T Q.931
TransRate 9006 5 bits Transfer Rate Bits 5 4 3 2 1 --------- 0 0 0 0 0 This code shall be used for packet mode calls 1 0 0 0 0 64 kbit/s 1 0 0 0 1 2 x 64 kbit/s 1 0 0 1 1 384 kbit/s 1 0 1 0 1 1536 kbit/s 1 0 1 1 1 1920 kbit/s 1 1 0 0 0 Multirate (64 kbit/s base rate) Ref.: ITU-T Q.931
TransRate 9006 5 bits Transfer Rate Bits 5 4 3 2 1 --------- 0 0 0 0 0 This code shall be used for packet mode calls 1 0 0 0 0 64 kbit/s 1 0 0 0 1 2 x 64 kbit/s 1 0 0 1 1 384 kbit/s 1 0 1 0 1 1536 kbit/s 1 0 1 1 1 1920 kbit/s 1 1 0 0 0 Multirate (64 kbit/s base rate) Ref.: ITU-T Q.931
MULT 9007 7 bits Rate Multiplier Any value from 2 to n (maximum number of B-channels) Ref.: ITU-T Q.931
MULT 9007 7位速率乘法器2到n之间的任意值(最大B通道数)参考:ITU-T Q.931
layer1prot 9008 5 bits User Information Layer 1 Protocol Bits 5 4 3 2 1 --------- 0 0 0 0 1 ITU-T standardized rate adaption V.110 and X.30. 0 0 0 1 0 Recommendation G.711 m-law 0 0 0 1 1 Recommendation G.711 A-law 0 0 1 0 0 Recommendation G.721 32 kbit/s ADPCM and Recommendation I.460 0 0 1 0 1 Recommendations H.221 and H.242 0 0 1 1 0 Recommendations H.223 and H.245 0 0 1 1 1 Non-ITU-T standardized rate adaption. 0 1 0 0 0 ITU-T standardized rate adaption V.120. 0 1 0 0 1 ITU-T standardized rate adaption X.31 HDLC flag stuffing All other values are reserved. Ref.: ITU Recommendation Q.931
layer1prot 9008 5 bits User Information Layer 1 Protocol Bits 5 4 3 2 1 --------- 0 0 0 0 1 ITU-T standardized rate adaption V.110 and X.30. 0 0 0 1 0 Recommendation G.711 m-law 0 0 0 1 1 Recommendation G.711 A-law 0 0 1 0 0 Recommendation G.721 32 kbit/s ADPCM and Recommendation I.460 0 0 1 0 1 Recommendations H.221 and H.242 0 0 1 1 0 Recommendations H.223 and H.245 0 0 1 1 1 Non-ITU-T standardized rate adaption. 0 1 0 0 0 ITU-T standardized rate adaption V.120. 0 1 0 0 1 ITU-T standardized rate adaption X.31 HDLC flag stuffing All other values are reserved. Ref.: ITU Recommendation Q.931
syncasync 9009 Boolean Synchronous/Asynchronous 0 Synchronous data 1 Asynchronous data Ref.: ITU-T Q.931
syncasync 9009布尔同步/异步0同步数据1异步数据参考:ITU-T Q.931
negotiation 900A Boolean Negotiation 0 In-band negotiation possible 1 In-band negotiation not possible Ref.: ITU-T Q.931
协商900A布尔协商0带内协商可能1带内协商不可能参考:ITU-T Q.931
Userrate 900B 5 bits User Rate Bits 5 4 3 2 1
用户速率900B 5位用户速率位5 4 3 2 1
--------- 0 0 0 0 0 Rate is indicated by E-bits specified in Recommendation I.460 or may be negotiated in-band 0 0 0 0 1 0.6 kbit/s Recommendations V.6 and X.1 0 0 0 1 0 1.2 kbit/s Recommendation V.6 0 0 0 1 1 2.4 kbit/s Recommendations V.6 and X.1 0 0 1 0 0 3.6 kbit/s Recommendation V.6 0 0 1 0 1 4.8 kbit/s Recommendations V.6 and X.1 0 0 1 1 0 7.2 kbit/s Recommendation V.6 0 0 1 1 1 8 kbit/s Recommendation I.460 0 1 0 0 0 9.6 kbit/s Recommendations V.6 and X.1 0 1 0 0 1 14.4 kbit/s Recommendation V.6 0 1 0 1 0 16 kbit/s Recommendation I.460 0 1 0 1 1 19.2 kbit/s Recommendation V.6 0 1 1 0 0 32 kbit/s Recommendation I.460 0 1 1 0 1 38.4 kbit/s Recommendation V.110 0 1 1 1 0 48 kbit/s Recommendations V.6 and X.1 0 1 1 1 1 56 kbit/s Recommendation V.6 1 0 0 1 0 57.6 kbit/s Recommendation V.14 extended 1 0 0 1 1 28.8 kbit/s Recommendation V.110 1 0 1 0 0 24 kbit/s Recommendation V.110 1 0 1 0 1 0.1345 kbit/s Recommendation X.1 1 0 1 1 0 0.100 kbit/s Recommendation X.1 1 0 1 1 1 0.075/1.2 kbit/s Recommendations V.6 and X.1
--------- 0 0 0 0 0 Rate is indicated by E-bits specified in Recommendation I.460 or may be negotiated in-band 0 0 0 0 1 0.6 kbit/s Recommendations V.6 and X.1 0 0 0 1 0 1.2 kbit/s Recommendation V.6 0 0 0 1 1 2.4 kbit/s Recommendations V.6 and X.1 0 0 1 0 0 3.6 kbit/s Recommendation V.6 0 0 1 0 1 4.8 kbit/s Recommendations V.6 and X.1 0 0 1 1 0 7.2 kbit/s Recommendation V.6 0 0 1 1 1 8 kbit/s Recommendation I.460 0 1 0 0 0 9.6 kbit/s Recommendations V.6 and X.1 0 1 0 0 1 14.4 kbit/s Recommendation V.6 0 1 0 1 0 16 kbit/s Recommendation I.460 0 1 0 1 1 19.2 kbit/s Recommendation V.6 0 1 1 0 0 32 kbit/s Recommendation I.460 0 1 1 0 1 38.4 kbit/s Recommendation V.110 0 1 1 1 0 48 kbit/s Recommendations V.6 and X.1 0 1 1 1 1 56 kbit/s Recommendation V.6 1 0 0 1 0 57.6 kbit/s Recommendation V.14 extended 1 0 0 1 1 28.8 kbit/s Recommendation V.110 1 0 1 0 0 24 kbit/s Recommendation V.110 1 0 1 0 1 0.1345 kbit/s Recommendation X.1 1 0 1 1 0 0.100 kbit/s Recommendation X.1 1 0 1 1 1 0.075/1.2 kbit/s Recommendations V.6 and X.1
1 1 0 0 0 1.2/0.075 kbit/s Recommendations V.6 and X.1 1 1 0 0 1 0.050 kbit/s Recommendations V.6 and X.1 1 1 0 1 0 0.075 kbit/s Recommendations V.6 and X.1 1 1 0 1 1 0.110 kbit/s Recommendations V.6 and X.1 1 1 1 0 0 0.150 kbit/s Recommendations V.6 and X.1 1 1 1 0 1 0.200 kbit/s Recommendations V.6 and X.1 1 1 1 1 0 0.300 kbit/s Recommendations V.6 and X.1 1 1 1 1 1 12 kbit/s Recommendation V.6 All other values are reserved. Ref.: ITU-T Q.931 INTRATE 900C 2 bits Intermediate Rate Bits 2 1 --- 0 0 Not used 0 1 8 kbit/s 1 0 16 kbit/s 1 1 32 kbit/s Ref.: ITU-T Q.931
1 1 0 0 0 1.2/0.075 kbit/s Recommendations V.6 and X.1 1 1 0 0 1 0.050 kbit/s Recommendations V.6 and X.1 1 1 0 1 0 0.075 kbit/s Recommendations V.6 and X.1 1 1 0 1 1 0.110 kbit/s Recommendations V.6 and X.1 1 1 1 0 0 0.150 kbit/s Recommendations V.6 and X.1 1 1 1 0 1 0.200 kbit/s Recommendations V.6 and X.1 1 1 1 1 0 0.300 kbit/s Recommendations V.6 and X.1 1 1 1 1 1 12 kbit/s Recommendation V.6 All other values are reserved. Ref.: ITU-T Q.931 INTRATE 900C 2 bits Intermediate Rate Bits 2 1 --- 0 0 Not used 0 1 8 kbit/s 1 0 16 kbit/s 1 1 32 kbit/s Ref.: ITU-T Q.931
nictx 900D Boolean Network Independent Clock (NIC) on transmission 0 Not required to send data with network independent clock 1 Required to send data with network independent clock Ref.: ITU-T Q.931
传输0上的nictx 900D布尔网络独立时钟(NIC)不需要使用网络独立时钟发送数据1需要使用网络独立时钟发送数据参考:ITU-T Q.931
nicrx 900E Boolean Network independent clock (NIC) on reception 0 Cannot accept data with network independent clock (i.e., sender does not support this optional procedure) 1 Can accept data with network independent clock
nicrx 900E接收端的布尔网络独立时钟(NIC)0无法接受具有网络独立时钟的数据(即,发送方不支持此可选过程)1可以接受具有网络独立时钟的数据
(i.e., sender does support this optional procedure) Ref.: ITU-T Q.931
(即发送方不支持此可选程序)参考:ITU-T Q.931
flowconttx 900F Boolean Flow Control on transmission (Tx) 0 Not required to send data with flow control mechanism 1 Required to send data with flow control mechanism Ref.: ITU-T Q.931
flowconttx 900F传输上的布尔流控制(Tx)0不需要使用流控制机制发送数据1需要使用流控制机制发送数据参考:ITU-T Q.931
flowcontrx 9010 Boolean Flow control on reception (Rx) 0 Cannot accept data with flow control mechanism (i.e., sender does not support this optional procedure) 1 Can accept data with flow control mechanism (i.e., sender does support this optional procedure) Ref.: ITU-T Q.931
flowcontrx 9010接收时的布尔流控制(Rx)0无法使用流控制机制接受数据(即发送方不支持此可选过程)1可以使用流控制机制接受数据(即发送方不支持此可选过程)参考:ITU-T Q.931
rateadapthdr 9011 Boolean Rate adaption header/no header 0 Rate adaption header not included 1 Rate adaption header included Ref.: ITU-T Q.931
rateadapthdr 9011布尔速率自适应头/无头0速率自适应头不包括1速率自适应头包括参考:ITU-T Q.931
multiframe 9012 Boolean Multiple frame establishment support in data link 0 Multiple frame establishment not supported. Only UI frames allowed 1 Multiple frame establishment supported Ref.: ITU-T Q.931
数据链路中的多帧9012布尔多帧建立支持0不支持多帧建立。仅允许UI帧1支持多帧建立参考:ITU-T Q.931
OPMODE 9013 Boolean Mode of operation 0 Bit transparent mode of operation 1 Protocol sensitive mode of operation Ref.: ITU-T Q.931
OPMODE 9013布尔操作模式0位透明操作模式1协议敏感操作模式参考:ITU-T Q.931
llidnegot 9014 Boolean Logical link identifier negotiation 0 Default, LLI = 256 only 1 Full protocol negotiation Ref.: ITU-T Q.931
llidnegot 9014布尔逻辑链路标识符协商0默认值,LLI=256仅1完整协议协商参考:ITU-T Q.931
assign 9015 Boolean Assignor/assignee 0 Message originator is "default assignee" 1 Message originator is "assignor only" Ref.: ITU-T Q.931
assign 9015布尔赋值人/受让人0消息发起人为“默认受让人”1消息发起人为“仅转让人”参考:ITU-T Q.931
inbandneg 9016 Boolean In-band/out-band negotiation 0 Negotiation is done with USER INFORMATION messages on a temporary signalling connection 1 Negotiation is done in-band using logical link zero Ref.: ITU-T Q.931
inbandneg 9016布尔带内/带外协商0通过临时信令连接上的用户信息消息完成协商1使用逻辑链路0在带内完成协商参考:ITU-T Q.931
stopbits 9017 2 bits Number of stop bits Bits 2 1 --- 0 0 Not used 0 1 1 bit 1 0 1.5 bits 1 1 2 bits Ref.: ITU-T Q.931
stopbits 9017 2 bits Number of stop bits Bits 2 1 --- 0 0 Not used 0 1 1 bit 1 0 1.5 bits 1 1 2 bits Ref.: ITU-T Q.931
databits 9018 2 bits Number of data bits excluding parity bit if present Bits 2 1 --- 0 0 Not used 0 1 5 bits 1 0 7 bits 1 1 8 bits Ref.: ITU-T Q.931
databits 9018 2 bits Number of data bits excluding parity bit if present Bits 2 1 --- 0 0 Not used 0 1 5 bits 1 0 7 bits 1 1 8 bits Ref.: ITU-T Q.931
parity 9019 3 bits Parity information Bits 3 2 1
奇偶校验9019 3位奇偶校验信息位3 2 1
------ 0 0 0 Odd 0 1 0 Even 0 1 1 None 1 0 0 Forced to 0 1 0 1 Forced to 1 All other values are reserved. Ref.: ITU-T Q.931
------ 0 0 0 Odd 0 1 0 Even 0 1 1 None 1 0 0 Forced to 0 1 0 1 Forced to 1 All other values are reserved. Ref.: ITU-T Q.931
duplexmode 901A Boolean Mode duplex 0 Half duplex 1 Full duplex Ref.: ITU-T Q.931
双工模式901A布尔模式双工0半双工1全双工参考:ITU-T Q.931
modem 901B 6 bits Modem Type Bits 6 5 4 3 2 1 ----------- 0 0 0 0 0 0 through 0 0 0 1 0 1 National use 0 1 0 0 0 1 Rec. V.21 0 1 0 0 1 0 Rec. V.22 0 1 0 0 1 1 Rec. V.22 bis 0 1 0 1 0 0 Rec. V.23 0 1 0 1 0 1 Rec. V.26 0 1 1 0 0 1 Rec. V.26 bis 0 1 0 1 1 1 Rec. V.26 ter 0 1 1 0 0 0 Rec. V.27 0 1 1 0 0 1 Rec. V.27 bis 0 1 1 0 1 0 Rec. V.27 ter 0 1 1 0 1 1 Rec. V.29 0 1 1 1 0 1 Rec. V.32 0 1 1 1 1 0 Rec. V.34 1 0 0 0 0 0 through 1 0 1 1 1 1 National use 1 1 0 0 0 0 through 1 1 1 1 1 1 User specified Ref.: ITU-T Q.931
modem 901B 6 bits Modem Type Bits 6 5 4 3 2 1 ----------- 0 0 0 0 0 0 through 0 0 0 1 0 1 National use 0 1 0 0 0 1 Rec. V.21 0 1 0 0 1 0 Rec. V.22 0 1 0 0 1 1 Rec. V.22 bis 0 1 0 1 0 0 Rec. V.23 0 1 0 1 0 1 Rec. V.26 0 1 1 0 0 1 Rec. V.26 bis 0 1 0 1 1 1 Rec. V.26 ter 0 1 1 0 0 0 Rec. V.27 0 1 1 0 0 1 Rec. V.27 bis 0 1 1 0 1 0 Rec. V.27 ter 0 1 1 0 1 1 Rec. V.29 0 1 1 1 0 1 Rec. V.32 0 1 1 1 1 0 Rec. V.34 1 0 0 0 0 0 through 1 0 1 1 1 1 National use 1 1 0 0 0 0 through 1 1 1 1 1 1 User specified Ref.: ITU-T Q.931
layer2prot 901C 5 bits User information layer 2 protocol Bits 5 4 3 2 1 --------- 0 0 0 1 0 Rec. Q.921/I.441 0 0 1 1 0 Rec. X.25, link layer
layer2prot 901C 5 bits User information layer 2 protocol Bits 5 4 3 2 1 --------- 0 0 0 1 0 Rec. Q.921/I.441 0 0 1 1 0 Rec. X.25, link layer
0 1 1 0 0 LAN logical link control (ISO/IEC 8802 2) All other values are reserved. Ref.: ITU-T Q.931
0 1 1 0 LAN逻辑链路控制(ISO/IEC 8802 2)保留所有其他值。参考号:ITU-T Q.931
layer3prot 901D 5 bits User information layer 3 protocol Bits 5 4 3 2 1 --------- 0 0 0 1 0 ITU-T Q.931 0 0 1 1 0 ITU-T X.25, packet layer 0 1 0 1 1 ISO/IEC TR 9577 (Protocol identification in the network layer) All other values are reserved. Ref.: ITU-T Q.931
layer3prot 901D 5 bits User information layer 3 protocol Bits 5 4 3 2 1 --------- 0 0 0 1 0 ITU-T Q.931 0 0 1 1 0 ITU-T X.25, packet layer 0 1 0 1 1 ISO/IEC TR 9577 (Protocol identification in the network layer) All other values are reserved. Ref.: ITU-T Q.931
addlayer3prot 901E Octet Additional User Information layer 3 protocol Bits Bits 4 3 2 1 4 3 2 1 ------- ------- 1 1 0 0 1 1 0 0 Internet Protocol (RFC 791) (ISO/IEC TR 9577) 1 1 0 0 1 1 1 1 Point-to-point Protocol (RFC 1661) Ref.: ITU-T Q.931
addlayer3prot 901E Octet Additional User Information layer 3 protocol Bits Bits 4 3 2 1 4 3 2 1 ------- ------- 1 1 0 0 1 1 0 0 Internet Protocol (RFC 791) (ISO/IEC TR 9577) 1 1 0 0 1 1 1 1 Point-to-point Protocol (RFC 1661) Ref.: ITU-T Q.931
DialledN 901F 30 Dialled Number octets
拨号号码901F 30拨号号码八位字节
DiallingN 9020 30 Dialling Number octets
拨号9020 30拨号号码八位字节
ECHOCI 9021 Not Used. See H.248.1 E.13 for an example of possible Echo Control properties.
