Network Working Group                                            W. Polk
Request for Comments: 3279                                          NIST
Obsoletes: 2528                                               R. Housley
Category: Standards Track                               RSA Laboratories
                                                              L. Bassham
                                                                    NIST
                                                              April 2002
        
Network Working Group                                            W. Polk
Request for Comments: 3279                                          NIST
Obsoletes: 2528                                               R. Housley
Category: Standards Track                               RSA Laboratories
                                                              L. Bassham
                                                                    NIST
                                                              April 2002
        

Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

Internet X.509公钥基础设施证书和证书吊销列表(CRL)配置文件的算法和标识符

Status of this Memo

本备忘录的状况

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2002). All Rights Reserved.

版权所有(C)互联网协会(2002年)。版权所有。

Abstract

摘要

This document specifies algorithm identifiers and ASN.1 encoding formats for digital signatures and subject public keys used in the Internet X.509 Public Key Infrastructure (PKI). Digital signatures are used to sign certificates and certificate revocation list (CRLs). Certificates include the public key of the named subject.

本文件规定了互联网X.509公钥基础设施(PKI)中使用的数字签名和主题公钥的算法标识符和ASN.1编码格式。数字签名用于签署证书和证书吊销列表(CRL)。证书包括指定主体的公钥。

Table of Contents

目录

   1  Introduction  . . . . . . . . . . . . . . . . . . . . . .   2
   2  Algorithm Support . . . . . . . . . . . . . . . . . . . .   3
   2.1  One-Way Hash Functions  . . . . . . . . . . . . . . . .   3
   2.1.1  MD2 One-Way Hash Functions  . . . . . . . . . . . . .   3
   2.1.2  MD5 One-Way Hash Functions  . . . . . . . . . . . . .   4
   2.1.3  SHA-1 One-Way Hash Functions  . . . . . . . . . . . .   4
   2.2  Signature Algorithms  . . . . . . . . . . . . . . . . .   4
   2.2.1  RSA Signature Algorithm . . . . . . . . . . . . . . .   5
   2.2.2  DSA Signature Algorithm . . . . . . . . . . . . . . .   6
   2.2.3  Elliptic Curve Digital Signature Algorithm  . . . . .   7
   2.3  Subject Public Key Algorithms . . . . . . . . . . . . .   7
   2.3.1  RSA Keys  . . . . . . . . . . . . . . . . . . . . . .   8
   2.3.2  DSA Signature Keys  . . . . . . . . . . . . . . . . .   9
   2.3.3  Diffie-Hellman Key Exchange Keys  . . . . . . . . . .  10
        
   1  Introduction  . . . . . . . . . . . . . . . . . . . . . .   2
   2  Algorithm Support . . . . . . . . . . . . . . . . . . . .   3
   2.1  One-Way Hash Functions  . . . . . . . . . . . . . . . .   3
   2.1.1  MD2 One-Way Hash Functions  . . . . . . . . . . . . .   3
   2.1.2  MD5 One-Way Hash Functions  . . . . . . . . . . . . .   4
   2.1.3  SHA-1 One-Way Hash Functions  . . . . . . . . . . . .   4
   2.2  Signature Algorithms  . . . . . . . . . . . . . . . . .   4
   2.2.1  RSA Signature Algorithm . . . . . . . . . . . . . . .   5
   2.2.2  DSA Signature Algorithm . . . . . . . . . . . . . . .   6
   2.2.3  Elliptic Curve Digital Signature Algorithm  . . . . .   7
   2.3  Subject Public Key Algorithms . . . . . . . . . . . . .   7
   2.3.1  RSA Keys  . . . . . . . . . . . . . . . . . . . . . .   8
   2.3.2  DSA Signature Keys  . . . . . . . . . . . . . . . . .   9
   2.3.3  Diffie-Hellman Key Exchange Keys  . . . . . . . . . .  10
        
   2.3.4  KEA Public Keys . . . . . . . . . . . . . . . . . . .  11
   2.3.5  ECDSA and ECDH Public Keys  . . . . . . . . . . . . .  13
   3  ASN.1 Module  . . . . . . . . . . . . . . . . . . . . . .  18
   4  References  . . . . . . . . . . . . . . . . . . . . . . .  24
   5  Security Considerations . . . . . . . . . . . . . . . . .  25
   6  Intellectual Property Rights  . . . . . . . . . . . . . .  26
   7  Author Addresses  . . . . . . . . . . . . . . . . . . . .  26
   8  Full Copyright Statement  . . . . . . . . . . . . . . . .  27
        