未使用ECHOCI 9021。有关可能的回波控制特性的示例,请参见H.248.1 E.13。
NCI 9022 1 octet Nature of Connection Indicators Bits 2 1 Satellite Indicator
NCI 9022 1连接指示器的八位字节性质位2 1卫星指示器
--- 0 0 no satellite circuit in the connection 0 1 one satellite circuit in the connection 1 0 two satellite circuits in the connection 1 1 spare
--- 0 0 no satellite circuit in the connection 0 1 one satellite circuit in the connection 1 0 two satellite circuits in the connection 1 1 spare
Bits 4 3 Continuity check --- indicator 0 0 continuity check not required 0 1 continuity check required on this circuit 1 0 continuity check performed on a previous circuit 1 1 spare
Bits 4 3 Continuity check --- indicator 0 0 continuity check not required 0 1 continuity check required on this circuit 1 0 continuity check performed on a previous circuit 1 1 spare
Bit 5 Echo control device - indicator 0 outgoing echo control device not included 1 outgoing echo control device included
第5位回波控制装置-指示器0不包括输出回波控制装置1包括输出回波控制装置
Bits 8 7 6 Spare Ref.: ITU-T Q.763
位8 7 6备用参考:ITU-T Q.763
USI 9023 Octet User Service Information string Ref.: ITU-T Q.763 Clause 3.57
USI 9023八位字节用户服务信息字符串参考:ITU-T Q.763第3.57条
PropertyID Property Type Value tag
PropertyID属性类型值标记
FMSDU A001 32-bit Forward Maximum CPCS-SDU Size: integer Maximum CPCS-SDU size sent in the direction from the calling user to the called user. Ref.: ITU-T Q.2931
FMSDU A001 32位前向最大CPCS-SDU大小:从主叫用户向被叫用户发送的整数最大CPCS-SDU大小。参考号:ITU-T Q.2931
BMSDU A002 32-bit Backwards Maximum CPCS-SDU Size: integer Maximum CPCS-SDU size sent in the direction from the called user to the calling user. Ref.: ITU-T Q.2931
BMSDU A002 32位向后最大CPCS-SDU大小:从被叫用户向主叫用户方向发送的整数最大CPCS-SDU大小。参考号:ITU-T Q.2931
SSCS See table See table See table in C.7 in C.7 in C.7 Additional values: VPI/VCI
SSC见C.7中C.7中的表C.7附加值:VPI/VCI
PropertyID Property Type Value tag
PropertyID属性类型值标记
SDP_V B001 String Protocol Version Ref.: RFC 2327
SDP_V B001字符串协议版本号:RFC 2327
SDP_O B002 String Owner/creator and session ID Ref.: RFC 2327
SDP_O B002字符串所有者/创建者和会话ID参考:RFC 2327
SDP_S B003 String Session name Ref.: RFC 2327
SDP_S B003字符串会话名称参考:RFC 2327
SDP_I B004 String Session identifier Ref.: RFC 2327
SDP_I B004字符串会话标识符参考:RFC 2327
SDP_U B005 String URI of descriptor Ref.: RFC 2327
描述符引用的SDP_B005字符串URI:RFC 2327
SDC_E B006 String email address Ref.: RFC 2327
SDC_E B006字符串电子邮件地址参考:RFC 2327
SDP_P B007 String phone number Ref.: RFC 2327
SDP_P B007字符串电话号码参考:RFC 2327
SDP_C B008 String Connection information Ref.: RFC 2327
SDP_C B008字符串连接信息参考:RFC 2327
SDP_B B009 String Bandwidth Information Ref.: RFC 2327
SDP_B B009字符串带宽信息参考:RFC 2327
SDP_Z B00A String Time zone adjustment Ref.: RFC 2327
SDP_Z B00A字符串时区调整参考:RFC 2327
SDP_K B00B String Encryption Key Ref.: RFC 2327
SDP_K B00B字符串加密密钥参考:RFC 2327
SDP_A B00C String Zero or more session attributes Ref.: RFC 2327
SDP_A B00C字符串零个或多个会话属性参考:RFC 2327
SDP_T B00D String Active Session Time Ref.: RFC 2327
SDP_T B00D字符串活动会话时间参考:RFC 2327
SDP_R B00E String Zero or more repeat times Reference: RFC 2327
SDP_R B00E字符串零或更多重复次数参考:RFC 2327
SDP_M B00F String Media type, port, transport and format Ref.: RFC 2327
SDP_M B00F字符串媒体类型、端口、传输和格式参考:RFC 2327
PropertyID Property Type Value tag
PropertyID属性类型值标记
OLC C001 Octet The value of H.245 OpenLogicalChannel structure. string Ref.: ITU-T H.245
OLC C001八位字节H.245 OpenLogicalChannel结构的值。字符串编号:ITU-T H.245
OLCack C002 Octet The value of H.245 string OpenLogicalChannelAck structure. Ref.: ITU-T H.245
OLCack C002八位字节H.245字符串OpenLogicalChannel结构的值。参考号:ITU-T H.245
OLCcnf C003 Octet The value of H.245 string OpenLogicalChannelConfirm structure. Ref.: ITU-T H.245
OLCcnf C003八位字节H.245字符串OpenLogicalChannel结构的值。参考号:ITU-T H.245
OLCrej C004 Octet The value of H.245 string OpenLogicalChannelReject structure. Ref.: ITU-T H.245
OLCrej C004八位字节H.245字符串OpenLogicalChannel拒绝结构的值。参考号:ITU-T H.245
CLC C005 Octet The value of H.245 string CloseLogicalChannel structure. Ref.: ITU-T H.245
CLC C005八位字节H.245字符串闭合逻辑通道结构的值。参考号:ITU-T H.245
CLCack C006 Octet The value of H.245 string CloseLogicalChannelAck structure. Ref.: ITU-T H.245
CLCack C006八位字节H.245字符串CloseLogicalChannel结构的值。参考号:ITU-T H.245
ANNEX D - Transport over IP
附件D-IP传输
Protocol messages defined in this RFC may be transmitted over UDP. When no port is provided by the peer (see 7.2.8), commands should be sent to the default port number: 2944 for text-encoded operation, or 2945 for binary-encoded operation. Responses must be sent to the address and port from which the corresponding commands were sent.
本RFC中定义的协议消息可以通过UDP传输。当对等方未提供任何端口时(见7.2.8),应将命令发送至默认端口号:2944用于文本编码操作,2945用于二进制编码操作。响应必须发送到发送相应命令的地址和端口。
ALF is a set of techniques that allows an application, as opposed to a stack, to affect how messages are sent to the other side. A typical ALF technique is to allow an application to change the order of messages sent when there is a queue after it has queued them. There is no formal specification for ALF. The procedures in Annex D.1 contain a minimum suggested set of ALF behaviours
ALF是一组技术,允许应用程序(而不是堆栈)影响消息发送到另一端的方式。一种典型的ALF技术是允许应用程序在对消息进行排队后,在存在队列时更改发送消息的顺序。ALF没有正式的规范。附录D.1中的程序包含一组建议的最低ALF行为
Implementors using IP/UDP with ALF should be aware of the restrictions of the MTU on the maximum message size.
在ALF中使用IP/UDP的实现者应该知道MTU对最大消息大小的限制。
Messages, being carried over UDP, may be subject to losses. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times. The transmission procedures shall thus provide an "At-Most-Once" functionality.
通过UDP传输的消息可能会丢失。在没有及时响应的情况下,命令会重复执行。大多数命令不是幂等的。例如,如果多次执行Add命令,MG的状态将变得不可预测。因此,传输程序应提供“最多一次”功能。
Peer protocol entities are expected to keep in memory a list of the responses that they sent to recent transactions and a list of the transactions that are currently outstanding. The transaction identifier of each incoming message is compared to the transaction identifiers of the recent responses sent to the same MId. If a match is found, the entity does not execute the transaction, but simply repeats the response. If no match is found, the message will be compared to the list of currently outstanding transactions. If a match is found in that list, indicating a duplicate transaction, the entity does not execute the transaction (see D.1.4 for procedures on sending TransactionPending).
对等协议实体需要在内存中保存它们发送给最近事务的响应列表和当前未完成的事务列表。将每个传入消息的事务标识符与发送到同一MId的最近响应的事务标识符进行比较。如果找到匹配项,则实体不执行事务,而只是重复响应。如果未找到匹配项,则会将消息与当前未完成事务的列表进行比较。如果在该列表中找到匹配项,表明存在重复交易,则实体不会执行该交易(有关发送TransactionPending的程序,请参阅D.1.4)。
The procedure uses a long timer value, noted LONG-TIMER in the following. The timer should be set larger than the maximum duration of a transaction, which should take into account the maximum number
该过程使用长定时器值,如下所示为长定时器。计时器的设置应大于事务的最大持续时间,这应考虑到最大数量
of repetitions, the maximum value of the repetition timer and the maximum propagation delay of a packet in the network. A suggested value is 30 seconds.
在重复次数中,重复计时器的最大值和数据包在网络中的最大传播延迟。建议值为30秒。
The copy of the responses may be destroyed either LONG-TIMER seconds after the response is issued, or when the entity receives a confirmation that the response has been received, through the "Response Acknowledgement parameter". For transactions that are acknowledged through this parameter, the entity shall keep a copy of the transaction-id for LONG-TIMER seconds after the response is issued, in order to detect and ignore duplicate copies of the transaction request that could be produced by the network.
响应的副本可以在响应发出后的长时间秒内销毁,或者在实体通过“响应确认参数”接收到已收到响应的确认时销毁。对于通过此参数确认的交易,实体应在响应发出后长时间保留交易id副本,以便检测和忽略网络可能产生的交易请求副本。
Transaction identifiers are 32-bit integer numbers. A Media Gateway Controller may decide to use a specific number space for each of the MGs that they manage, or to use the same number space for all MGs that belong to some arbitrary group. MGCs may decide to share the load of managing a large MG between several independent processes. These processes will share the same transaction number space. There are multiple possible implementations of this sharing, such as having a centralized allocation of transaction identifiers, or pre-allocating non-overlapping ranges of identifiers to different processes. The implementations shall guarantee that unique transaction identifiers are allocated to all transactions that originate from a logical MGC (identical mId). MGs can simply detect duplicate transactions by looking at the transaction identifier and mId only.
事务标识符是32位整数。媒体网关控制器可以决定为其管理的每个MG使用特定的数字空间,或者为属于某个任意组的所有MG使用相同的数字空间。MGC可能决定在多个独立进程之间分担管理大型MG的任务。这些进程将共享相同的事务编号空间。这种共享有多种可能的实现,例如事务标识符的集中分配,或者将不重叠的标识符范围预分配给不同的进程。实现应保证将唯一事务标识符分配给源自逻辑MGC(相同mId)的所有事务。MGs只需查看事务标识符和mId即可检测重复事务。
The TransactionResponse Acknowledgement parameter can be found in any message. It carries a set of "confirmed transaction-id ranges". Entities may choose to delete the copies of the responses to transactions whose id is included in "confirmed transaction-id ranges" received in the transaction response messages. They should silently discard further commands when the transaction-id falls within these ranges.
TransactionResponse确认参数可以在任何消息中找到。它携带一组“已确认的交易id范围”。实体可选择删除交易响应消息中收到的、其id包含在“已确认交易id范围”中的交易响应副本。当事务id在这些范围内时,它们应该悄悄地放弃进一步的命令。
The "confirmed transaction-id ranges" values shall not be used if more than LONG-TIMER seconds have elapsed since the MG issued its last response to that MGC, or when a MG resumes operation. In this situation, transactions should be accepted and processed, without any test on the transaction-id.
如果MG向该MGC发出最后一次响应后已超过长定时器秒,或MG恢复运行时,不得使用“确认交易id范围”值。在这种情况下,应该接受和处理事务,而不对事务id进行任何测试。
Messages that carry the "Transaction Response Acknowledgement" parameter may be transmitted in any order. The entity shall retain the "confirmed transaction-id ranges" received for LONG-TIMER seconds.
携带“事务响应确认”参数的消息可以以任何顺序传输。实体应将收到的“确认交易id范围”保留长时间秒。
In the binary encoding, if only the firstAck is present in a response acknowledgement (see A.2), only one transaction is acknowledged. If both firstAck and lastAck are present, then the range of transactions from firstAck to lastAck is acknowledged. In the text encoding, a horizontal dash is used to indicate a range of transactions being acknowledged (see B.2).
在二进制编码中,如果响应确认中仅存在firstAck(见a.2),则仅确认一个事务。如果firstAck和lastAck都存在,则确认从firstAck到lastAck的事务范围。在文本编码中,水平破折号用于表示正在确认的事务范围(见B.2)。
It is the responsibility of the requesting entity to provide suitable timeouts for all outstanding transactions, and to retry transactions when timeouts have been exceeded. Furthermore, when repeated transactions fail to be acknowledged, it is the responsibility of the requesting entity to seek redundant services and/or clear existing or pending connections.
请求实体有责任为所有未完成的事务提供适当的超时,并在超过超时时重试事务。此外,当重复交易无法确认时,请求实体有责任寻求冗余服务和/或清除现有或未决连接。
The specification purposely avoids specifying any value for the retransmission timers. These values are typically network dependent. The retransmission timers should normally estimate the timer value by measuring the time spent between the sending of a command and the return of a response. Implementations SHALL ensure that the algorithm used to calculate retransmission timing performs an exponentially increasing backoff of the retransmission timeout for each retransmission or repetition after the first one.
该规范有意避免为重传定时器指定任何值。这些值通常依赖于网络。重传计时器通常应通过测量发送命令和返回响应之间的时间来估计计时器值。实现应确保用于计算重传定时的算法在第一次重传或重复后,对每次重传超时执行指数递增退避。
NOTE - One possibility is to use the algorithm implemented in TCP-IP, which uses two variables:
注-一种可能性是使用TCP-IP中实现的算法,该算法使用两个变量:
- The average acknowledgement delay (AAD), estimated through an exponentially smoothed average of the observed delays.
- 平均确认延迟(AAD),通过观察到的延迟的指数平滑平均值进行估计。
- The average deviation (ADEV), estimated through an exponentially smoothed average of the absolute value of the difference between the observed delay and the current average. The retransmission timer, in TCP, is set to the sum of the average delay plus N times the average deviation. The maximum value of the timer should however be bounded for the protocol defined in this RFC, in order to guarantee that no repeated packet would be received by the gateways after LONG-TIMER seconds. A suggested maximum value is 4 seconds.
- 平均偏差(ADEV),通过观察到的延迟与当前平均值之差的绝对值的指数平滑平均值进行估计。TCP中的重传计时器设置为平均延迟加上N倍平均偏差之和。然而,对于本RFC中定义的协议,定时器的最大值应为有界值,以保证在长时间定时器秒后网关不会接收到重复的数据包。建议的最大值为4秒。
After any retransmission, the entity SHOULD do the following:
在任何重新传输后,实体应执行以下操作:
- It should double the estimated value of the average delay, AAD.
- 它应该是平均延迟AAD估计值的两倍。
- It should compute a random value, uniformly distributed between 0.5 AAD and AAD.
- 它应该计算一个随机值,均匀分布在0.5 AAD和AAD之间。
- It should set the retransmission timer to the sum of that random value and N times the average deviation.
- 它应该将重传计时器设置为该随机值和N倍平均偏差之和。
This procedure has two effects. Because it includes an exponentially increasing component, it will automatically slow down the stream of messages in case of congestion. Because it includes a random component, it will break the potential synchronization between notifications triggered by the same external event.
这个过程有两个效果。因为它包含了一个指数级增长的组件,它会在拥塞情况下自动降低消息流的速度。因为它包含一个随机组件,它将破坏由同一外部事件触发的通知之间的潜在同步。
Executing some transactions may require a long time. Long execution times may interact with the timer-based retransmission procedure. This may result either in an inordinate number of retransmissions, or in timer values that become too long to be efficient. Entities that can predict that a transaction will require a long execution time may send a provisional response, "Transaction Pending". They SHOULD send this response if they receive a repetition of a transaction that is still being executed.
执行某些事务可能需要很长时间。长执行时间可能与基于计时器的重传过程相互作用。这可能导致重新传输的次数过多,或者导致计时器值变得太长而无法发挥效率。能够预测事务将需要较长执行时间的实体可以发送临时响应“transaction Pending”。如果接收到仍在执行的事务的重复,则应发送此响应。
Entities that receive a Transaction Pending shall switch to a different repetition timer for repeating requests. The root Termination has a property (ProvisionalResponseTimerValue), which can be set to the requested maximum number of milliseconds between receipt of a command and transmission of the TransactionPending response. Upon receipt of a final response following receipt of provisional responses, an immediate confirmation shall be sent, and normal repetition timers shall be used thereafter. An entity that sends a provisional response, SHALL include the immAckRequired field in the ensuing final response, indicating that an immediate confirmation is expected. Receipt of a Transaction Pending after receipt of a reply shall be ignored.
接收待处理事务的实体应切换到不同的重复计时器以重复请求。根终止具有一个属性(临时ResponseTimerValue),可以将该属性设置为从接收命令到传输TransactionPending响应之间请求的最大毫秒数。在收到临时回复后,收到最终回复后,应立即发送确认函,随后应使用正常的重复计时器。发送临时响应的实体应在随后的最终响应中包含immAckRequired字段,表明预期会立即确认。在收到回复后,应忽略待处理交易的接收。
The protocol is organized as a set of transactions, each of which is composed of a request and a response, commonly referred to as an acknowledgement. The protocol messages, being carried over UDP, may be subject to losses. In the absence of a timely response, transactions are repeated. Entities are expected to keep in memory a
协议被组织为一组事务,每个事务由一个请求和一个响应组成,通常称为确认。通过UDP传输的协议消息可能会丢失。在没有及时响应的情况下,交易会重复进行。实体应保存在内存中
list of the responses that they sent to recent transactions, i.e., a list of all the responses they sent over the last LONG-TIMER seconds, and a list of the transactions that are currently being executed.
他们发送到最近事务的响应列表,即,他们在过去的长时间内发送的所有响应的列表,以及当前正在执行的事务的列表。
The repetition mechanism is used to guard against three types of possible errors:
重复机制用于防止三种可能的错误:
- transmission errors, when for example a packet is lost due to noise on a line or congestion in a queue;
- 传输错误,例如,当数据包由于线路上的噪声或队列中的拥塞而丢失时;
- component failure, when for example an interface to a entity becomes unavailable;
- 组件故障,例如,当实体的接口变得不可用时;
- entity failure, when for example an entire entity becomes unavailable.
- 实体故障,例如,当整个实体变得不可用时。
The entities should be able to derive from the past history an estimate of the packet loss rate due to transmission errors. In a properly configured system, this loss rate should be kept very low, typically less than 1%. If a Media Gateway Controller or a Media Gateway has to repeat a message more than a few times, it is very legitimate to assume that something else than a transmission error is occurring. For example, given a loss rate of 1%, the probability that five consecutive transmission attempts fail is 1 in 100 billion, an event that should occur less than once every 10 days for a Media Gateway Controller that processes 1000 transactions per second. (Indeed, the number of repetition that is considered excessive should be a function of the prevailing packet loss rate.) We should note that the "suspicion threshold", which we will call "Max1", is normally lower than the "disconnection threshold", which should be set to a larger value.
这些实体应该能够从过去的历史中得出由于传输错误导致的分组丢失率的估计值。在正确配置的系统中,此丢失率应保持非常低,通常小于1%。如果媒体网关控制器或媒体网关必须重复一条消息多次,则可以假设发生了传输错误以外的其他错误。例如,如果丢失率为1%,则五次连续传输尝试失败的概率为1000亿分之一,对于每秒处理1000个事务的媒体网关控制器,该事件应不到每10天发生一次。(事实上,被认为过多的重复次数应该是当前数据包丢失率的函数。)我们应该注意到,我们称之为“Max1”的“怀疑阈值”通常低于“断开阈值”,而“断开阈值”应该设置为更大的值。
A classic retransmission algorithm would simply count the number of successive repetitions, and conclude that the association is broken after retransmitting the packet an excessive number of times (typically between 7 and 11 times.) In order to account for the possibility of an undetected or in progress "failover", we modify the classic algorithm so that if the Media Gateway receives a valid ServiceChange message announcing a failover, it will start transmitting outstanding commands to that new MGC. Responses to commands are still transmitted to the source address of the command.
经典的重传算法只需计算连续重复的次数,并得出结论,在重传数据包的次数过多(通常在7到11次之间)后,关联被破坏,以考虑未检测到或正在进行的“故障转移”的可能性,我们修改了经典算法,这样,如果媒体网关接收到宣布故障转移的有效ServiceChange消息,它将开始向新的MGC发送未完成的命令。对命令的响应仍然传输到命令的源地址。
In order to automatically adapt to network load, this RFC specifies exponentially increasing timers. If the initial timer is set to 200 milliseconds, the loss of a fifth retransmission will be detected after about 6 seconds. This is probably an acceptable waiting delay to detect a failover. The repetitions should continue after that delay not only in order to perhaps overcome a transient connectivity
为了自动适应网络负载,此RFC指定了指数增长的计时器。如果初始计时器设置为200毫秒,则在大约6秒后将检测到第五次重新传输的丢失。这可能是检测故障转移的可接受等待延迟。在该延迟之后,重复应继续进行,而不仅仅是为了克服瞬态连接
problem, but also in order to allow some more time for the execution of a failover (waiting a total delay of 30 seconds is probably acceptable).
问题,但也是为了给故障转移的执行留出更多的时间(等待30秒的总延迟可能是可以接受的)。
It is, however, important that the maximum delay of retransmissions be bounded. Prior to any retransmission, it is checked that the time elapsed since the sending of the initial datagram is no greater than T-MAX. If more than T-MAX time has elapsed, the MG concludes that the MGC has failed, and it begins its recovery process as described in section 11.5. If the MG retries to connect to the current MGC it shall use a ServiceChange with ServiceChangeMethod set to Disconnected so that the new MGC will be aware that the MG lost one or more transactions. The value T-MAX is related to the LONG-TIMER value: the LONG-TIMER value is obtained by adding to T MAX the maximum propagation delay in the network.
然而,重要的是,重传的最大延迟是有界的。在任何重传之前,检查初始数据报发送后经过的时间是否不超过T-MAX。如果超过T-MAX时间,MG认为MGC已失败,并按照第11.5节所述开始其恢复过程。如果MG重试连接到当前MGC,则应使用ServiceChange,并将ServiceChangeMethod设置为Disconnected,以便新MGC知道MG丢失了一个或多个事务。值T-MAX与长定时器值相关:长定时器值是通过将网络中的最大传播延迟加在T MAX上获得的。
Protocol messages as defined in this RFC may be transmitted over TCP. When no port is specified by the other side (see 7.2.8), the commands should be sent to the default port. The defined protocol has messages as the unit of transfer, while TCP is a stream-oriented protocol. TPKT, according to RFC 1006, SHALL be used to delineate messages within the TCP stream.
本RFC中定义的协议消息可通过TCP传输。当另一方未指定端口时(见7.2.8),应将命令发送至默认端口。定义的协议将消息作为传输单元,而TCP是面向流的协议。根据RFC 1006,TPKT应用于描述TCP流中的消息。
In a transaction-oriented protocol, there are still ways for transaction requests or responses to be lost. As such, it is recommended that entities using TCP transport implement application level timers for each request and each response, similar to those specified for application level framing over UDP.
在面向事务的协议中,仍然存在丢失事务请求或响应的方法。因此,建议使用TCP传输的实体为每个请求和每个响应实现应用程序级计时器,类似于为UDP上的应用程序级帧指定的计时器。
Messages, being carried over TCP, are not subject to transport losses, but loss of a transaction request or its reply may nonetheless be noted in real implementations. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times.
通过TCP传输的消息不会受到传输丢失的影响,但在实际实现中可能会注意到事务请求或其回复的丢失。在没有及时响应的情况下,命令会重复执行。大多数命令不是幂等的。例如,如果多次执行Add命令,MG的状态将变得不可预测。
To guard against such losses, it is recommended that entities follow the procedures in D.1.1.
为防止此类损失,建议实体遵循D.1.1中的程序。
For the same reasons, it is possible that transaction replies may be lost even with a reliable delivery protocol such as TCP. It is recommended that entities follow the procedures in D.1.2.2.
出于同样的原因,即使使用可靠的传递协议(如TCP),事务回复也可能丢失。建议实体遵循D.1.2.2中的程序。
With reliable delivery, the incidence of loss of a transaction request or reply is expected to be very low. Therefore, only simple timer mechanisms are required. Exponential back-off algorithms should not be necessary, although they could be employed where, as in an MGC, the code to do so is already required, since MGCs must implement ALF/UDP as well as TCP.
在可靠交付的情况下,交易请求或回复丢失的发生率预计将非常低。因此,只需要简单的计时器机制。指数退避算法应该是不必要的,尽管它们可以在MGC中已经需要代码的地方使用,因为MGC必须实现ALF/UDP以及TCP。
As with UDP, executing some transactions may require a long time. Entities that can predict that a transaction will require a long execution time may send a provisional response, "Transaction Pending". They should send this response if they receive a repetition of a transaction that is still being executed.
与UDP一样,执行某些事务可能需要很长时间。能够预测事务将需要较长执行时间的实体可以发送临时响应“transaction Pending”。如果接收到仍在执行的事务的重复,则应发送此响应。
Entities that receive a Transaction Pending shall switch to a longer repetition timer for that transaction.
接收待决事务的实体应切换到该事务的较长重复计时器。
Entities shall retain Transactions and replies until they are confirmed. The basic procedure of D.1.4 should be followed, but simple timer values should be sufficient. There is no need to send an immediate confirmation upon receipt of a final response.
实体应保留交易和回复,直至确认。应遵循D.1.4的基本程序,但简单的计时器值应足够。无需在收到最终回复后立即发送确认。
TCP provides ordered delivery of transactions. No special procedures are required. It should be noted that ALF/UDP allows sending entity to modify its behaviour under congestion, and in particular, could reorder transactions when congestion is encountered. TCP could not achieve the same results.
TCP提供事务的有序传递。不需要特别程序。应该注意的是,ALF/UDP允许发送实体在拥塞情况下修改其行为,特别是在遇到拥塞时可以重新排序事务。TCP无法实现相同的结果。
ANNEX E - Basic packages
附件E-基本包
This annex contains definitions of some packages for use with Recommendation H.248.1.
本附件包含与建议H.248.1一起使用的一些包装的定义。
PackageID: g (0x0001) Version: 1 Extends: None
PackageID:g(0x0001)版本:1扩展:无
Description: Generic package for commonly encountered items.
描述:常见项目的通用包。
None.
没有一个
Cause
原因
EventID: cause (0x0001) Generic error event
EventID:原因(0x0001)一般错误事件
EventsDescriptor parameters: None
EventsDescriptor参数:无
ObservedEvents Descriptor Parameters:
ObservedEvents描述符参数:
General Cause ParameterID: Generalcause (0x0001)
一般原因参数ID:一般原因(0x0001)
This parameter groups the failures into six groups, which the MGC may act upon.
此参数将故障分为六组,MGC可对其采取行动。
Type: enumeration
类型:枚举
Possible values: "NR" Normal Release (0x0001) "UR" Unavailable Resources (0x0002) "FT" Failure, Temporary (0x0003) "FP" Failure, Permanent (0x0004) "IW" Interworking Error (0x0005) "UN" Unsupported (0x0006)
可能值:“NR”正常释放(0x0001)“UR”不可用资源(0x0002)“FT”故障、临时(0x0003)“FP”故障、永久(0x0004)“IW”互通错误(0x0005)“UN”不受支持(0x0006)
Failure Cause ParameterID: Failurecause (0x0002)
故障原因参数ID:故障原因(0x0002)
Possible values: OCTET STRING
可能值:八进制字符串
Description: The Failure Cause is the value generated by the Released equipment, i.e., a released network connection. The concerned value is defined in the appropriate bearer control protocol.
说明:故障原因是释放的设备产生的值,即释放的网络连接。相关值在适当的承载控制协议中定义。
Signal Completion
信号完成
EventID: sc (0x0002)
事件ID:sc(0x0002)
Indicates the termination of a signal for which the notifyCompletion parameter was set to enable reporting of a completion event. For further procedural description, see 7.1.1, 7.1.17 and 7.2.7.
指示信号的终止,notifyCompletion参数已设置为启用完成事件报告。有关进一步的程序说明,请参见7.1.1、7.1.17和7.2.7。
EventsDescriptor parameters: None
EventsDescriptor参数:无
ObservedEvents Descriptor parameters:
ObservedEvents描述符参数:
Signal Identity ParameterID: SigID (0x0001)
信号标识参数ID:SigID(0x0001)
This parameter identifies the signal which has terminated. For a signal that is contained in a signal list, the signal list identity parameter should also be returned indicating the appropriate list.
此参数标识已终止的信号。对于包含在信号列表中的信号,还应返回指示适当列表的信号列表标识参数。
Type: Binary: octet (string), Text: string
Type: Binary: octet (string), Text: string
Possible values: a signal which has terminated. A signal shall be identified using the pkgdName syntax without wildcarding.
可能值:已终止的信号。应使用pkgdName语法识别信号,无需通配符。
Termination Method ParameterID: Meth (0x0002)
终止方法参数ID:Meth(0x0002)
Indicates the means by which the signal terminated.
指示信号终止的方式。
Type: enumeration
类型:枚举
Possible values: "TO" (0x0001) Signal timed out or otherwise completed on its own "EV" (0x0002) Interrupted by event "SD" (0x0003) Halted by new Signals descriptor "NC" (0x0004) Not completed, other cause
可能值:“至”(0x0001)信号超时或自行完成“EV”(0x0002),被事件“SD”(0x0003)中断,由新信号描述符“NC”(0x0004)停止,未完成,其他原因
Signal List ID ParameterID: SLID (0x0003)
信号列表ID参数ID:滑动(0x0003)
Indicates to which signal list a signal belongs. The SignalList ID is only returned in cases where the signal resides in a signal list.
指示信号所属的信号列表。仅当信号位于信号列表中时,才会返回信号列表ID。
Type: integer
类型:整数
Possible values: any integer
可能值:任意整数
None.
没有一个
None.
没有一个
PackageID: root (0x0002) Version: 1 Extends: None
PackageID:root(0x0002)版本:1扩展:无
Description: This package defines Gateway wide properties.
描述:此包定义网关范围的属性。
MaxNrOfContexts PropertyID: maxNumberOfContexts (0x0001)
MaxNrOfContexts属性ID:maxNumberOfContexts(0x0001)
The value of this property gives the maximum number of contexts that can exist at any time. The NULL context is not included in this number.
此属性的值提供了在任何时候都可以存在的最大上下文数。此数字中不包括空上下文。
Type: double
类型:双
Possible values: 1 and up
可能值:1及以上
Defined in: TerminationState
在中定义:TerminationState
Characteristics: read only
特点:只读
MaxTerminationsPerContext PropertyID: maxTerminationsPerContext (0x0002)
MaxTerminationsPerContext属性ID:MaxTerminationsPerContext(0x0002)
The maximum number of allowed terminations in a context, see 6.1
上下文中允许的最大终止数,请参见6.1
Type: integer
类型:整数
Possible values: any integer
可能值:任意整数
Defined in: TerminationState
在中定义:TerminationState
Characteristics: read only
特点:只读
normalMGExecutionTime PropertyId: normalMGExecutionTime (0x0003)
normalMGExecutionTime属性ID:normalMGExecutionTime(0x0003)
Settable by the MGC to indicate the interval within which the MGC expects a response to any transaction from the MG (exclusive of network delay)
可由MGC设置,以指示MGC期望MG对任何事务做出响应的时间间隔(不包括网络延迟)
Type: integer
类型:整数
Possible values: any integer, represents milliseconds
可能值:任何整数,表示毫秒
Defined in: TerminationState
在中定义:TerminationState
Characteristics: read / write
特征:读/写
normalMGCExecutionTime PropertyId: normalMGCExecutionTime (0x0004)
NormalMgceExecutionTime属性ID:NormalMgceExecutionTime(0x0004)
Settable by the MGC to indicate the interval within which the MG should expects a response to any transaction from the MGC (exclusive of network delay)
可由MGC设置,以指示MG期望MGC对任何事务做出响应的时间间隔(不包括网络延迟)
Type: integer
类型:整数
Possible values: any integer, represents milliseconds
可能值:任何整数,表示毫秒
Defined in: TerminationState
在中定义:TerminationState
Characteristics: read / write
特征:读/写
MGProvisionalResponseTimerValue PropertyId: MGProvisionalResponseTimerValue (0x0005)
MGTemperationalResponseTimerValue属性ID:MGTemperationalResponseTimerValue(0x0005)
Indicates the time within which the MGC should expect a Pending Response from the MG if a Transaction cannot be completed.
指示如果事务无法完成,MGC应期望MG做出挂起响应的时间。
Initially set to normalMGExecutionTime plus network delay, but may be lowered.
最初设置为normalMGExecutionTime加上网络延迟,但可能会降低。
Type: Integer
类型:整数
Possible Values: any integer, represents milliseconds
可能值:任何整数,表示毫秒
Defined in: TerminationState
在中定义:TerminationState
Characteristics: read / write
特征:读/写
MGCProvisionalResponseTimerValue PropertyId: MGCProvisionalResponseTimerValue (0x0006)
MGCProvisionalResponseTimerValue属性ID:MGCProvisionalResponseTimerValue(0x0006)
Indicates the time within which the MG should expect a Pending Response from the MGC if a Transaction cannot be completed. Initially set to normalMGCExecutionTime plus network delay, but may be lowered.
指示如果事务无法完成,MG应期望MGC做出挂起响应的时间。最初设置为NormalMgceExecutionTime加上网络延迟,但可能会降低。
Type: Integer
类型:整数
Possible Values: any integer, represents milliseconds
可能值:任何整数,表示毫秒
Defined in: TerminationState
在中定义:TerminationState
Characteristics: read / write
特征:读/写
None.
没有一个
None.
没有一个
None.
没有一个
None.
没有一个
PackageID: tonegen (0x0003) Version: 1 Extends: None
PackageID:tonegen(0x0003)版本:1扩展:无
Description:
说明:
This package defines signals to generate audio tones. This package does not specify parameter values. It is intended to be extendable. Generally, tones are defined as an individual signal with a parameter, ind, representing "interdigit" time delay, and a tone id to be used with playtones. A tone id should be kept consistent with any tone generation for the same tone. MGs are expected to be provisioned with the characteristics of appropriate tones for the country in which the MG is located.
此软件包定义用于生成音频音调的信号。此包不指定参数值。它是可扩展的。通常,音调被定义为具有参数ind(表示“交指”时间延迟)和音调id(用于播放音调)的单个信号。音调id应与同一音调的任何音调生成保持一致。MG应具有MG所在国家的适当音调特征。
Designed to be extended only.
仅用于扩展。
None.
没有一个
None.
没有一个
Play tone SignalID: pt (0x0001)
播放音信号ID:pt(0x0001)
Plays audio tone over an audio channel
通过音频通道播放音频音调
Signal Type: Brief
信号类型:简要
Duration: Provisioned
持续时间:已设置
Additional parameters:
其他参数:
Tone id list ParameterID: tl (0x0001)
音调id列表参数:tl(0x0001)
Type: list of tone ids
类型:音调ID列表
List of tones to be played in sequence. The list SHALL contain one or more tone ids.
按顺序播放的音调列表。该列表应包含一个或多个音调ID。
Inter signal duration ParameterID: ind (0x0002)
信号间持续时间参数:ind(0x0002)
Type: integer
类型:整数
Timeout between two consecutive tones in milliseconds
两个连续音调之间的超时(毫秒)
No tone ids are specified in this package. Packages that extend this package can add possible values for tone id as well as adding individual tone signals.
此包中未指定音调ID。扩展此包的包可以为音调id添加可能的值,也可以添加单个音调信号。
None.
没有一个
None.
没有一个
PackageID: tonedet (0x0004) Version: 1 Extends: None
PackageID:tonedet(0x0004)版本:1扩展:无
This Package defines events for audio tone detection. Tones are selected by name (tone id). MGs are expected to be provisioned with the characteristics of appropriate tones for the country in which the MG is located.
此包定义音频音调检测的事件。按名称(音调id)选择音调。MG应具有MG所在国家的适当音调特征。
Designed to be extended only: This package does not specify parameter values. It is intended to be extendable.
仅设计为扩展:此包不指定参数值。它是可扩展的。
None.
没有一个
Start tone detected EventID: std, 0x0001
检测到启动音EventID:std,0x0001
Detects the start of a tone. The characteristics of positive tone detection are implementation dependent.
检测音调的开始。肯定音调检测的特征取决于实现。
EventsDescriptor parameters:
EventsDescriptor参数:
Tone id list ParameterID: tl (0x0001)
音调id列表参数:tl(0x0001)
Type: list of tone ids
类型:音调ID列表
Possible values: The only tone id defined in this package is "wild card" which is "*" in text encoding and 0x0000 in binary. Extensions to this package would add possible values for tone id. If tl is "wild card", any tone id is detected.
可能值:此包中定义的唯一音调id是“通配符”,文本编码为“*”,二进制编码为0x0000。此包的扩展将为音调id添加可能的值。如果tl为“通配符”,则会检测到任何音调id。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Tone id ParameterID: tid (0x0003)
音调id参数id:tid(0x0003)
Type: enumeration
类型:枚举
Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add additional possible values for tone id.
可能的值:上面定义的“通配符”是此包中定义的唯一值。此包的扩展将为音调id添加其他可能的值。
End tone detected EventID: etd, 0x0002
检测到结束音EventID:etd,0x0002
Detects the end of a tone.
检测音调的结束。
EventDescriptor parameters:
EventDescriptor参数:
Tone id list ParameterID: tl (0x0001)
音调id列表参数:tl(0x0001)
Type: enumeration or list of enumerated types
类型:枚举或枚举类型列表
Possible values: No possible values are specified in this package. Extensions to this package would add possible values for tone id.
可能值:此包中未指定可能值。此包的扩展将为音调id添加可能的值。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Tone id ParameterID: tid (0x0003)
音调id参数id:tid(0x0003)
Type: enumeration
类型:枚举
Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add possible values for tone id.
可能的值:上面定义的“通配符”是此包中定义的唯一值。此包的扩展将为音调id添加可能的值。
Duration ParameterId: dur (0x0002)
持续时间参数ID:dur(0x0002)
Type: integer, in milliseconds
类型:整数,以毫秒为单位
This parameter contains the duration of the tone from first detection until it stopped.
此参数包含从第一次检测到停止的音调持续时间。
Long tone detected EventID: ltd, 0x0003
检测到长音EventID:ltd,0x0003
Detects that a tone has been playing for at least a certain amount of time.
检测音调已播放至少一段时间。
EventDescriptor parameters:
EventDescriptor参数:
Tone id list ParameterID: tl (0x0001)
音调id列表参数:tl(0x0001)
Type: enumeration or list
类型:枚举或列表
Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add possible values for tone id.
可能的值:上面定义的“通配符”是此包中定义的唯一值。此包的扩展将为音调id添加可能的值。
Duration ParameterID: dur (0x0002)
持续时间参数ID:dur(0x0002)
Type: integer, duration to test against
类型:整数,测试的持续时间
Possible values: any legal integer, expressed in milliseconds
可能值:任何合法整数,以毫秒为单位
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Tone id ParameterID: tid (0x0003)
音调id参数id:tid(0x0003)
Type: Enumeration
类型:枚举
Possible values: No possible values are specified in this package. Extensions to this package would add possible values for tone id.
可能值:此包中未指定可能值。此包的扩展将为音调id添加可能的值。
None.
没有一个
None.
没有一个
None.
没有一个
PackageID: dg (0x0005) Version: 1 Extends: tonegen version 1
PackageID:dg(0x0005)版本:1扩展:tonegen版本1
This package defines the basic DTMF tones as signals and extends the allowed values of parameter tl of playtone in tonegen.
该软件包将基本DTMF音调定义为信号,并扩展了tonegen中playtone参数tl的允许值。
None.
没有一个
None.
没有一个
DTMF character 0 SignalID: d0 (0x0010)
DTMF字符0信号标识:d0(0x0010)
Generate DTMF 0 tone. The physical characteristic of DTMF 0 is defined in the gateway.
生成DTMF 0音。DTMF 0的物理特性在网关中定义。
Signal Type: Brief
信号类型:简要
Duration: Provisioned
持续时间:已设置
Additional parameters:
其他参数:
None.
没有一个
Additional values:
附加值:
d0 (0x0010) is defined as a tone id for playtone
d0(0x0010)被定义为playtone的音调id
The other DTMF characters are specified in exactly the same way. A table with all signal names and signal IDs is included. Note that each DTMF character is defined as both a signal and a tone id, thus extending the basic tone generation package. Also note that DTMF SignalIds are different from the names used in a digit map.