   2.3.4  KEA Public Keys . . . . . . . . . . . . . . . . . . .  11
   2.3.5  ECDSA and ECDH Public Keys  . . . . . . . . . . . . .  13
   3  ASN.1 Module  . . . . . . . . . . . . . . . . . . . . . .  18
   4  References  . . . . . . . . . . . . . . . . . . . . . . .  24
   5  Security Considerations . . . . . . . . . . . . . . . . .  25
   6  Intellectual Property Rights  . . . . . . . . . . . . . .  26
   7  Author Addresses  . . . . . . . . . . . . . . . . . . . .  26
   8  Full Copyright Statement  . . . . . . . . . . . . . . . .  27
        

1 Introduction

1导言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC 2119]中所述进行解释。

This document specifies algorithm identifiers and ASN.1 [X.660] encoding formats for digital signatures and subject public keys used in the Internet X.509 Public Key Infrastructure (PKI). This specification supplements [RFC 3280], "Internet X.509 Public Key Infrastructure: Certificate and Certificate Revocation List (CRL) Profile." Implementations of this specification MUST also conform to RFC 3280.

本文件规定了互联网X.509公钥基础设施(PKI)中使用的数字签名和主题公钥的算法标识符和ASN.1[X.660]编码格式。本规范补充了[RFC 3280],“Internet X.509公钥基础设施:证书和证书吊销列表(CRL)配置文件”。本规范的实施还必须符合RFC 3280。

This specification defines the contents of the signatureAlgorithm, signatureValue, signature, and subjectPublicKeyInfo fields within Internet X.509 certificates and CRLs.

本规范定义了Internet X.509证书和CRL中signatureAlgorithm、signatureValue、signature和subjectPublicKeyInfo字段的内容。

This document identifies one-way hash functions for use in the generation of digital signatures. These algorithms are used in conjunction with digital signature algorithms.

本文档确定了用于生成数字签名的单向散列函数。这些算法与数字签名算法一起使用。

This specification describes the encoding of digital signatures generated with the following cryptographic algorithms:

本规范描述了使用以下加密算法生成的数字签名的编码:

* Rivest-Shamir-Adelman (RSA); * Digital Signature Algorithm (DSA); and * Elliptic Curve Digital Signature Algorithm (ECDSA).

* 里维斯特·沙米尔·阿德尔曼(RSA);*数字签名算法(DSA);椭圆曲线数字签名算法(ECDSA)。

This document specifies the contents of the subjectPublicKeyInfo field in Internet X.509 certificates. For each algorithm, the appropriate alternatives for the the keyUsage extension are provided. This specification describes encoding formats for public keys used with the following cryptographic algorithms:

本文档指定Internet X.509证书中subjectPublicKeyInfo字段的内容。对于每种算法,都提供了密钥使用扩展的适当替代方案。本规范描述了与以下加密算法一起使用的公钥的编码格式:

* Rivest-Shamir-Adelman (RSA); * Digital Signature Algorithm (DSA); * Diffie-Hellman (DH); * Key Encryption Algorithm (KEA);

* 里维斯特·沙米尔·阿德尔曼(RSA);*数字签名算法(DSA);*迪菲·赫尔曼(DH)*密钥加密算法;

* Elliptic Curve Digital Signature Algorithm (ECDSA); and * Elliptic Curve Diffie-Hellman (ECDH).

* 椭圆曲线数字签名算法;椭圆曲线Diffie-Hellman(ECDH)。

2 Algorithm Support

2算法支持

This section describes cryptographic algorithms which may be used with the Internet X.509 certificate and CRL profile [RFC 3280]. This section describes one-way hash functions and digital signature algorithms which may be used to sign certificates and CRLs, and identifies object identifiers (OIDs) for public keys contained in a certificate.

本节介绍可与Internet X.509证书和CRL配置文件[RFC 3280]一起使用的加密算法。本节介绍单向散列函数和数字签名算法,可用于对证书和CRL进行签名,并标识证书中包含的公钥的对象标识符(OID)。

Conforming CAs and applications MUST, at a minimum, support digital signatures and public keys for one of the specified algorithms. When using any of the algorithms identified in this specification, conforming CAs and applications MUST support them as described.

合格的CA和应用程序必须至少支持指定算法之一的数字签名和公钥。当使用本规范中确定的任何算法时,符合要求的CA和应用程序必须支持所述算法。

2.1 One-way Hash Functions
2.1 单向散列函数

This section identifies one-way hash functions for use in the Internet X.509 PKI. One-way hash functions are also called message digest algorithms. SHA-1 is the preferred one-way hash function for the Internet X.509 PKI. However, PEM uses MD2 for certificates [RFC 1422] [RFC 1423] and MD5 is used in other legacy applications. For these reasons, MD2 and MD5 are included in this profile. The data that is hashed for certificate and CRL signing is fully described in [RFC 3280].