其他DTMF字符的指定方式完全相同。包括一个包含所有信号名称和信号ID的表。请注意,每个DTMF字符都定义为信号和音调id,因此扩展了基本音调生成包。还要注意,DTMF信号ID与数字映射中使用的名称不同。
Signal name Signal ID/Tone id
信号名称信号ID/音调ID
DTMF character 0 d0 (0x0010) DTMF character 1 d1 (0x0011) DTMF character 2 d2 (0x0012) DTMF character 3 d3 (0x0013) DTMF character 4 d4 (0x0014) DTMF character 5 d5 (0x0015) DTMF character 6 d6 (0x0016) DTMF character 7 d7 (0x0017) DTMF character 8 d8 (0x0018) DTMF character 9 d9 (0x0019) DTMF character * ds (0x0020) DTMF character # do (0x0021) DTMF character A da (0x001a) DTMF character B db (0x001b) DTMF character C dc (0x001c) DTMF character D dd (0x001d)
DTMF字符0D0(0x0010)DTMF字符1D1(0x0011)DTMF字符2D2(0x0012)DTMF字符3D3(0x0013)DTMF字符4D4(0x0014)DTMF字符5D5(0x0015)DTMF字符6D6(0x0016)DTMF字符7D7(0x0017)DTMF字符8D8(0x0018)DTMF字符9D9(0x0019)DTMF字符*ds(0x0020)DTMF字符*do(0x0021)双音多频字符A da(0x001a)双音多频字符B db(0x001b)双音多频字符C dc(0x001c)双音多频字符D dd(0x001d)
None.
没有一个
None.
没有一个
PackageID: dd (0x0006) Version: 1 Extends: tonedet version 1
PackageID:dd(0x0006)版本:1扩展:tonedet版本1
This package defines the basic DTMF tones detection. This Package extends the possible values of tone id in the "start tone detected" "end tone detected" and "long tone detected" events.
此软件包定义基本DTMF音调检测。此包扩展了“检测到开始音调”、“检测到结束音调”和“检测到长音调”事件中音调id的可能值。
Additional tone id values are all tone ids described in package dg (basic DTMF generator package).
附加音调id值是dg包(基本DTMF发生器包)中描述的所有音调id。
The following table maps DTMF events to digit map symbols as described in 7.1.14.
下表将DTMF事件映射为7.1.14中所述的数字映射符号。
DTMF Event Symbol
DTMF事件符号
d0 "0" d1 "1" d2 "2"
d0“0”d1“1”d2“2”
d3 "3" d4 "4" d5 "5" d6 "6" d7 "7" d8 "8" d9 "9" da "A" or "a" db "B" or "b" dc "C" or "c" dd "D" or "d" ds "E" or "e" do "F" or "f"
d3“3”d4“4”d5“5”d6“6”d7“7”d8“8”d9“9”da“A”或“A”db“B”或“B”dc“C”或“C”dd“D”或“D”ds“E”或“E”do“F”或“F”
None.
没有一个
DTMF digits
双音多频数字
EventIds are defined with the same names as the SignalIds defined in the table found in E.5.3.
EventID的定义名称与E.5.3表中定义的SignalID相同。
DigitMap Completion Event EventID: ce, 0x0004
DigitMap完成事件事件ID:ce,0x0004
Generated when a digit map completes as described in 7.1.14.
如7.1.14所述,数字映射完成时生成。
EventsDescriptor parameters: None.
EventsDescriptor参数:无。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
DigitString ParameterID: ds (0x0001)
数字字符串参数ID:ds(0x0001)
Type: string of digit map symbols (possibly empty) returned as a quotedString
类型:作为quotedString返回的数字映射符号字符串(可能为空)
Possible values: a sequence of the characters "0" through "9", "A" through "F", and the long duration modifier "Z".
可能的值:字符“0”到“9”、“a”到“F”以及长持续时间修饰符“Z”的序列。
Description: the portion of the current dial string as described in 7.1.14 which matched part or all of an alternative event sequence specified in the digit map.
描述:7.1.14中描述的当前拨号字符串部分,与数字映射中指定的部分或全部替代事件序列相匹配。
Termination Method ParameterID: Meth (0x0003)
终止方法参数ID:Meth(0x0003)
Type: enumeration
类型:枚举
Possible values:
可能值:
"UM" (0x0001) Unambiguous match
“UM”(0x0001)明确匹配
"PM" (0x0002) Partial match, completion by timer expiry or unmatched event
“PM”(0x0002)部分匹配,通过计时器到期或不匹配事件完成
"FM" (0x0003) Full match, completion by timer expiry or unmatched event
“FM”(0x0003)完全匹配,按计时器到期或不匹配事件完成
Description: indicates the reason for generation of the event. See the procedures in 7.1.14.
描述:指示生成事件的原因。见7.1.14中的程序。
None.
没有一个
None.
没有一个
Digit map processing is activated only if an events descriptor is activated that contains a digit map completion event as defined in Section E.6.2 and that digit map completion event contains an eventDM field in the requested actions as defined in Section 7.1.9. Other parameters such as KeepActive or embedded events of signals descriptors may also be present in the events descriptor and do not affect the activation of digit map processing.
仅当激活包含第E.6.2节中定义的数字映射完成事件且数字映射完成事件包含第7.1.9节中定义的请求操作中的eventDM字段的事件描述符时,才会激活数字映射处理。其他参数,例如信号描述符的KeepActive或嵌入式事件也可能存在于事件描述符中,并且不影响数字映射处理的激活。
PackageID: cg, 0x0007 Version: 1 Extends: tonegen version 1
PackageID:cg,0x0007版本:1扩展:tonegen版本1
This package defines the basic call progress tones as signals and extends the allowed values of the tl parameter of playtone in tonegen.
此软件包将基本通话进度音定义为信号,并扩展了tonegen中playtone的tl参数的允许值。
None.
没有一个
None.
没有一个
Dial Tone SignalID: dt (0x0030)
拨号音信号ID:dt(0x0030)
Generate dial tone. The physical characteristic of dial tone is available in the gateway.
生成拨号音。拨号音的物理特性在网关中可用。
Signal Type: TimeOut
信号类型:超时
Duration: Provisioned
持续时间:已设置
Additional parameters:
其他参数:
None.
没有一个
Additional values:
附加值:
dt (0x0030) is defined as a tone id for playtone
dt(0x0030)定义为playtone的音调id
The other tones of this package are defined in exactly the same way. A table with all signal names and signal IDs is included. Note that each tone is defined as both a signal and a tone id, thus extending the basic tone generation package.
此包的其他音调的定义方式完全相同。包括一个包含所有信号名称和信号ID的表。注意,每个音调被定义为信号和音调id,因此扩展了基本音调生成包。
Signal Name Signal ID/tone id
信号名称信号ID/音调ID
Dial Tone dt (0x0030) Ringing Tone rt (0x0031) Busy Tone bt (0x0032) Congestion Tone ct (0x0033) Special Information Tone sit(0x0034) Warning Tone wt (0x0035) Payphone Recognition Tone prt (0x0036) Call Waiting Tone cw (0x0037) Caller Waiting Tone cr (0x0038)
拨号音dt(0x0030)铃声rt(0x0031)忙音bt(0x0032)拥塞音ct(0x0033)特殊信息音sit(0x0034)警告音wt(0x0035)付费电话识别音prt(0x0036)呼叫等待音cw(0x0037)呼叫等待音cr(0x0038)
None.
没有一个
NOTE - The required set of tone ids corresponds to those defined in Recommendation E.180/Q.35. See Recommendation E.180/Q.35 for definition of the meanings of these tones.
注-所需的音调ID组与建议E.180/Q.35中定义的音调ID组相对应。这些音调含义的定义见建议E.180/Q.35。
PackageID: cd (0x0008) Version: 1 Extends: tonedet version 1
PackageID:cd(0x0008)版本:1扩展:tonedet版本1
This package defines the basic call progress detection tones. This package extends the possible values of tone id in the "start tone detected", "end tone detected" and "long tone detected" events.
此软件包定义基本的通话进度检测音调。此软件包扩展了“检测到开始音调”、“检测到结束音调”和“检测到长音调”事件中音调id的可能值。
Additional values
附加值
toneID values are defined for start tone detected, end tone detected and long tone detected with the same values as those in package cg (call progress tones generation package).
toneID值是为检测到的开始音、结束音和长音定义的,其值与包cg(呼叫进度音生成包)中的值相同。
The required set of tone ids corresponds to Recommendation E.180/Q.35. See Recommendation E.180/Q.35 for definition of the meanings of these tones.
所需的一组音调ID对应于建议E.180/Q.35。这些音调含义的定义见建议E.180/Q.35。
None.
没有一个
Events are defined as in the call progress tones generator package (cg) for the tones listed in the table of E.7.3.
事件定义为E.7.3表中所列音调的呼叫进度音调生成器包(cg)。
None.
没有一个
None.
没有一个
None.
没有一个
PackageID: al, 0x0009 Version: 1 Extends: None
PackageID:al,0x0009版本:1扩展:无
This package defines events and signals for an analog line.
该软件包定义模拟线路的事件和信号。
E.9.1 Properties
E.9.1 性质
None.
没有一个
onhook EventID: on (0x0004)
onhook事件ID:on(0x0004)
Detects handset going on hook. Whenever an events descriptor is activated that requests monitoring for an on-hook event and the line is already on-hook, then the MG shall behave according to the setting of the "strict" parameter.
检测手机挂机。每当激活一个请求监控挂机事件的事件描述符,且线路已经挂机时,MG应根据“strict”参数的设置进行操作。
EventDescriptor parameters:
EventDescriptor参数:
Strict Transition ParameterID: strict (0x0001)
严格转换参数ID:严格(0x0001)
Type: enumeration
类型:枚举
Possible values: "exact" (0x00), "state" (0x01), "failWrong" (0x02)
可能的值:“精确”(0x00)、“状态”(0x01)、“故障错误”(0x02)
"exact" means that only an actual hook state transition to on-hook is to be recognized;
“精确”是指仅识别实际的钩子状态转换为钩子状态;
"state" means that the event is to be recognized either if the hook state transition is detected or if the hook state is already on-hook;
“状态”是指如果检测到钩子状态转换,或者钩子状态已经处于钩子状态,则将识别事件;
"failWrong" means that if the hook state is already on-hook, the command fails and an error is reported.
“FailError”表示如果钩子状态已经处于钩子状态,则命令失败并报告错误。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Initial State ParameterID: init (0x0002)
初始状态参数ID:init(0x0002)
Type: Boolean
类型:布尔型
Possible values:
可能值:
"True" means that the event was reported because the line was already on-hook when the events descriptor containing this event was activated;
“True”表示报告该事件,因为在激活包含该事件的事件描述符时,该行已经挂起;
"False" means that the event represents an actual state transition to on-hook.
“False”表示事件表示到挂机的实际状态转换。
offhook EventID: of (0x0005)
摘机事件ID:of(0x0005)
Detects handset going off hook. Whenever an events descriptor is activated that requests monitoring for an off-hook event and the line is already off-hook, then the MG shall behave according to the setting of the "strict" parameter.
检测手机挂机。每当激活请求监控脱钩事件的事件描述符且线路已脱钩时,MG应根据“严格”参数的设置进行操作。
EventDescriptor parameters:
EventDescriptor参数:
Strict Transition ParameterID: strict (0x0001)
严格转换参数ID:严格(0x0001)
Type: enumeration
类型:枚举
Possible values: "exact" (0x00), "state" (0x01), "failWrong" (0x02)
可能的值:“精确”(0x00)、“状态”(0x01)、“故障错误”(0x02)
"exact" means that only an actual hook state transition to off-hook is to be recognized;
“精确”是指仅识别实际挂钩状态转换为脱钩状态;
"state" means that the event is to be recognized either if the hook state transition is detected or if the hook state is already off-hook;
“状态”是指如果检测到钩子状态转换,或者钩子状态已经脱离钩子,则识别事件;
"failWrong" means that if the hook state is already off-hook, the command fails and an error is reported.
“FailError”意味着如果钩子状态已经脱离钩子,则命令失败并报告错误。
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
Initial State ParameterID: init (0x0002)
初始状态参数ID:init(0x0002)
Type: Boolean
类型:布尔型
Possible values:
可能值:
"True" means that the event was reported because the line was already off-hook when the events descriptor containing this event was activated;
“True”表示报告该事件,因为在激活包含该事件的事件描述符时,该行已脱离挂钩;
"False" means that the event represents an actual state transition to off-hook.
“False”表示该事件表示实际状态转换为脱离连接。
flashhook EventID: fl, 0x0006
flashhook事件ID:fl,0x0006
Detects handset flash. A flash occurs when an onhook is followed by an offhook between a minimum and maximum duration.
检测手机闪光灯。在最小持续时间和最大持续时间之间,先挂接后挂接断开时会发生闪烁。
EventDescriptor parameters:
EventDescriptor参数:
Minimum duration ParameterID: mindur (0x0004)
最小持续时间参数:mindur(0x0004)
Type: integer in milliseconds
类型:以毫秒为单位的整数
Default value is provisioned.
已设置默认值。
Maximum duration ParameterID: maxdur (0x0005)
最大持续时间参数ID:maxdur(0x0005)
Type: integer in milliseconds
类型:以毫秒为单位的整数
Default value is provisioned.
已设置默认值。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
None
没有一个
ring SignalID: ri, 0x0002
环形信号ID:ri,0x0002
Applies ringing on the line
在线路上应用振铃
Signal Type: TimeOut
信号类型:超时
Duration: Provisioned
持续时间:已设置
Additional parameters:
其他参数:
Cadence ParameterID: cad (0x0006)
Cadence参数ID:cad(0x0006)
Type: list of integers representing durations of alternating on and off segments, constituting a complete ringing cycle starting with an on. Units in milliseconds
类型:表示交替接通和断开段持续时间的整数列表,构成从接通开始的完整振铃周期。单位(毫秒)
Default is fixed or provisioned. Restricted function MGs may ignore cadence values they are incapable of generating.
默认值是固定的或已设置的。受限函数MGs可能会忽略它们无法生成的节奏值。
Frequency ParameterID: freq (0x0007)
频率参数ID:freq(0x0007)
Type: integer in Hz
类型:以赫兹为单位的整数
Default is fixed or provisioned. Restricted function MGs may ignore frequency values they are incapable of generating.
默认值是固定的或已设置的。受限函数MGs可能忽略其无法生成的频率值。
None.
没有一个
If the MGC sets an EventsDescriptor containing a hook state transition event (on-hook or off-hook) with the "strict" (0x0001) parameter set to "failWrong", and the hook state is already what the transition implies, the execution of the command containing that EventsDescriptor fails. The MG SHALL include error code 540 "Unexpected initial hook state" in its reponse.
如果MGC将包含钩子状态转换事件(钩子上或钩子下)的EventsDescriptor设置为“strict”(0x0001)参数设置为“FailError”,并且钩子状态已经是转换所暗示的状态,则包含该EventsDescriptor的命令的执行将失败。MG应在其响应中包含错误代码540“意外初始挂钩状态”。
This package defines a new error code:
此程序包定义了一个新的错误代码:
540 - Unexpected initial hook state
540-意外的初始挂钩状态
The procedure for use of this code is given in E.9.5.
本规范的使用程序见E.9.5。
PackageID: ct (0x000a) Version: 1 Extends: None
PackageID:ct(0x000a)版本:1扩展:无
This package defines events and signals for continuity test. The continuity test includes provision of either a loopback or transceiver functionality.
该包定义了连续性测试的事件和信号。连续性测试包括提供环回或收发器功能。
None.
没有一个
Completion EventID: cmp, 0x0005
完成事件ID:cmp,0x0005
This event detects test completion of continuity test.
此事件检测连续性测试的测试完成。
EventDescriptor parameters
EventDescriptor参数
None.
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
Result ParameterID: res (0x0008)
结果参数:res(0x0008)
Type: enumeration
类型:枚举
Possible values: success (0x0001), failure (0x0000)
可能的值:成功(0x0001)、失败(0x0000)
Continuity test SignalID: ct (0x0003)
连续性测试信号ID:ct(0x0003)
Initiates sending of continuity test tone on the termination to which it is applied.
在应用连续性测试音的终端上启动连续性测试音的发送。
Signal Type: TimeOut
信号类型:超时
Default value is provisioned
已设置默认值
Additional parameters:
其他参数:
None.
没有一个
Respond SignalID: rsp (0x0004)
响应信号ID:rsp(0x0004)
The signal is used to respond to a continuity test. See E.10.5 for further explanation.
该信号用于响应连续性测试。更多说明见E.10.5。
Signal Type: On/Off
信号类型:开/关
Default duration is provisioned
已设置默认持续时间
Additional parameters:
其他参数:
None.
没有一个
None.
没有一个
When a MGC wants to initiate a continuity test, it sends a command to the MG containing:
当MGC想要启动连续性测试时,它会向MG发送一个命令,其中包含:
- a signals descriptor with the ct signal; and
- 具有所述ct信号的信号描述符;和
- an events descriptor containing the cmp event.
- 包含cmp事件的事件描述符。
Upon reception of a command containing the ct signal and cmp event, the MG initiates the continuity test tone for the specified Termination. If the return tone is detected and any other required conditions are satisfied before the signal times out, the cmp event shall be generated with the value of the result parameter equal to success. In all other cases, the cmp event shall be generated with the value of the result parameter equal to failure.
接收到包含ct信号和cmp事件的命令后,MG启动指定终端的连续性测试音。如果在信号超时之前检测到返回音且满足任何其他要求的条件,则应生成cmp事件,结果参数的值等于success。在所有其他情况下,生成cmp事件时,结果参数的值应等于故障。
When a MGC wants the MG to respond to a continuity test, it sends a command to the MG containing a signals descriptor with the rsp signal. Upon reception of a command with the rsp signal, the MG either applies a loopback or (for 2-wire circuits) awaits reception of a continuity test tone. In the loopback case, any incoming information shall be reflected back as outgoing information. In the 2-wire case, any time the appropriate test tone is received, the appropriate response tone should be sent. The MGC determines when to remove the rsp signal.
当MGC希望MG响应连续性测试时,它向MG发送一个命令,其中包含带有rsp信号的信号描述符。接收到带有rsp信号的命令后,MG应用环回或(对于双线电路)等待接收到连续性测试音。在环回情况下,任何传入信息应作为传出信息反射回来。在双线情况下,无论何时收到适当的测试音,都应发送适当的响应音。MGC确定何时删除rsp信号。
When a continuity test is performed on a Termination, no echo devices or codecs shall be active on that Termination.
在终端上执行连续性测试时,该终端上不得有激活的回波设备或编解码器。
Performing voice path assurance as part of continuity testing is provisioned by bilateral agreement between network operators.
作为连续性测试的一部分执行语音路径保证由网络运营商之间的双边协议规定。
(Informative Note) Example tones and test procedure details are given in Q.724 sections 7 and 8, Q.764 section 2.1.8 and Q.1902.4.
(资料性说明)Q.724第7节和第8节、Q.764第2.1.8节和Q.1902.4节给出了示例音调和测试程序细节。
PackageID: nt (0x000b) Version: 1 Extends: None
PackageID:nt(0x000b)版本:1扩展:无
This package defines properties of network terminations independent of network type.
此包定义独立于网络类型的网络终端的属性。
Maximum Jitter Buffer PropertyID: jit (0x0007)
最大抖动缓冲区属性ID:jit(0x0007)
This property puts a maximum size on the jitter buffer.
此属性为抖动缓冲区设置最大大小。
Type: integer in milliseconds
类型:以毫秒为单位的整数
Possible values: This property is specified in milliseconds.
可能值:此属性以毫秒为单位指定。
Defined in: LocalControlDescriptor
在中定义:LocalControlDescriptor
Characteristics: read/write
特征:读/写
network failure EventID: netfail, 0x0005
网络故障事件ID:netfail,0x0005
The termination generates this event upon detection of a failure due to external or internal network reasons.
当检测到由于外部或内部网络原因导致的故障时,终端将生成此事件。
EventDescriptor parameters
EventDescriptor参数
None.
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
cause ParameterID: cs (0x0001)
原因参数ID:cs(0x0001)
Type: string
类型:字符串
Possible values: any text string
可能值:任何文本字符串
This parameter may be included with the failure event to provide diagnostic information on the reason of failure.
此参数可能包含在故障事件中,以提供故障原因的诊断信息。
quality alert EventID: qualert, 0x0006
质量警报事件ID:qualert,0x0006
This property allows the MG to indicate a loss of quality of the network connection. The MG may do this by measuring packet loss, interarrival jitter, propagation delay and then indicating this using a percentage of quality loss.
此属性允许MG指示网络连接的质量损失。MG可以通过测量分组丢失、到达间抖动、传播延迟,然后使用质量损失百分比来指示这一点来做到这一点。
EventDescriptor parameters
EventDescriptor参数
Threshold ParameterId: th (0x0001)
阈值参数ID:th(0x0001)
Type: integer
类型:整数
Possible values: 0 to 99
可能值:0到99
Description: threshold for percent of quality loss measured, calculated based on a provisioned method, that could take into consideration packet loss, jitter, and delay for example. Event is triggered when calculation exceeds the threshold.
描述:测量的质量损失百分比阈值,根据规定的方法计算,可考虑数据包丢失、抖动和延迟等因素。当计算超过阈值时触发事件。
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
Threshold ParameterId: th (0x0001)
阈值参数ID:th(0x0001)
Type: integer
类型:整数
Possible values: 0 to 99
可能值:0到99
Description: percent of quality loss measured, calculated based on a provisioned method, that could take into consideration packet loss, jitter, and delay for example.
描述:测量的质量损失百分比,根据规定的方法计算,可考虑数据包丢失、抖动和延迟等因素。
None.
没有一个
Duration StatisticsID: dur (0x0001)
持续时间统计ID:dur(0x0001)
Description: provides duration of time the termination has been in the Context.
描述:提供终止在上下文中的持续时间。
Type: double, in milliseconds
类型:双精度,以毫秒为单位
Octets Sent StatisticID: os (0x0002)
发送的八位字节统计:os(0x0002)
Type: double
类型:双
Possible values: any 64-bit integer
可能值:任意64位整数
Octets Received StatisticID: or (0x0003)
统计接收的八位字节:or(0x0003)
Type: double
类型:双
Possible values: any 64-bit integer
可能值:任意64位整数
None.
没有一个
PackageID: rtp (0x000c) Version: 1 Extends: Network Package version 1
PackageID:rtp(0x000c)版本:1扩展:网络包版本1
This package is used to support packet-based multimedia data transfer by means of the Real-time Transport Protocol (RTP) [RFC 1889].
该包用于通过实时传输协议(RTP)[RFC 1889]支持基于包的多媒体数据传输。
None.
没有一个
Payload Transition EventID: pltrans, 0x0001
有效负载转换事件ID:pltrans,0x0001
This event detects and notifies when there is a transition of the RTP payload format from one format to another.
当RTP有效负载格式从一种格式转换为另一种格式时,此事件检测并通知。
EventDescriptor parameters
EventDescriptor参数
None.
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
ParameterName: rtppayload ParameterID: rtppltype, 0x01
参数名称:rtppayload参数ID:rtppltype,0x01
Type: list of enumerated types.
类型:枚举类型的列表。
Possible values: The encoding method shall be specified by using one or several valid encoding names, as defined in the RTP AV Profile or registered with IANA.
可能值:编码方法应使用RTP AV配置文件中定义的或IANA注册的一个或多个有效编码名称来指定。
None.
没有一个
Packets Sent StatisticID: ps (0x0004)
统计发送的数据包:ps(0x0004)
Type: double
类型:双
Possible values: any 64-bit integer
可能值:任意64位整数
Packets Received StatisticID: pr (0x0005)
统计接收的数据包:pr(0x0005)
Type: double
类型:双
Possible values: any 64-bit integer
可能值:任意64位整数
Packet Loss StatisticID: pl (0x0006)
分组丢失统计:pl(0x0006)
Describes the current rate of packet loss on an RTP stream, as defined in IETF RFC 1889. Packet loss is expressed as percentage value: number of packets lost in the interval between two reception reports, divided by the number of packets expected during that interval.
描述RTP流上的当前数据包丢失率,如IETF RFC 1889中所定义。数据包丢失表示为百分比值:两个接收报告之间间隔内丢失的数据包数除以该间隔内预期的数据包数。
Type: double
类型:双
Possible values: a 32-bit whole number and a 32-bit fraction.
可能值:32位整数和32位小数。
Jitter StatisticID: jit (0x0007)
抖动统计:jit(0x0007)
Requests the current value of the interarrival jitter on an RTP stream as defined in IETF RFC 1889. Jitter measures the variation in interarrival time for RTP data packets.
请求IETF RFC 1889中定义的RTP流上的到达间隔抖动的当前值。抖动测量RTP数据包到达间隔时间的变化。
Delay StatisticID:delay (0x0008)
延迟统计:延迟(0x0008)
Requests the current value of packet propagation delay expressed in timestamp units. Same as average latency.
请求以时间戳单位表示的数据包传播延迟的当前值。与平均延迟相同。
None.
没有一个
PackageID: tdmc (0x000d) Version: 1 Extends: Network Package version 1
PackageID:tdmc(0x000d)版本:1扩展:网络包版本1
This package may be used by any termination that supports gain and echo control. It was originally intended for use on TDM circuits but may be more widely used.
该封装可用于支持增益和回波控制的任何终端。它最初打算用于TDM电路,但可能会得到更广泛的应用。
New versions or extensions of this package should take non-TDM use into account.
此软件包的新版本或扩展应考虑非TDM使用。
Echo Cancellation PropertyID: ec (0x0008)
回声消除属性ID:ec(0x0008)
Type: boolean
类型:布尔型
Possible values:
可能值:
"on" (when the echo cancellation is requested) and
“开”(请求回声消除时)和
"off" (when it is turned off.)
“关闭”(关闭时)
The default is provisioned.
默认设置已设置。
Defined in: LocalControlDescriptor
在中定义:LocalControlDescriptor
Characteristics: read/write
特征:读/写
Gain Control PropertyID: gain (0x000a)
增益控制属性ID:增益(0x000a)
Gain control, or usage of of signal level adaptation and noise level reduction is used to adapt the level of the signal. However, it is necessary, for example for modem calls, to turn off this function.
增益控制,或使用信号电平自适应和噪声电平降低来自适应信号电平。但是,必须关闭此功能,例如,对于调制解调器呼叫。
Type: integer
类型:整数
Possible values:
可能值:
The gain control parameter may either be specified as "automatic" (0xffffffff), or as an explicit number of decibels of gain (any other integer value). The default is provisioned in the MG.
增益控制参数可以指定为“自动”(0xffffffff),也可以指定为增益分贝的明确数字(任何其他整数值)。默认值在MG中设置。
Defined in: LocalControlDescriptor
在中定义:LocalControlDescriptor
Characteristics: read/write
特征:读/写
None.
没有一个
None.
没有一个
None.
没有一个
None.
没有一个
APPENDIX I EXAMPLE CALL FLOWS (INFORMATIVE)
附录I示例调用流(资料性)
All H.248.1 implementors must read the normative part of this RFC carefully before implementing from it. The examples in this appendix should not be used as stand-alone explanations of how to create protocol messages.
所有H.248.1实施者在实施之前必须仔细阅读本RFC的规范部分。本附录中的示例不应作为如何创建协议消息的独立解释。
The examples in this appendix use SDP for encoding of the Local and and Remote stream descriptors. SDP is defined in RFC 2327. If there is is any discrepancy between the SDP in the examples, and RFC 2327, the the RFC should be consulted for correctness. Audio profiles used are are those defined in IETF RFC 1890, and others registered with IANA. For example, G.711 A-law is called PCMA in SDP, and is assigned profile 0. G.723.1 is called G723 and is profile 4; H.263 is called H263 and is profile 34. See also http://www.iana.org/assignments/rtp-parameters.
本附录中的示例使用SDP对本地和远程流描述符进行编码。SDP在RFC 2327中定义。如果示例中的SDP与RFC 2327之间存在任何差异,应咨询RFC以确定其正确性。使用的音频配置文件是IETF RFC 1890中定义的配置文件,以及IANA注册的其他配置文件。例如,G.711 A-law在SDP中称为PCMA,并被分配为配置文件0。G.723.1称为G723,为剖面图4;H.263称为H263,为剖面图34。另见http://www.iana.org/assignments/rtp-parameters.
This example scenario illustrates the use of the elements of the protocol to set up a Residential Gateway to Residential Gateway call over an IP-based network. For simplicity, this example assumes that both Residential Gateways involved in the call are controlled by the same Media Gateway Controller.
此示例场景演示了如何使用协议元素通过基于IP的网络建立住宅网关到住宅网关的呼叫。为简单起见,本示例假设呼叫中涉及的两个住宅网关均由同一媒体网关控制器控制。
A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior
A.1.1 为空闲行为编程住宅GW模拟线路终端
The following illustrates the API invocations from the Media Gateway Controller and Media Gateways to get the Terminations in this scenario programmed for idle behavior. Both the originating and terminating Media Gateways have idle AnalogLine Terminations programmed to look for call initiation events (i.e., -offhook) by using the Modify Command with the appropriate parameters. The null Context is used to indicate that the Terminations are not yet involved in a Context. The ROOT termination is used to indicate the entire MG instead of a termination within the MG.
以下说明了媒体网关控制器和媒体网关的API调用,以便在此场景中为空闲行为编程终止。发起和终止媒体网关都有空闲模拟线终端,通过使用带有适当参数的Modify命令,对其进行编程,以查找呼叫启动事件(即-offhook)。空上下文用于指示上下文中尚未涉及终止。根终端用于指示整个MG,而不是MG内的终端。
In this example, MG1 has the IP address 124.124.124.222, MG2 is 125.125.125.111, and the MGC is 123.123.123.4. The default Megaco port is 55555 for all three.
在此示例中,MG1的IP地址为124.124.124.222,MG2的IP地址为125.125.125.111,MGC的IP地址为123.123.123.4。这三个端口的默认Megaco端口均为55555。
1. An MG registers with an MGC using the ServiceChange command:
1. MG使用ServiceChange命令向MGC注册:
MG1 to MGC:
MG1至MGC:
MEGACO/1 [124.124.124.222] Transaction = 9998 { Context = - {
MEGACO/1 [124.124.124.222] Transaction = 9998 { Context = - {
ServiceChange = ROOT {Services { Method=Restart, ServiceChangeAddress=55555, Profile=ResGW/1} } } }
ServiceChange = ROOT {Services { Method=Restart, ServiceChangeAddress=55555, Profile=ResGW/1} } } }
2. The MGC sends a reply:
2. MGC发送回复:
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Reply = 9998 { Context = - {ServiceChange = ROOT { Services {ServiceChangeAddress=55555, Profile=ResGW/1} } } }
MEGACO/1 [123.123.123.4]:55555 Reply = 9998 { Context = - {ServiceChange = ROOT { Services {ServiceChangeAddress=55555, Profile=ResGW/1} } } }
3. The MGC programs a Termination in the NULL context. The terminationId is A4444, the streamId is 1, the requestId in the Events descriptor is 2222. The mId is the identifier of the sender of this message, in this case, it is the IP address and port [123.123.123.4]:55555. Mode for this stream is set to SendReceive. "al" is the analog line supervision package. Local and Remote are assumed to be provisioned.
3. MGC在空上下文中编程终止。terminationId为A4444,streamId为1,事件描述符中的requestId为2222。mId是该消息发送者的标识符,在本例中,它是IP地址和端口[123.123.123.4]:55555。此流的模式设置为SendReceive。“al”是模拟线路监控包。假设本地和远程都已配置。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Transaction = 9999 { Context = - { Modify = A4444 { Media { Stream = 1 { LocalControl { Mode = SendReceive, tdmc/gain=2, ; in dB, tdmc/ec=on },
MEGACO/1 [123.123.123.4]:55555 Transaction = 9999 { Context = - { Modify = A4444 { Media { Stream = 1 { LocalControl { Mode = SendReceive, tdmc/gain=2, ; in dB, tdmc/ec=on },
} }, Events = 2222 {al/of(strict=state)} } } }
} }, Events = 2222 {al/of(strict=state)} } } }
The dialplan script could have been loaded into the MG previously. Its function would be to wait for the OffHook, turn on dialtone and start collecting DTMF digits. However in this example, we use the digit map, which is put into place after the offhook is detected (step 5 below).
dialplan脚本以前可能已加载到MG中。它的功能是等待摘机,打开拨号音并开始收集DTMF数字。然而,在本例中,我们使用数字映射,它是在检测到摘机后放置到位的(下面的步骤5)。
Note that the embedded EventsDescriptor could have been used to combine steps 3 and 4 with steps 8 and 9, eliminating steps 6 and 7.
请注意,嵌入式EventsDescriptor可用于将步骤3和4与步骤8和9结合起来,从而消除步骤6和7。
4. The MG1 accepts the Modify with this reply:
4. MG1通过以下回复接受修改:
MG1 to MGC:
MG1至MGC:
MEGACO/1 [124.124.124.222]:55555
MEGACO/1[124.124.124.222]:55555
Reply = 9999 { Context = - {Modify = A4444} }
Reply = 9999 { Context = - {Modify = A4444} }
5. A similar exchange happens between MG2 and the MGC, resulting in an idle Termination called A5555.
5. MG2和MGC之间发生类似的交换,导致称为A5555的空闲终端。
The following builds upon the previously shown conditions. It illustrates the transactions from the Media Gateway Controller and originating Media Gateway (MG1) to get the originating Termination (A4444) through the stages of digit collection required to initiate a connection to the terminating Media Gateway (MG2).
以下内容以前面显示的条件为基础。它说明了来自媒体网关控制器和始发媒体网关(MG1)的事务,以使始发终端(A4444)通过启动与终端媒体网关(MG2)的连接所需的数字收集阶段。
6. MG1 detects an offhook event from User 1 and reports it to the Media Gateway Controller via the Notify Command.
6. MG1检测到来自用户1的摘机事件,并通过Notify命令将其报告给媒体网关控制器。
MG1 to MGC:
MG1至MGC:
MEGACO/1 [124.124.124.222]:55555 Transaction = 10000 { Context = - { Notify = A4444 {ObservedEvents =2222 { 19990729T22000000:al/of(init=false)}} } }
MEGACO/1 [124.124.124.222]:55555 Transaction = 10000 { Context = - { Notify = A4444 {ObservedEvents =2222 { 19990729T22000000:al/of(init=false)}} } }
7. And the Notify is acknowledged.
7. 通知已确认。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Reply = 10000 {
MEGACO/1 [123.123.123.4]:55555 Reply = 10000 {
Context = - {Notify = A4444} }
Context = - {Notify = A4444} }
8. The MGC Modifies the termination to play dial tone, to look for digits according to Dialplan0 and to look for the on-hook event now.
8. MGC修改终端以播放拨号音,根据Dialplan0查找数字,并立即查找挂机事件。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Transaction = 10001 { Context = - { Modify = A4444 { Events = 2223 { al/on(strict=state), dd/ce {DigitMap=Dialplan0} }, Signals {cg/dt}, DigitMap= Dialplan0{ (0| 00|[1- 7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)} } } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 10001 { Context = - { Modify = A4444 { Events = 2223 { al/on(strict=state), dd/ce {DigitMap=Dialplan0} }, Signals {cg/dt}, DigitMap= Dialplan0{ (0| 00|[1- 7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)} } } }
9. And the Modify is acknowledged.
9. 并确认修改。
MG1 to MGC:
MG1至MGC:
MEGACO/1 [124.124.124.222]:55555 Reply = 10001 { Context = - {Modify = A4444} }
MEGACO/1 [124.124.124.222]:55555 Reply = 10001 { Context = - {Modify = A4444} }
10. Next, digits are accumulated by MG1 as they are dialed by User 1. Dialtone is stopped upon detection of the first digit. When an appropriate match is made of collected digits against the currently programmed Dialplan for A4444, another Notify is sent to the Media Gateway Controller.
10. 接下来,MG1在用户1拨号时累积数字。当检测到第一个数字时,拨号音停止。当收集的数字与A4444当前编程的拨号计划进行适当匹配时,会向媒体网关控制器发送另一个通知。
MG1 to MGC:
MG1至MGC:
MEGACO/1 [124.124.124.222]:55555 Transaction = 10002 { Context = - { Notify = A4444 {ObservedEvents =2223 { 19990729T22010001:dd/ce{ds="916135551212",Meth=UM}}} } }
MEGACO/1 [124.124.124.222]:55555 Transaction = 10002 { Context = - { Notify = A4444 {ObservedEvents =2223 { 19990729T22010001:dd/ce{ds="916135551212",Meth=UM}}} } }
11. And the Notify is acknowledged.
11. 通知已确认。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Reply = 10002 { Context = - {Notify = A4444} }
MEGACO/1 [123.123.123.4]:55555 Reply = 10002 { Context = - {Notify = A4444} }
12. The controller then analyses the digits and determines that a connection needs to be made from MG1 to MG2. Both the TDM
12. 然后,控制器分析这些数字并确定需要从MG1连接到MG2。TDM和
termination A4444, and an RTP termination are added to a new context in MG1. Mode is ReceiveOnly since Remote descriptor values are not yet specified. Preferred codecs are in the MGC's preferred order of choice.
终端A4444和RTP终端被添加到MG1中的新上下文中。由于尚未指定远程描述符值,因此仅接收模式。首选编解码器按照MGC的首选顺序选择。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Transaction = 10003 { Context = $ { Add = A4444, Add = $ { Media { Stream = 1 { LocalControl { Mode = ReceiveOnly,
MEGACO/1 [123.123.123.4]:55555 Transaction = 10003 { Context = $ { Add = A4444, Add = $ { Media { Stream = 1 { LocalControl { Mode = ReceiveOnly,
nt/jit=40 ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 v=0 c=IN IP4 $ m=audio $ RTP/AVP 0 } } } } } }
nt/jit=40 ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 v=0 c=IN IP4 $ m=audio $ RTP/AVP 0 } } } } } }
NOTE - The MGC states its preferred parameter values as a series of SDP blocks in Local. The MG fills in the Local Descriptor in the Reply.
注-MGC将其首选参数值表示为本地的一系列SDP块。MG在应答中填充本地描述符。
13. MG1 acknowledges the new Termination and fills in the Local IP address and UDP port. It also makes a choice for the codec based on the MGC preferences in Local. MG1 sets the RTP port to 2222.
13. MG1确认新的终止,并填写本地IP地址和UDP端口。它还根据本地的MGC首选项选择编解码器。MG1将RTP端口设置为2222。
MG1 -> MGC:
MG1->MGC:
MEGACO/1 [124.124.124.222]:55555 Reply = 10003 { Context = 2000 { Add = A4444, Add=A4445{ Media { Stream = 1 { Local { v=0 o=- 2890844526 2890842807 IN IP4 124.124.124.222 s=- t= 0 0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 a=recvonly } ; RTP profile for G.723.1 is 4 }
MEGACO/1 [124.124.124.222]:55555 Reply = 10003 { Context = 2000 { Add = A4444, Add=A4445{ Media { Stream = 1 { Local { v=0 o=- 2890844526 2890842807 IN IP4 124.124.124.222 s=- t= 0 0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 a=recvonly } ; RTP profile for G.723.1 is 4 }
} } } }
} } } }
14. The MGC will now associate A5555 with a new Context on MG2, and establish an RTP Stream (i.e., A5556 will be assigned), SendReceive connection through to the originating user, User 1. The MGC also sets ring on A5555.