本节确定了在Internet X.509 PKI中使用的单向散列函数。单向散列函数也称为消息摘要算法。SHA-1是Internet X.509 PKI的首选单向散列函数。但是,PEM将MD2用于证书[RFC 1422][RFC 1423],而MD5用于其他遗留应用程序。出于这些原因,MD2和MD5包含在此概要文件中。[RFC 3280]中详细描述了为证书和CRL签名而散列的数据。

2.1.1 MD2 One-way Hash Function
2.1.1 MD2单向散列函数

MD2 was developed by Ron Rivest for RSA Security. RSA Security has recently placed the MD2 algorithm in the public domain. Previously, RSA Data Security had granted license for use of MD2 for non-commercial Internet Privacy-Enhanced Mail (PEM). MD2 may continue to be used with PEM certificates, but SHA-1 is preferred. MD2 produces a 128-bit "hash" of the input. MD2 is fully described in [RFC 1319].

MD2是由Ron Rivest为RSA安全性开发的。RSA Security最近将MD2算法置于公共领域。此前,RSA Data Security已授予MD2用于非商业互联网隐私增强邮件(PEM)的许可证。MD2可继续与PEM证书一起使用,但首选SHA-1。MD2生成输入的128位“哈希”。MD2在[RFC 1319]中有详细描述。

At the Selected Areas in Cryptography '95 conference in May 1995, Rogier and Chauvaud presented an attack on MD2 that can nearly find collisions [RC95]. Collisions occur when one can find two different messages that generate the same message digest. A checksum operation in MD2 is the only remaining obstacle to the success of the attack. For this reason, the use of MD2 for new applications is discouraged. It is still reasonable to use MD2 to verify existing signatures, as the ability to find collisions in MD2 does not enable an attacker to find new messages having a previously computed hash value.

在1995年5月的95年密码学会议上,Rogier和Chauvaud提出了一种对MD2的攻击,这种攻击几乎可以找到碰撞[RC95]。当可以找到生成相同消息摘要的两条不同消息时,就会发生冲突。MD2中的校验和操作是攻击成功的唯一障碍。因此,不鼓励在新应用程序中使用MD2。使用MD2来验证现有签名仍然是合理的,因为在MD2中查找冲突的能力无法使攻击者找到具有先前计算的哈希值的新消息。

2.1.2 MD5 One-way Hash Function
2.1.2 MD5单向散列函数

MD5 was developed by Ron Rivest for RSA Security. RSA Security has placed the MD5 algorithm in the public domain. MD5 produces a 128- bit "hash" of the input. MD5 is fully described in [RFC 1321].

MD5是由Ron Rivest为RSA安全性开发的。RSA Security将MD5算法置于公共领域。MD5生成输入的128位“哈希”。MD5在[RFC 1321]中有详细描述。

Den Boer and Bosselaers [DB94] have found pseudo-collisions for MD5, but there are no other known cryptanalytic results. The use of MD5 for new applications is discouraged. It is still reasonable to use MD5 to verify existing signatures.

Den Boer和Bosselaers[DB94]发现了MD5的伪碰撞,但没有其他已知的密码分析结果。不鼓励在新应用程序中使用MD5。使用MD5来验证现有签名仍然是合理的。

2.1.3 SHA-1 One-way Hash Function
2.1.3 SHA-1单向散列函数

SHA-1 was developed by the U.S. Government. SHA-1 produces a 160-bit "hash" of the input. SHA-1 is fully described in [FIPS 180-1]. RFC 3174 [RFC 3174] also describes SHA-1, and it provides an implementation of the algorithm.

SHA-1由美国政府开发。SHA-1生成输入的160位“散列”。SHA-1在[FIPS 180-1]中有详细描述。RFC3174[RFC3174]还描述了SHA-1,并提供了算法的实现。

2.2 Signature Algorithms
2.2 签名算法

Certificates and CRLs conforming to [RFC 3280] may be signed with any public key signature algorithm. The certificate or CRL indicates the algorithm through an algorithm identifier which appears in the signatureAlgorithm field within the Certificate or CertificateList. This algorithm identifier is an OID and has optionally associated parameters. This section identifies algorithm identifiers and parameters that MUST be used in the signatureAlgorithm field in a Certificate or CertificateList.

符合[RFC 3280]的证书和CRL可以使用任何公钥签名算法进行签名。证书或CRL通过出现在证书或证书列表的signatureAlgorithm字段中的算法标识符指示算法。此算法标识符是一个OID,并具有可选的关联参数。本节确定了必须在证书或证书列表的signatureAlgorithm字段中使用的算法标识符和参数。

Signature algorithms are always used in conjunction with a one-way hash function.

签名算法总是与单向散列函数结合使用。

This section identifies OIDS for RSA, DSA, and ECDSA. The contents of the parameters component for each algorithm vary; details are provided for each algorithm.