14. MGC现在将A5555与MG2上的新上下文相关联,并建立RTP流(即,将分配A5556),发送接收连接到发起用户user 1。MGC还在A5555上设置环。
MGC to MG2:
MGC至MG2:
MEGACO/1 [123.123.123.4]:55555 Transaction = 50003 { Context = $ { Add = A5555 { Media { Stream = 1 { LocalControl {Mode = SendReceive} }}, Events=1234{al/of(strict=state)}, Signals {al/ri}
MEGACO/1 [123.123.123.4]:55555 Transaction = 50003 { Context = $ { Add = A5555 { Media { Stream = 1 { LocalControl {Mode = SendReceive} }}, Events=1234{al/of(strict=state)}, Signals {al/ri}
}, Add = $ {Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } ; RTP profile for G.723.1 is 4 } } } } }
}, Add = $ {Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } ; RTP profile for G.723.1 is 4 } } } } }
15. This is acknowledged. The stream port number is different from the control port number. In this case it is 1111 (in the SDP).
15. 这是公认的。流端口号与控制端口号不同。在这种情况下,它是1111(在SDP中)。
MG2 to MGC:
MG2至MGC:
MEGACO/1 [125.125.125.111]:55555 Reply = 50003 { Context = 5000 { Add = A5555, Add = A5556{ Media { Stream = 1 {
MEGACO/1 [125.125.125.111]:55555 Reply = 50003 { Context = 5000 { Add = A5555, Add = A5556{ Media { Stream = 1 {
Local { v=0 o=- 7736844526 7736842807 IN IP4 125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723.1 is 4 } }
Local { v=0 o=- 7736844526 7736842807 IN IP4 125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723.1 is 4 } }
} }
} }
16. The above IPAddr and UDPport need to be given to MG1 now.
16. 以上IPAddr和UDPport需要立即提供给MG1。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Transaction = 10005 { Context = 2000 { Modify = A4444 { Signals {cg/rt} }, Modify = A4445 { Media { Stream = 1 { Remote { v=0 o=- 7736844526 7736842807 IN IP4 125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723.1 is 4 } } } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 10005 { Context = 2000 { Modify = A4444 { Signals {cg/rt} }, Modify = A4445 { Media { Stream = 1 { Remote { v=0 o=- 7736844526 7736842807 IN IP4 125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723.1 is 4 } } } }
MG1 to MGC:
MG1至MGC:
MEGACO/1 [124.124.124.222]:55555 Reply = 10005 { Context = 2000 {Modify = A4444, Modify = A4445} }
MEGACO/1 [124.124.124.222]:55555 Reply = 10005 { Context = 2000 {Modify = A4444, Modify = A4445} }
17. The two gateways are now connected and User 1 hears the RingBack. The MG2 now waits until User2 picks up the receiver and then the two-way call is established.
17. 两个网关现在已连接,用户1将听到回音。MG2现在等待,直到User2拿起接收器,然后建立双向呼叫。
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Transaction = 50005 { Context = 5000 {
MEGACO/1 [125.125.125.111]:55555 Transaction = 50005 { Context = 5000 {
Notify = A5555 {ObservedEvents =1234 { 19990729T22020002:al/of(init=false)}} } }
Notify = A5555 {ObservedEvents =1234 { 19990729T22020002:al/of(init=false)}} } }
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Reply = 50005 { Context = - {Notify = A5555} }
MEGACO/1 [123.123.123.4]:55555 Reply = 50005 { Context = - {Notify = A5555} }
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Transaction = 50006 { Context = 5000 { Modify = A5555 { Events = 1235 {al/on(strict=state)}, Signals { } ; to turn off ringing } } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 50006 { Context = 5000 { Modify = A5555 { Events = 1235 {al/on(strict=state)}, Signals { } ; to turn off ringing } } }
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Reply = 50006 { Context = 5000 {Modify = A4445} }
MEGACO/1 [125.125.125.111]:55555 Reply = 50006 { Context = 5000 {Modify = A4445} }
18. Change mode on MG1 to SendReceive, and stop the ringback.
18. 将MG1上的模式更改为SendReceive,并停止回铃。
MGC to MG1:
MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Transaction = 10006 { Context = 2000 { Modify = A4445 { Media { Stream = 1 { LocalControl { Mode=SendReceive
MEGACO/1 [123.123.123.4]:55555 Transaction = 10006 { Context = 2000 { Modify = A4445 { Media { Stream = 1 { LocalControl { Mode=SendReceive
} } } }, Modify = A4444 { Signals { } }
} } } }, Modify = A4444 { Signals { } }
} }
} }
from MG1 to MGC:
从MG1到MGC:
MEGACO/1 [124.124.124.222]:55555 Reply = 10006 { Context = 2000 {Modify = A4445, Modify = A4444}}
MEGACO/1 [124.124.124.222]:55555 Reply = 10006 { Context = 2000 {Modify = A4445, Modify = A4444}}
19. The MGC decides to Audit the RTP termination on MG2.
19. MGC决定审核MG2上的RTP终止。
MGC -> MG2:
MGC->MG2:
MEGACO/1 [123.123.123.4]:55555 Transaction = 50007 { Context = - {AuditValue = A5556{ Audit{Media, DigitMap, Events, Signals, Packages, Statistics }} } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 50007 { Context = - {AuditValue = A5556{ Audit{Media, DigitMap, Events, Signals, Packages, Statistics }} } }
20. The MG2 replies.
20. MG2回答道。
MG2 -> MGC:
MG2->MGC:
MEGACO/1 [125.125.125.111]:55555 Reply = 50007 { Context = - { AuditValue = A5556 { Media { TerminationState { ServiceStates = InService, Buffer = OFF }, Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 }, Local { v=0 o=- 7736844526 7736842807 IN IP4 125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 a=ptime:30 }, Remote { v=0 o=- 2890844526 2890842807 IN IP4 124.124.124.222 s=- t= 0 0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } } }, Events, Signals, DigitMap, Packages {nt-1, rtp-1}, Statistics { rtp/ps=1200, ; packets sent nt/os=62300, ; octets sent rtp/pr=700, ; packets received nt/or=45100, ; octets received rtp/pl=0.2, ; % packet loss rtp/jit=20, rtp/delay=40 } ; avg latency }
MEGACO/1 [125.125.125.111]:55555 Reply = 50007 { Context = - { AuditValue = A5556 { Media { TerminationState { ServiceStates = InService, Buffer = OFF }, Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 }, Local { v=0 o=- 7736844526 7736842807 IN IP4 125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 a=ptime:30 }, Remote { v=0 o=- 2890844526 2890842807 IN IP4 124.124.124.222 s=- t= 0 0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } } }, Events, Signals, DigitMap, Packages {nt-1, rtp-1}, Statistics { rtp/ps=1200, ; packets sent nt/os=62300, ; octets sent rtp/pr=700, ; packets received nt/or=45100, ; octets received rtp/pl=0.2, ; % packet loss rtp/jit=20, rtp/delay=40 } ; avg latency }
} }
} }
21. When the MGC receives an onhook signal from one of the MGs, it brings down the call. In this example, the user at MG2 hangs up first.
21. 当MGC接收到来自其中一个MG的挂接信号时,它关闭呼叫。在本例中,MG2的用户首先挂断。
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Transaction = 50008 { Context = 5000 { Notify = A5555 {ObservedEvents =1235 { 19990729T24020002:al/on(init=false)} } } }
MEGACO/1 [125.125.125.111]:55555 Transaction = 50008 { Context = 5000 { Notify = A5555 {ObservedEvents =1235 { 19990729T24020002:al/on(init=false)} } } }
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Reply = 50008 {
MEGACO/1 [123.123.123.4]:55555 Reply = 50008 {
Context = - {Notify = A5555} }
Context = - {Notify = A5555} }
22. The MGC now sends both MGs a Subtract to take down the call. Only the subtracts to MG2 are shown here. Each termination has its own set of statistics that it gathers. An MGC may not need to request both to be returned. A5555 is a physical termination, and A5556 is an RTP termination.
22. MGC现在向两个MG发送一个减法以记下呼叫。此处仅显示MG2的减法。每个终端都有自己收集的统计数据集。MGC可能不需要同时请求返回这两个文件。A5555是物理终端,A5556是RTP终端。
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Transaction = 50009 { Context = 5000 { Subtract = A5555 {Audit{Statistics}}, Subtract = A5556 {Audit{Statistics}} } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 50009 { Context = 5000 { Subtract = A5555 {Audit{Statistics}}, Subtract = A5556 {Audit{Statistics}} } }
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Reply = 50009 { Context = 5000 { Subtract = A5555 { Statistics { nt/os=45123, ; Octets Sent nt/dur=40 ; in seconds } }, Subtract = A5556 { Statistics { rtp/ps=1245, ; packets sent
MEGACO/1 [125.125.125.111]:55555 Reply = 50009 { Context = 5000 { Subtract = A5555 { Statistics { nt/os=45123, ; Octets Sent nt/dur=40 ; in seconds } }, Subtract = A5556 { Statistics { rtp/ps=1245, ; packets sent
nt/os=62345, ; octets sent rtp/pr=780, ; packets received nt/or=45123, ; octets received rtp/pl=10, ; % packets lost rtp/jit=27, rtp/delay=48 ; average latency } } } }
nt/os=62345, ; octets sent rtp/pr=780, ; packets received nt/or=45123, ; octets received rtp/pl=10, ; % packets lost rtp/jit=27, rtp/delay=48 ; average latency } } } }
23. The MGC now sets up both MG1 and MG2 to be ready to detect the next off-hook event. See step 1. Note that this could be the default state of a termination in the null context, and if this were the case, no message need be sent from the MGC to the MG. Once a termination returns to the null context, it goes back to the default termination values for that termination.
23. MGC现在将MG1和MG2都设置为准备检测下一个脱钩事件。见第1步。注意,这可能是null上下文中终止的默认状态,如果是这种情况,则不需要从MGC向MG发送消息。一旦终止返回空上下文,它将返回该终止的默认终止值。
APPENDIX II Changes From RFC 3015
附录II RFC 3015的变更
In the following table, "source" indicates when the change was first approved. It has the following values:
下表中,“来源”表示变更首次批准的时间。它具有以下值:
IG1100: H.248 Implementor's Guide approved in November, 2000 (as TD Plen-39, Christian Groves, editor).
IG1100:H.248实施者指南于2000年11月获得批准(作为TD Plen-39,Christian Groves,编辑)。
IG0601: H.248 Implementor's Guide approved in June, 2001 (as TD Plen-15, Christian Groves, editor).
IG0601:H.248实施者指南于2001年6月批准(作为TD Plen-15,Christian Groves,编辑)。
IGDUB: Draft H.248 Implementor's Guide approved at the Q.3 Rapporteur's meeting held near Dublin, October 2001 (as TD-28, Terry Anderson, editor).
IGDUB:2001年10月在都柏林附近举行的Q.3报告员会议上批准的H.248实施者指南草案(作为TD-28,Terry Anderson,编辑)。
GEN0202: added at the Geneva meeting, February 2002, which consented to H.248 v1 Amendment 1 (as TD Plen-36r1, Marcello Pantaleo, editor).
GEN0202:在2002年2月的日内瓦会议上增加,该会议同意H.248 v1修正案1(作为TD Plen-36r1,Marcello Pantaleo,编辑)。
ITUPOST: added in post-Geneva editing by the ITU-T.
ITUPOST:由ITU-T在日内瓦后编辑中添加。
TTPOST: added in post-approval editing by the Megaco Chair, Tom Taylor, who assembled this document for submission.
TTPOST:由Megaco主席汤姆·泰勒(Tom Taylor)在批准后编辑中添加,他编写了本文件以供提交。
Section Source Change
节源更改
1 ITUPOST Reference changed from H.248 to H.248.1.
1 ITUPPOST参考从H.248更改为H.248.1。
2.1 ITUPOST Reference added for error codes, changed from H.248 Annex L to H.248.8 (2002).
2.1 为错误代码添加了ITUPPOST参考,从H.248附录L更改为H.248.8(2002)。
2.1 IG1100 Corrected Q.765 reference to Q.765.5.
2.1 IG1100参考Q.765.5修正了Q.765。
2.1 GEN0202 Added reference to X.690.
2.1 GEN0202增加了对X.690的引用。
2.2 GEN0202 Added reference to H.226.
2.2 GEN0202增加了对H.226的引用。
2.2 IGDUB Added informative references to Q.724, Q.764, and Q.1902.4.
2.2 IGDUB增加了Q.724、Q.764和Q.1902.4的参考资料。
4 IG0601 Added expansion of ALF.
4 IG0601增加了ALF的扩展。
5 TTPOST Gave priority to IETF conventions (added at start of document).
TTPOST优先考虑IETF公约(在文件开头添加)。
6.1.1 IG0601 Added text regarding use of wildcards for context identifiers. (This information already appeared in section 8.1.2. The IG change subsequently disappeared.)
6.1.1 IG0601添加了关于上下文标识符使用通配符的文本。(该信息已出现在第8.1.2节中。IG变更随后消失。)
6.1.1 IG1100 Added ranking of priority values.
6.1.1 IG1100增加了优先级值的排序。
6.2 IGDUB Deleted definition of signals.
6.2 IGDUB删除了信号的定义。
6.2 GEN0202 Expanded text and diagrams describing multiplexing terminations.
6.2 GEN0202描述多路复用终端的扩展文本和图表。
6.2 TTPOST Added asterisks to multiplexing diagrams to indicate centre of context. Added Figure 6a showing cascading of multiplexes.
6.2 TTPOST在多路复用图中添加了星号,以表示上下文的中心。增加图6a,显示多路复用的级联。
6.2.2 IG0601 Added text indicating that ALL does not include ROOT.
6.2.2 IG0601添加了文本,指示所有不包括根。
6.2.3 IG1100 Added text clarifying what must be supported to claim support of a package.
6.2.3 IG1100增加了文本,阐明了声称支持软件包必须支持的内容。
6.2.3 IG1100 Added text indicating what packages a peer can indicate support for, when some of them are extensions of others.
6.2.3 IG1100添加了文本,指示对等方可以表示支持哪些包,其中一些包是其他包的扩展。
6.2.4 IG0601 Added text on ability of provisioning to override default values, and need for MGC to audit to learn the provisioned defaults.
6.2.4 IG0601添加了关于设置覆盖默认值的能力的文本,并且需要MGC审核以了解设置的默认值。
6.2.4 IG0601 Added text indicating effect of omitting specific properties from Descriptors in commands modifying a termination. Contradicted original text saying that omitted properties retain their prior values (still true for entirely-omitted Descriptors).
6.2.4 IG0601添加了文本,指示在修改终止的命令中从描述符中省略特定属性的效果。与原文相矛盾的是,省略的属性保留其先前的值(对于完全省略的描述符仍然如此)。
6.2.4 GEN0202 Modified above text to restrict it to read/write properties, allow for default behaviour in place of default values if so specified in the property definition.
6.2.4 GEN0202修改了上述文本,将其限制为读/写属性,如果在属性定义中指定,则允许默认行为代替默认值。
6.2.4 IGDUB Trimmed definition of signals Descriptor in table and inserted cross-reference to section 7.1.11.
6.2.4 IGDUB在表中对信号描述符的定义进行了修整,并插入了第7.1.11节的交叉引用。
6.2.4 IG1100 Added Topology and Error Descriptors to table.
6.2.4 IG1100向表中添加了拓扑和错误描述符。
6.2.5 IGDUB Specified error code to return if ROOT used inappropriately.
6.2.5 IGDUB指定了在根目录使用不当时返回的错误代码。
7.1.1 IG1100 Added qualification to explanation of effect of missing Audit Descriptor, excepting Subtract.
7.1.1 IG1100在解释缺失审计描述符的影响时增加了限定条件,但减去除外。
7.1.3 GEN0202 Changed "inputs" to "bearers" to be consistent with terminology in 6.2.
7.1.3 GEN0202将“输入”更改为“承载器”,以符合6.2中的术语。
7.1.4 IG0601 Small change to make clear that more than one of Local, Remote, and LocalControl can be included in the default streamId.
7.1.4 IG0601做了一个小改动,以明确默认streamId中可以包含多个Local、Remote和LocalControl。
7.1.7 IG0601 Default value for Mode specified to be Inactive.
7.1.7 IG0601指定为非活动模式的默认值。
7.1.7 GEN0202 Added text requiring processing of media in any of the reserved formats, where more than one has been reserved in a given stream.
7.1.7 GEN0202添加了需要以任何保留格式处理媒体的文本,其中给定流中保留了多个保留格式。
7.1.8 IGDUB Added restriction to at most one m= line per session description.
7.1.8 IGDUB增加了对每个会话描述最多一行m=的限制。
7.1.9 IG0601 Text added to omit request identifier if the EventsDescriptor is empty. Further text added at end to indicate the effects of an empty EventsDescriptor and an empty EventBufferDescriptor.
7.1.9 如果EventsDescriptor为空,则添加IG0601文本以忽略请求标识符。在末尾添加进一步的文本,以指示空EventsDescriptor和空EventBufferDescriptor的效果。
7.1.9 IG0601 Fixed typo for destination of a Notify.
7.1.9 IG0601修复了通知目的地的打字错误。
7.1.9 IG1100 Added note to say event remains active after it has been notified, so long as it is still present in the active Events Descriptor.
7.1.9 IG1100增加了一条注释,说明事件在收到通知后仍然处于活动状态,只要它仍然存在于活动事件描述符中。
7.1.11 IGDUB Added definition of signals.
7.1.11 IGDUB增加了信号的定义。
7.1.11 GEN0202 Modified definition to include example of more complex signal, and added role of signal in media preparation for future signals.
7.1.11 GEN0202修改了定义,以包括更复杂信号的示例,并增加了信号在未来信号介质准备中的作用。
7.1.11 IGDUB The timeout completion reason was broadened to include other circumstances where the signal completed on its own. Text added to indicate that if default signal type changed to TO, duration parameter must be provided.
7.1.11 IGDUB超时完成原因被扩大,以包括信号自行完成的其他情况。添加的文本表示如果默认信号类型更改为,则必须提供持续时间参数。
7.1.11 GEN0202 Removed reference to BR signal being "so short" it will stop on its own. Added text indicating that if the type of a signal is changed to TO, the Duration parameter must be supplied.
7.1.11 GEN0202删除了BR信号“太短”的参考,它将自行停止。添加文本,指示如果信号类型更改为,则必须提供持续时间参数。
7.1.11 IG1100 Deleted text discussing type of Signals List.
7.1.11 IG1100删除了讨论信号类型列表的文本。
7.1.12 GEN0202 Improved wording of introductory paragraph and added text making content of returned Descriptor clear.
7.1.12 GEN0202改进了介绍性段落的措辞,并添加了文本,使返回的描述符内容清晰。
7.1.14.2 GEN0202 Added text indicating that when the start timer is set to 0, initial digit timing is disabled and the MG waits indefinitely for digits.
7.1.14.2 GEN0202添加了文本,指示当启动计时器设置为0时,初始数字计时被禁用,MG无限期地等待数字。
7.1.14.2 GEN0202 Added text pointing out that default digit timer values should be provisioned, but can be overridden in the digit map.
7.1.14.2 GEN0202添加了文本,指出应该设置默认的数字计时器值,但可以在数字映射中重写。
7.1.14.3 GEN0202 Changed result of long-short digit timer conflict from undefined to long.
7.1.14.3 GEN0202将长短位计时器冲突的结果从未定义更改为长。
7.1.14.6 IG1100 Clarified that the digit map is provided by the eventDM parameter, which must be present.
7.1.14.6 IG1100阐明数字映射由eventDM参数提供,该参数必须存在。
7.1.14.7 GEN0202 Added text clarifying that events covered by the digit map completion event have no side-effects unless separately enabled.
7.1.14.7 GEN0202添加了文本,澄清数字映射完成事件所涵盖的事件没有副作用,除非单独启用。
7.1.14.8 IG0601 Added requirement that the event specification include the eventDM parameter.
7.1.14.8 IG0601增加了事件规范包括eventDM参数的要求。
7.1.17 IGDUB Added text to indicate timestamp is optional and to include observed event parameters in reported content.
7.1.17 IGDUB添加了文本,以指示时间戳是可选的,并在报告内容中包含观察到的事件参数。
7.1.17 GEN0202 Deleted provision that time is expressed in UTC (since intention was to use format, not time zone).
7.1.17 GEN0202删除了时间以UTC表示的规定(因为目的是使用格式,而不是时区)。
7.1.18 IGDUB Added text indicating error to return if topology option not supported.
7.1.18 IGDUB添加了文本,指示不支持拓扑选项时返回的错误。
7.1.18 IG1100 Added text clarifying effect of not mentioning TTPOST a termination in a topology Descriptor, and default topology for a new termination. (This text got lost between the Dublin meeting and the production of H.248 Amendment 1 out of the Geneva 02/02 meeting. It has been added back to the present document.)
7.1.18 IG1100增加了文本,阐明了在拓扑描述符中不提及TTPOST终端的效果,以及新终端的默认拓扑。(该文本在都柏林会议和日内瓦02/02会议产生的H.248修正案1之间丢失。该文本已添加回本文件。)
7.1.19 IG1100 New section to describe Error Descriptor. GEN0202 Slightly edited in Geneva 02/02 meeting. ITUPOST Reference for error code documentation updated to H.248.8.
7.1.19 IG1100新增一节描述错误描述符。GEN0202在日内瓦02/02会议上稍作编辑。更新至H.248.8的错误代码文档的ITUPOST参考。
7.1.19 IG0601 Added paragraph giving guidance on level at which errors should be reported.
7.1.19 IG0601增加了一段,给出了错误报告级别的指导。
7.2 IG1100 Noted possibility of Error Descriptor in reply to any command.
7.2 IG1100注意到响应任何命令时可能出现错误描述符。
7.2.1 IG1100 Added EventBufferDescriptor as Add parameter.
7.2.1 IG1100添加了EventBufferDescriptor作为添加参数。
7.2.1 IG1100 Removed restriction on use of CHOOSE wildcard.
7.2.1 IG1100取消了对使用CHOOSE通配符的限制。
7.2.2 IG1100 Added EventBufferDescriptor as Modify parameter.
7.2.2 IG1100添加了EventBufferDescriptor作为修改参数。
7.2.2 GEN0202 Added text on side-effects of Modify of a multiplexing termination.
7.2.2 GEN0202添加了关于修改多路复用终端的副作用的文本。
7.2.3 IG1100 Added prohibition against subtracting from the NULL context.
7.2.3 IG1100增加了禁止从空上下文中进行减法的功能。
7.2.3 GEN0202 Added text on side-effects of Subtract of a multiplexing termination.
7.2.3 GEN0202添加了关于多路复用终端减法的副作用的文本。
7.2.3 IGDUB Added text clarifying effect of empty AuditDescriptor in Subtract.
7.2.3 IGDUB在减法中添加了澄清空AuditDescriptor效果的文本。
7.2.4 IG1100 Added EventBufferDescriptor as Move parameter.
7.2.4 IG1100添加了EventBufferDescriptor作为移动参数。
7.2.4 GEN0202 Removed misleading statement that Move acts as subtract from original context.
7.2.4 GEN0202删除了Move充当原始上下文减法运算的误导性语句。
7.2.4 IG1100 Clarified effect of Move on properties of the moved termination.
7.2.4 IG1100阐明了移动对移动终端属性的影响。
7.2.4 GEN0202 Added text on side-effects of Move of a multiplexing termination.
7.2.4 GEN0202添加了关于移动多路复用终端的副作用的文本。
7.2.5 IG1100 Added examples showing W- wildcard usage.
7.2.5 IG1100增加了显示W-通配符用法的示例。
7.2.5 IG1100 Noted that returning a list of all contextIDs requires that they be returned one per ActionReply.
7.2.5 IG1100指出,返回所有ContextID的列表要求每个ActionReply返回一个ContextID。
7.2.5 IG1100 Added table entry (ALL, specific) to determine context in which termination currently resides.
7.2.5 IG1100添加了表项(全部,特定),以确定终止当前所在的上下文。
7.2.6 GEN0202 Added table similar to that in 7.2.5.
7.2.6 GEN0202增加了与7.2.5类似的表格。
7.2.7 IG0601 Added TerminationID to API.
7.2.7 IG0601将TerminationID添加到API中。
7.2.7 IGDUB Indicated timestamp was optional in Notify, to accord with syntax.
7.2.7 IGDUB指出时间戳在Notify中是可选的,以符合语法。
7.2.7 IG1100 Noted possibility of sending Error Descriptor in Notify.
7.2.7 IG1100注意到在Notify中发送错误描述符的可能性。
7.2.8 IG0601 Added text to description of Forced method to indicate that Forced on ROOT indicates a cold restart (all context state lost).
7.2.8 IG0601在强制方法的描述中添加了文本,以指示根目录上的强制表示冷重启(所有上下文状态丢失)。
7.2.8 IGDUB Amplified explanation of Disconnected method to emphasize return to the previously controlling MGC.
7.2.8 IGDUB详细解释了断开连接的方法,强调返回到先前控制的MGC。
7.2.8 IG0601 Added text for MG use of Failover method when it detects MGC failure.
7.2.8 IG0601添加了MG在检测到MGC故障时使用故障转移方法的文本。
7.2.8 IG1100 Added notes discouraging use of ServiceChangeAddress and warning that it could be either a full address or just a port number.
7.2.8 IG1100增加了不鼓励使用ServiceChangeAddress的注释,并警告它可能是完整地址,也可能只是端口号。
7.2.8 IG0601 Added text indicating that timestamp does not necessarily represent absolute time, only local clock reading.
7.2.8 IG0601添加了文本,指示时间戳不一定表示绝对时间,只表示本地时钟读取。
7.2.8 IGDUB Corrected "gateway" to "MGC" in discussion of returned ServiceChangeMgcId parameter.
7.2.8 在讨论返回的ServiceChangeMgcId参数时,IGDUB将“网关”更正为“MGC”。
7.3 IG0601 Removed error code documentation to Annex L ITUPOST (now H.248.8).
7.3 IG0601删除了附录L ITUPPOST中的错误代码文档(现为H.248.8)。
8 IG1100 Added requirement that an Action be non-empty.
8 IG1100增加了动作必须非空的要求。
8 GEN0202 Added context properties and context property audit requests to commands as potential contents of actions.
8 GEN0202将上下文属性和上下文属性审核请求作为操作的潜在内容添加到命令中。
8.1.2 GEN0202 Added prohibition on using partial contextIDs with ALL wildcards.
8.1.2 GEN0202增加了对所有通配符使用部分上下文ID的禁止。
8.2.2 IG1100 Added text clarifying when in transaction processing the requested actions have been completed and a reply can be sent.
8.2.2 IG1100添加了文本,说明在事务处理过程中,何时完成请求的操作并可以发送回复。
8.2.2 IG1100 Added ALL as allowed contextID in TransactionReply.
8.2.2 IG1100在TransactionReply中添加了所有允许的contextID。
8.2.2 GEN0202 Provided general reference to section 7.1.19 for generation of error Descriptors.
8.2.2 GEN0202为错误描述符的生成提供了第7.1.19节的一般参考。
8.2.2 IG0601 Corrected Actions to Commands when discussing partially-understood action.
8.2.2 在讨论部分理解的操作时,IG0601纠正了命令的操作。
8.3 IG0601 Added text specifying that the same MId value must be used by a given entity throughout the life of a control association.
8.3 IG0601添加了文本,指定给定实体在控件关联的整个生命周期内必须使用相同的中间值。
8.3 IG0601 Added text expanding on independence of transactions from messages.
8.3 IG0601增加了关于事务独立于消息的文本扩展。
9 ITUPOST Indicated that additional transports may be defined in separate Recommendations as well as annexes to the primary specification.
9 ITUPPOST指出,附加运输可在单独的建议以及主要规范的附件中定义。
9 IG0601 Gave specific example of "request source address" for IP.
9 IG0601给出了IP的“请求源地址”的具体示例。
9.1 IG1100 Deleted restriction to one outstanding Notify command on a termination at one time, since this is transport-specific.
9.1 IG1100删除了一次终止时一个未完成通知命令的限制,因为这是特定于传输的。
9.1 IG0601 Restored restriction, but noted that it applied only to transport not guaranteeing ordered delivery.
9.1 IG0601恢复了限制,但指出它仅适用于不保证有序交货的运输。
10.2 IG1100 Corrected length of synthesized address field from 10 to 20 hex digits and indicated that calculation should be over entire message, not just one transaction.
10.2 IG1100将合成地址字段的长度从10到20个十六进制数字进行了更正,并指出计算应该覆盖整个消息,而不仅仅是一个事务。
11.2 IG1100 Corrected text in first two paragraphs describing use of ServiceChangeMgcId parameter.
11.2 IG1100更正了描述ServiceChangeMgcId参数使用的前两段文字。
11.2 IG1100 Corrected "Transaction Accept" to "Transaction Reply".
11.2 IG1100将“交易接受”更正为“交易回复”。
11.4 IG0601 Noted that support of redundant MGs requires GEN0202 use of a reliable transport and support in the MGC. Added more explanation in Geneva.
11.4 IG0601指出,支持冗余MGs需要GEN0202在MGC中使用可靠的传输和支持。在日内瓦补充了更多的解释。
11.5 IG0601 Added text clarifying procedure if MG unable to establish a control relationship with any of its eligible MGCs.
11.5 IG0601增加了MG无法与其任何合格MGC建立控制关系时的文本澄清程序。
11.5 IGDUB Added text indicating that when trying to reestablish contact with the previously controlling MGC the MG uses the Disconnected method.
11.5 IGDUB添加的文本表明,当试图与先前控制的MGC重新建立联系时,MG使用断开连接的方法。
11.5 IG1100 Clarified handoff procedure.
11.5 IG1100阐明了切换程序。
11.5 GEN0202 Changed text on replies to transactions in progress during handoff. Replies now discarded when the service relationship with the old MGC has ended, rather than sent to the new MGC. The new MGC could still send replies to requests sent to the old MGC.
11.5 GEN0202在切换期间更改了对正在进行的事务的回复文本。现在,当与旧MGC的服务关系结束时,将丢弃回复,而不是发送到新MGC。新的MGC仍然可以发送对发送给旧MGC的请求的回复。
12.1.1 GEN0202 Added optional package designation as "designed to be extended only".
12.1.1 GEN0202将可选包装名称添加为“仅设计用于扩展”。
12.1.1 IG1100 Made prohibition on overloading of identifiers in extended packages transitive through all ancestors of the extended package.
12.1.1 IG1100禁止通过扩展包的所有祖先传递扩展包中的标识符过载。
12.1.2 IGDUB Clarified the set of types allowed for properties.
12.1.2 IGDUB澄清了属性允许的类型集。
12.1.2 GEN0202 Added requirement to specify the base type of a sub-list.
12.1.2 GEN0202增加了指定子列表基本类型的要求。
12.1.2 GEN0202 Provided requirements for content of the "Possible Values" template item, including specification of default values or behaviour.
12.1.2 GEN0202提供了“可能值”模板项内容的要求,包括默认值或行为的规范。
12.1.4 GEN0202 Added requirement to specify the default signal type, and specify a default duration for TO signals. Also noted that duration is meaningless for BR, and that the signal type might be dependent on the values of other signal parameters.
12.1.4 GEN0202增加了指定默认信号类型的要求,并指定to信号的默认持续时间。还注意到,持续时间对于BR没有意义,并且信号类型可能取决于其他信号参数的值。
12.2 GEN0202 Fixed section title (covers only event and signal parameters, not properties or statistics).
12.2 GEN0202固定章节标题(仅涵盖事件和信号参数,不包括属性或统计信息)。
12.2 IG1100 Reserved SPA and EPA prefixes, so they are not to be used for signal and event parameter tokens.
12.2 IG1100保留SPA和EPA前缀,因此它们不用于信号和事件参数令牌。
12.2 IG0601 Expanded list of reserved prefixes.
12.2 IG0601保留前缀的扩展列表。
12.2 IGDUB Clarified the set of types allowed for signal and event parameters.
12.2 IGDUB澄清了信号和事件参数允许的类型集。
12.2 GEN0202 Added requirement to specify the base type of a sub-list.
12.2 GEN0202增加了指定子列表基本类型的要求。
12.2 GEN0202 Provided requirements for content of the "Possible Values" template item, including specification of default values or behaviour.
12.2 GEN0202提供了“可能值”模板项内容的要求,包括默认值或行为的规范。
12.4 IGDUB Corrected to indicate identifiers must start with alphabetic rather than alphanumeric character.
12.4 更正为指示标识符的IGDUB必须以字母而不是字母数字字符开头。
13.1 IG0601 Changed private range of binary package identifiers to convenient hex values.
13.1 IG0601将二进制包标识符的私有范围更改为方便的十六进制值。
A GEN0202 Removed versions from X.680 and X.690 references.
GEN0202从X.680和X.690参考中删除了版本。
A.2 IGDUB Added note warning that the syntax alone does not provide a complete description of the constraints, but must be supplemented by a reading of the text and comments.
A.2 IGDUB补充了一条警告,即语法本身并不能提供约束的完整描述,但必须通过阅读文本和注释进行补充。
A.2 IG0601 Added description of double wrapping of parameters declared as OCTET STRING.
A.2 IG0601增加了声明为八位字节字符串的参数的双重包装说明。
A.2 GEN0202 Some editing of double wrapping description to use ASN.1, BER in their proper places. Added possibility of encoding strings as UTF8String, but only if they contain non-ASCII characters.
A.2 GEN0202对双包装说明进行一些编辑,以便在适当的位置使用ASN.1、BER。增加了将字符串编码为UTF8String的可能性,但仅当它们包含非ASCII字符时。
A.2 IGDUB Added line in table on double wrapping of true octet strings.
A.2 IGDUB在表中添加了关于真八位字节字符串双包装的行。
A.2 IG1100 Corrected and expanded comments describing mtpAddress form of MId. Fixed maximum length of mtpAddress both here and in ServiceChangeAddress.
A.2 IG1100更正并扩展了注释,说明此处和ServiceChangeAddress中mtpAddress的中间固定最大长度的mtpAddress形式。
A.2 IG0601 Inserted missing lines in IP4Address production.
A.2 IG0601在IP4Address生产中插入缺失的行。
A.2 IG0601 Modified TransactionResponseAck to allow acknowledgement of multiple ranges of transactionIds.
A.2 IG0601修改了TransactionResponseAK,允许确认多个TransactionID范围。
A.2 IG0601 Corrected numerical value of CHOOSE as a context identifier.
A.2 IG0601更正了选择作为上下文标识符的数值。
A.2 IGDUB Added missing extension marker in TopologyRequest.
A.2 IGDUB在TopologyRequest中添加了缺失的扩展标记。
A.2 IG1100 AuditReply and AuditResult modified to bring binary functionality into line with text functionality.
A.2修改IG1100 AuditReply和AuditResult,使二进制功能与文本功能一致。
A.2 IG0601 Removed OPTIONAL tag from terminationID in NotifyReply.
A.2 IG0601从NotifyReply中的terminationID中删除了可选标记。
A.2 IG0601 Added extraInfo substructure to EventParameter and SigParameter.
A.2 IG0601在EventParameter和SigParameter中添加了extraInfo子结构。
A.2 IG0601 Modified MediaDescriptor to make it optional to specify a stream.
A.2 IG0601修改了MediaDescriptor,使其可以选择指定流。
A.2 IG0601 Added OPTIONAL tags to reserveValue and reserveGroup.
A.2 IG0601为reserveValue和reserveGroup添加了可选标记。
A.2 IGDUB Added to comments for pkgdName to indicate applicability to event names, signal names, and statisticIds as well as property.
A.2在pkgdName的注释中添加IGDUB,以表明事件名称、信号名称、统计学家以及属性的适用性。
A.2 IG0601 RequestID made optional in EventsDescriptor and SecondEventsDescriptor and comment added saying it must be present if events are present.
A.2 IG0601 RequestID在EventsDescriptor和SecondEventsDescriptor中为可选,并添加了注释,说明如果存在事件,则它必须存在。
A.2 IG1100 Added OPTIONAL tags on RequestActions and SecondRequestedActions keepActive BOOLEANs.
A.2 IG1100在RequestActions和SecondRequestedActions上添加了可选标记Keepacative BOOLEANs。
A.2 IG1100 Added comment to indicate requestID value to use in an AuditCapReply.
A.2 IG1100添加了注释,以指示在AuditCapReply中使用的requestID值。
A.2 GEN0202 Added comment to DigitMapValue indicating time units for timers.
A.2 GEN0202在DigitMapValue中添加了注释,指出计时器的时间单位。
A.2 IG0601 Added comment indicating coding of Value for GEN0202 ServiceChangeReason. Cleaned up in Geneva to use ASN.1 and BER in their proper places.
A.2 IG0601增加了注释,说明GEN0202 ServiceChangeReason的值编码。在日内瓦进行清理,以便在适当的位置使用ASN.1和BER。
A.2 IG0601 Inserted missing extension marker in ServiceChangeParm production.
A.2 IG0601在ServiceChangeParm生产中插入缺失的扩展标记。
A.2 IG0601 Aligned definition of mtpAddress in ServiceChangeAddress with that in MId.
A.2 IG0601将ServiceChangeAddress中mtpAddress的定义与MId中的定义对齐。
A.2 IG0601 Added timestamp to ServiceChangeResParm.
A.2 IG0601将时间戳添加到ServiceChangeResParm。
A.2 IGDUB Changed type of profileName in ServiceChangeProfile to IA5String.
A.2 IGDUB将ServiceChangeProfile中的profileName类型更改为IA5String。
A.2 IG0601 Made returned value optional in statisticsParameter, to support auditCapability result.
A.2 IG0601将返回值设置为统计参数中的可选值,以支持auditCapability结果。
A.2 GEN0202 Added reference to ISO 8601:1988 for TimeNotation.
A.2 GEN0202增加了ISO 8601:1988的时间符号参考。
A.2 IG1100 Value production modified to support the sublist parameter type.
A.2修改IG1100生产值以支持子列表参数类型。
A.3 IG1100 Corrected ABNF for digitStringlisT, replacing "/" with "|".
A.3 IG1100纠正了数字字符串的ABNF,将“/”替换为“|”。
A.3 IG1100 Added parentheses to digitMapRange production.
A.3 IG1100为digitMapRange产品添加了括号。
A.3 IG1100 Replaced more abbreviated syntax for pathName with fuller definition and constraints copied from B.2.
A.3 IG1100使用从B.2复制的更完整的定义和约束替换了路径名的更简短语法。
B.2 IGDUB Added note warning that the syntax alone does not provide a complete description of the constraints, but must be supplemented by a reading of the text and comments.
B.2 IGDUB补充说明警告:仅语法不能提供约束的完整描述,但必须通过阅读文本和注释进行补充。
B.2 IG0601 Added note warning that the interpretation of symbols is context-dependent.
B.2 IG0601增加了警告,即符号的解释取决于上下文。
B.2 IG1100 Added comment to indicate case insensitivity of protocol (excepting SDP) and ABNF.
B.2 IG1100增加了注释,以表明协议(SDP除外)和ABNF的不区分大小写。
B.2 IG0601 Expanded upon and capitalized this comment.
B.2 IG0601对该评论进行了扩展并大写。
B.2 IG0601 Lengthy note added on the coding of the VALUE construct.
B.2 IG0601附加在价值结构编码上的冗长注释。
B.2 IGDUB Deleted sentence in note suggesting that packages could add new types for properties, parameters, or statistics.
B.2 IGDUB删除了注释中的一句话,建议包可以添加新的属性、参数或统计类型。
B.2 IG0601 Added note indicating that parsers should allow for white space preceding the first line of SDP in Local or Remote.
B.2 IG0601增加了注释,指出解析器应允许在本地或远程SDP的第一行之前留有空白。
B.2 IGDUB Added comments identifying the O- and W- tags.
B.2 IGDUB增加了识别O型和W型标签的注释。
B.2 IG1100 Moved wildcard tag up from individual commands to commandRequestList.
B.2 IG1100将通配符标记从单个命令移动到commandRequestList。
B.2 GEN0202 Added additional error case to actionReply.
B.2 GEN0202在actionReply中添加了额外的错误案例。
B.2 IG0601 Modified syntax of auditOther to allow return of terminationID only.
B.2 IG0601修改了auditOther的语法,只允许返回terminationID。
B.2 IGDUB Corrected upper limit for V4hex.
B.2 IGDUB修正V4hex的上限。
B.2 IG1100 Corrected and expanded comments describing mtpAddress form of MId.
B.2 IG1100修改和扩展了说明MId的mtpAddress格式的注释。
B.2 IG0601 Modified comment to mediaParm to make streamParms and StreamDescriptor mutually exclusive.
B.2 IG0601修改了对mediaParm的注释,使StreamParm和StreamDescriptor互斥。
B.2 GEN0202 Modified comment further to indicate at most one instance of terminationStateDescriptor.
B.2 GEN0202进一步修改了注释,以表示至多一个terminationStateDescriptor实例。
B.2 GEN0202 Expanded comment for streamParm to indicate the restriction on repetition is per item.
B.2 GEN0202 streamParm的扩展注释,表明重复限制为每个项目。
B.2 IG0601 Modified "at most once" comments to localParm, terminationStateParm, and modemType, to allow multiple instances of propertyParm in the first two cases and extensionParameter in the last one.
B.2 IG0601修改了localParm、terminationStateParm和modemType的“最多一次”注释,以允许在前两种情况下使用PropertyPart的多个实例,在最后一种情况下使用extensionParameter。
B.2 IG0601 Added note before description of Local and Remote, pointing out that the octet value x00 is not allowed in octetString.
B.2 IG0601在描述本地和远程之前增加了注释,指出八位字节值x00不允许出现在八位字节字符串中。
B.2 IG0601 Syntax for eventsDescriptor, embedFirst, and eventBufferDescriptor modified to make contents beyond token optional.
B.2修改eventsDescriptor、embedFirst和eventBufferDescriptor的IG0601语法,使令牌之外的内容成为可选内容。
B.2 IGDUB Replaced "event" by "item" in comment to pkgdName because pkgdName applies to properties, signals, and statistics as well.
B.2 IGDUB将pkgdName注释中的“事件”替换为“项目”,因为pkgdName也适用于属性、信号和统计信息。
B.2 IG0601 Corrected placement of EQUAL in eventDM production.
B.2 IG0601纠正了eventDM生产中的等电位线位置。
B.2 IG1100 Added comment and syntax to indicate requestID value to use in an AuditCapReply.
B.2 IG1100添加了注释和语法,以指示在AuditCapReply中使用的requestID值。
B.2 IG1100 Corrected Modem Descriptor to allow package items as properties.
B.2 IG1100修正了调制解调器描述符,允许将包项目作为属性。
B.2 IG0601 Comment to modemType changed to allow multiple instances of extensionParameter.
B.2 IG0601对modemType的注释已更改,以允许extensionParameter的多个实例。
B.2 GEN0202 Comment added to indicate units for Timer.
B.2添加GEN0202注释,以指示计时器的单位。
B.2 IG1100 Added parentheses to digitMapRange production.
B.2 IG1100为digitMapRange产品添加了括号。
B.2 IG1100 Added comment to serviceChangeParm, restricting each parameter to one appearance.
B.2 IG1100向serviceChangeParm添加了注释,将每个参数限制为一个外观。
B.2 IG0601 Added comments making serviceChangeMgcId and serviceChangeAddress mutually exclusive in ServiceChangeParm and servChgReplyParm.
B.2 IG0601增加了注释,使serviceChangeMgcId和serviceChangeAddress在ServiceChangeParm和ServchGreplyPart中相互排斥。
B.2 IGDUB Added comment to serviceChangeParm indicating that ServiceChangeMethod and ServiceChangeReason are required.
B.2 IGDUB向serviceChangeParm添加了注释,指出需要ServiceChangeMethod和ServiceChangeReason。
B.2 IG0601 Added Timestamp to servChgReplyParm.
B.2 IG0601将时间戳添加到ServchGreplyPart。
B.2 IG0601 Added comment indicating coding of Value for ServiceChangeReason.
B.2 IG0601增加了注释,说明ServiceChangeReason值的编码。
B.2 IG0601 Modified ServiceChangeAddress to use MId definition for full address.
B.2 IG0601修改了ServiceChangeAddress,将MId定义用于完整地址。
B.2 IG1100 Made returned value optional in statisticsParameter, to support auditCapability result.
B.2 IG1100使返回值在statisticsParameter中可选,以支持auditCapability结果。
B.2 IG1100 Changed topologyDescriptor to allow multiple triples.
B.2 IG1100更改了拓扑描述符,以允许多个三元组。
B.2 IG0601 Added comment forbidding use of a double quote within a quotedString value.
B.2 IG0601添加了禁止在quotedString值内使用双引号的注释。
B.2 IG1100 Reserved prefixes for new tokens added to signalParameter and eventParameter, to avoid collision with package names.
B.2 IG1100为添加到signalParameter和eventParameter的新令牌保留前缀,以避免与包名称冲突。
B.2 IG1100 EmbedToken and EmergencyToken changed to remove clash with EventBufferToken.
B.2 IG1100 EmbeddeToken和EmergencyToken已更改,以删除与EventBufferToken的冲突。
B.3 IG1100 New section describing hexadecimal octet encoding.
B.3 IG1100描述十六进制八位字节编码的新章节。
B.4 IG1100 New section describing hex octet sequence.
B.4 IG1100描述十六进制八位组序列的新章节。
C IG1100 Added permission to use Annex C properties in LocalControl as well as in Local and Remote.
IG1100增加了在本地控制以及本地和远程控制中使用附录C属性的权限。
C IG0601 Added text making support of all properties of Annex C optional.
C IG0601增加了对附录C所有属性的文本制作支持(可选)。
C IGDUB Added directions to reconcile tabulated formats with allowed types for properties.
C IGDUB增加了将表格格式与允许的属性类型相协调的说明。
C.1 IG1100 Corrected Q.765 reference to Q.765.5 for ACodec.
C.1关于ACodec的IG1100修正Q.765参考Q.765.5。
C.1 IG1100 Deprecated Echocanc codepoint in favour of package-defined property.
C.1 IG1100不推荐Echocanc代码点,支持包定义属性。
C.4 ITUPOST Updated references from Q.2961 to Q.2961.1.
C.4将更新后的参考文献从Q.2961发布到Q.2961.1。
C.4 IGDUB Added details on format of VPVC.
C.4 IGDUB增加了有关VPVC格式的详细信息。
C.9 IG1100 Renamed USI to layer1prot.
C.9 IG1100将USI重命名为Layer1保护。
C.9 IG1100 Deprecated ECHOCI codepoint in favour of package-defined property.
C.9 IG1100不推荐ECHOCI代码点,支持包定义属性。
C.9 IG1100 Added new USI property.
C.9 IG1100增加了新的USI属性。
C.11 IG1100 Added m= line tag.
C.11增加的IG1100 m=线路标签。
D.1 IG0601 Added explanation of ALF.
D.1 IG0601增加了ALF的解释。
D.1.5 IGDUB Expanded text indicating that when trying to reestablish contact with the previously controlling MGC the MG uses the Disconnected method.
D.1.5 IGDUB扩展文本表明,当试图与先前控制的MGC重新建立联系时,MG使用断开连接的方法。
E.1.2 GEN0202 Added missing EventsDescriptor parameters lines.
E.1.2 GEN0202添加了缺少的EventsDescriptor参数行。
E.1.2 GEN0202 For the Signal Completion event: - corrected the description of how it is enabled - heavily edited the description of the Signal Identity observed event parameter and added a type.
E.1.2 GEN0202信号完成事件:-更正了如何启用它的描述-大量编辑了信号标识事件参数的描述,并添加了一个类型。
E.1.2 IGDUB The timeout completion reason for the Signal Completion event was broadened to include other circumstances where the signal completed on its own.
E.1.2 IGDUB信号完成事件的超时完成原因被扩大,以包括信号自行完成的其他情况。
E.1.2 IG1100 Added signal list ID observed event parameter to the Signal Completion event.
E.1.2 IG1100在信号完成事件中添加了信号列表ID观测事件参数。
E.2.1 IG0601 Added missing read only, read-write specifications.
E.2.1 IG0601增加了缺失的只读、读写规范。
E.2.1 IG0601 Split ProvisionalResponseTimer properties into one for MG, one for MGC.
E.2.1 IG0601将临时响应物属性分为一个用于MG,一个用于MGC。
E.3 GEN0202 Added "Designed to be extended only" to tonegen package description.
E.3 GEN0202在tonegen包装说明中增加了“仅设计用于扩展”。
E.4 GEN0202 Added "Designed to be extended only" to tonedet package description.
E.4 GEN0202在tonedet包装说明中增加了“仅设计用于扩展”。
E.4.2 GEN0202 Added type for tone ID observed parameter for Long Tone Detected event.
E.4.2 GEN0202为长音检测事件的音调ID观测参数添加了类型。
E.6.2 IG1100 Corrected binary identifier for digit map completion event to avoid clash with base package.
E.6.2 IG1100更正了数字映射完成事件的二进制标识符,以避免与基本包冲突。
E.6.2 IG1100 Removed procedural text.
E.6.2 IG1100删除了程序文本。
E.6.5 IG1100 Added procedural text indicating where to find the applicable digit map and indicating the error to return if the parameter is missing.
E.6.5 IG1100添加了程序文本,指示在何处查找适用的数字映射,并指示如果缺少参数将返回的错误。
E.6.5 IG0601 Further modified procedural text.
E.6.5 IG0601进一步修改了程序文本。
E.7.3 IG1100 Corrected text identifier for payphone recognition tone to avoid clash with base package.
E.7.3 IG1100更正了付费电话识别音的文本标识符,以避免与基本软件包冲突。
E.10.5 IGDUB Provided informative references for tones and procedures for continuity check.
E.10.5 IGDUB为连续性检查的音调和程序提供了信息参考。
E.13 GEN0202 Added note that TDM package could also apply to other transports.
E.13 GEN0202补充说明TDM包也可适用于其他运输工具。
E.13.1 IG1100 Changed default for echo cancellation from "on" to provisioned.
E.13.1 IG1100将回音取消的默认设置从“打开”更改为“已设置”。
E.13.1 IG0601 Corrected type for gain property.
E.13.1 IG0601已更正增益属性的类型。
Appendix TTPOST Included a number of corrections which were I not picked up in H.248.1 Amendment 1 but which do appear in H.248.1 v2.
附录TTPOST包含了H.248.1修订件1中未提及的一些更正,但这些更正确实出现在H.248.1 v2中。
Intellectual Property Rights
知识产权
The ITU draws attention to the possibility that the practice or implementation of this RFC may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.
国际电联提请注意,本RFC的实践或实施可能涉及使用声称的知识产权。国际电联对所主张的知识产权的证据、有效性或适用性不采取任何立场,无论这些知识产权是由国际电联成员主张的,还是在建议制定过程之外的其他人主张的。
As of the date of approval of this RFC, the ITU had received notice of intellectual property, protected by patents, which may be required to implement this RFC. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.
截至本RFC批准之日,ITU已收到实施本RFC可能需要的受专利保护的知识产权通知。但是,实施者应注意,这可能不代表最新信息,因此强烈建议咨询TSB专利数据库。
The IETF has also received notice of intellectual property claims relating to Megaco/H.248.1. Please consult the IETF IPR announcements at http://www.ietf.org/ipr.html.
IETF还收到了与Megaco/H.248.1有关的知识产权索赔通知。请参阅IETF知识产权公告,网址为http://www.ietf.org/ipr.html.
Acknowledgments
致谢
Megaco/H.248.1 is the result of hard work by many people in both the IETF and in ITU-T Study Group 16. This section records those who played a prominent role in ITU-T meetings, on the Megaco list, or both.
Megaco/H.248.1是IETF和ITU-T研究组16中许多人努力工作的结果。本节记录了在ITU-T会议、Megaco名单或两者中发挥突出作用的人员。
Megaco/H.248 owes a large initial debt to the MGCP protocol (RFC 2705), and thus to its authors, Mauricio Arango, Andrew Dugan, Ike Elliott, Christian Huitema, and Scott Pickett. Flemming Andreasen does not appear on this list of authors, but was a major contributor to the development of both MGCP and Megaco/H.248.1. RFC 3435 has an extensive acknowledgement of many other people who worked on media gateway control before Megaco got started.
Megaco/H.248对MGCP协议(RFC 2705)以及其作者Mauricio Arango、Andrew Dugan、Ike Elliott、Christian Huitema和Scott Pickett负有巨大的初始债务。Flemming Andreasen并未出现在该作者名单上,但对MGCP和Megaco/H.248.1的发展做出了重大贡献。RFC 3435广泛认可在Megaco启动之前从事媒体网关控制工作的许多其他人员。
The authors of the first Megaco RFCs (2805, then 3015) were Fernando Cuervo, Nancy Greene, Abdallah Rayhan, Christian Huitema, Brian Rosen, and John Segers. Christian Groves conceived and was editor of Annex C. The people most active on the Megaco list in the period leading up to the completion of RFC 2885 were Brian Rosen, Tom Taylor, Nancy Greene, Christian Huitema, Matt Holdrege, Chip Sharp, John Segers, Michael Thomas, Henry Sinnreich, and Paul Sijben. The people who sacrificed sleep and meals to complete the massive amount of work required in the decisive Study Group 16 meeting of February, 2000, were Michael Brown, Ranga Dendi, Larry Forni, Glen Freundlich, Christian Groves, Alf Heidemark, Steve Magnell, Selvam Rengasami, Rich Rubin, Klaus Sambor, John Segers, Chip Sharp, Tom Taylor, and Stephen Terrill.
第一批Megaco RFC(2805,然后是3015)的作者是Fernando Cuervo、Nancy Greene、Abdallah Rayhan、Christian Huitema、Brian Rosen和John Segers。Christian Groves孕育并担任附录C的编辑。在RFC 2885完成之前的时期,Megaco名单上最活跃的人是Brian Rosen、Tom Taylor、Nancy Greene、Christian Huitema、Matt Holdrege、Chip Sharp、John Segers、Michael Thomas、Henry Sinnreich和Paul Sijben。为了完成2000年2月第16次决定性研究小组会议所需的大量工作,牺牲了睡眠和膳食的人有迈克尔·布朗、兰加·登迪、拉里·福尼、格伦·弗伦德利奇、克里斯蒂安·格罗夫斯、阿尔夫·海德马克、史蒂夫·马格纳尔、塞尔瓦姆·伦加萨米、里奇·鲁宾、克劳斯·桑博、约翰·塞格斯、奇普·夏普、汤姆·泰勒、,还有斯蒂芬·特瑞尔。
The most active people on the Megaco list in the period since the February 2000 have been Tom Taylor, Brian Rosen, Christian Groves, Madhu Babu Brahmanapally, Troy Cauble, Terry Anderson, Chuong Nguyen, and Kevin Boyle, but many other people have been regular contributors. Brian Rosen did tremendous service in putting together the Megaco interoperability tests. On the Study Group 16 side, the editorial team for the final revised document in February, 2002 included Christian Groves, Marcello Pantaleo, Terry Anderson, Peter Leis, Kevin Boyle, and Tom Taylor.
自2000年2月以来,Megaco榜单上最活跃的人是汤姆·泰勒、布赖恩·罗森、克里斯蒂安·格罗夫斯、玛杜·巴布·布拉马纳帕利、特洛伊·考布尔、特里·安德森、阮楚瑜和凯文·博伊尔,但其他许多人都是定期撰稿人。Brian Rosen在组织Megaco互操作性测试方面做出了巨大的贡献。在研究组16方面,2002年2月最终修订文件的编辑团队包括克里斯蒂安·格罗夫斯、马塞洛·潘塔莱奥、特里·安德森、彼得·莱斯、凯文·博伊尔和汤姆·泰勒。
Tom Taylor as Megaco Chair managed the day to day operation of the Megaco list, with Brian Rosen taking an equal share of the burden for most of the last three years. Glen Freundlich as the Study Group 16 Rapporteur ran the ITU-T meetings and ensured that all of the work at hand was completed. Without Glen's determination the Megaco/H.248
Megaco主席汤姆·泰勒(Tom Taylor)负责管理Megaco名单的日常运作,布莱恩·罗森(Brian Rosen)在过去三年的大部分时间里承担着同等的责任。Glen Freundlich作为第16研究组报告员主持了ITU-T会议,并确保手头的所有工作都已完成。未经格伦测定,Megaco/H.248
standard would have taken at least half a year longer to produce. Christian Groves filled in ably as Rapporteur when Glen could no longer take part.
《标准》的制作至少需要半年的时间。当格伦不能再参加时,克里斯蒂安·格罗夫斯干练地担任报告员。
Authors' Addresses
作者地址
Terry L. Anderson 24 Hill St Bernardsville, NJ 07924 USA
Terry L.Anderson美国新泽西州圣伯纳德维尔希尔24号,邮编:07924
EMail: tlatla@verizon.net
EMail: tlatla@verizon.net
Christian Groves Ericsson AsiaPacificLab Australia 37/360 Elizabeth St Melbourne, Victoria 3000 Australia
澳大利亚维多利亚州墨尔本伊丽莎白街37/360号克里斯蒂安格罗夫斯爱立信亚洲太平洋实验室3000
EMail: Christian.Groves@ericsson.com.au
EMail: Christian.Groves@ericsson.com.au
Marcello Pantaleo Ericsson Eurolab Deuschland Ericsson Allee 1 52134 Herzogenrath, Germany
Marcello Pantaleo Ericsson Eurolab Deuschland Ericsson Allee 1 52134 Herzogenrath,德国
EMail: Marcello.Pantaleo@eed.ericsson.se
EMail: Marcello.Pantaleo@eed.ericsson.se
Tom Taylor Nortel Networks 1852 Lorraine Ave, Ottawa, Ontario Canada K1H 6Z8
Tom Taylor Nortel Networks 1852加拿大安大略省渥太华洛林大道K1H 6Z8
Phone: +1 613 736 0961 EMail: taylor@nortelnetworks.com
Phone: +1 613 736 0961 EMail: taylor@nortelnetworks.com
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (2003). All Rights Reserved.
版权所有(C)互联网协会(2003年)。版权所有。
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.
本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。
The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.
上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。