本节介绍RSA、DSA和ECDSA的OID。每个算法的参数组件的内容各不相同;每个算法都提供了详细信息。

The data to be signed (e.g., the one-way hash function output value) is formatted for the signature algorithm to be used. Then, a private key operation (e.g., RSA encryption) is performed to generate the signature value. This signature value is then ASN.1 encoded as a BIT STRING and included in the Certificate or CertificateList in the signature field.

将要签名的数据(例如,单向散列函数输出值)格式化为要使用的签名算法。然后,执行私钥操作(例如,RSA加密)以生成签名值。然后,该签名值被ASN.1编码为位字符串,并包含在签名字段的证书或证书列表中。

2.2.1 RSA Signature Algorithm
2.2.1 RSA签名算法

The RSA algorithm is named for its inventors: Rivest, Shamir, and Adleman. This profile includes three signature algorithms based on the RSA asymmetric encryption algorithm. The signature algorithms combine RSA with either the MD2, MD5, or the SHA-1 one-way hash functions.

RSA算法以其发明者命名:Rivest、Shamir和Adleman。此配置文件包括三种基于RSA非对称加密算法的签名算法。签名算法将RSA与MD2、MD5或SHA-1单向散列函数相结合。

The signature algorithm with SHA-1 and the RSA encryption algorithm is implemented using the padding and encoding conventions described in PKCS #1 [RFC 2313]. The message digest is computed using the SHA-1 hash algorithm.

SHA-1签名算法和RSA加密算法使用PKCS#1[RFC 2313]中描述的填充和编码约定实现。使用SHA-1哈希算法计算消息摘要。

The RSA signature algorithm, as specified in PKCS #1 [RFC 2313] includes a data encoding step. In this step, the message digest and the OID for the one-way hash function used to compute the digest are combined. When performing the data encoding step, the md2, md5, and id-sha1 OIDs MUST be used to specify the MD2, MD5, and SHA-1 one-way hash functions, respectively:

PKCS#1[RFC 2313]中规定的RSA签名算法包括数据编码步骤。在这一步中,消息摘要和用于计算摘要的单向散列函数的OID组合在一起。执行数据编码步骤时,必须使用md2、md5和id-sha1 OID分别指定md2、md5和SHA-1单向散列函数:

      md2  OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) US(840) rsadsi(113549)
           digestAlgorithm(2) 2 }
        
      md2  OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) US(840) rsadsi(113549)
           digestAlgorithm(2) 2 }
        
      md5  OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) US(840) rsadsi(113549)
           digestAlgorithm(2) 5 }
        
      md5  OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) US(840) rsadsi(113549)
           digestAlgorithm(2) 5 }
        
      id-sha1  OBJECT IDENTIFIER ::= {
           iso(1) identified-organization(3) oiw(14) secsig(3)
           algorithms(2) 26 }
        
      id-sha1  OBJECT IDENTIFIER ::= {
           iso(1) identified-organization(3) oiw(14) secsig(3)
           algorithms(2) 26 }
        

The signature algorithm with MD2 and the RSA encryption algorithm is defined in PKCS #1 [RFC 2313]. As defined in PKCS #1 [RFC 2313], the ASN.1 OID used to identify this signature algorithm is:

带有MD2和RSA加密算法的签名算法在PKCS#1[RFC 2313]中定义。根据PKCS#1[RFC 2313]中的定义,用于识别此签名算法的ASN.1 OID为:

      md2WithRSAEncryption OBJECT IDENTIFIER  ::=  {
          iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
          pkcs-1(1) 2  }
        
      md2WithRSAEncryption OBJECT IDENTIFIER  ::=  {
          iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
          pkcs-1(1) 2  }
        

The signature algorithm with MD5 and the RSA encryption algorithm is defined in PKCS #1 [RFC 2313]. As defined in PKCS #1 [RFC 2313], the ASN.1 OID used to identify this signature algorithm is:

带有MD5和RSA加密算法的签名算法在PKCS#1[RFC 2313]中定义。根据PKCS#1[RFC 2313]中的定义,用于识别此签名算法的ASN.1 OID为:

      md5WithRSAEncryption OBJECT IDENTIFIER  ::=  {
          iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
          pkcs-1(1) 4  }
        
      md5WithRSAEncryption OBJECT IDENTIFIER  ::=  {
          iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
          pkcs-1(1) 4  }
        

The ASN.1 object identifier used to identify this signature algorithm is:

用于标识此签名算法的ASN.1对象标识符为:

      sha-1WithRSAEncryption OBJECT IDENTIFIER  ::=  {
          iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
          pkcs-1(1) 5  }
        
      sha-1WithRSAEncryption OBJECT IDENTIFIER  ::=  {
          iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
          pkcs-1(1) 5  }
        

When any of these three OIDs appears within the ASN.1 type AlgorithmIdentifier, the parameters component of that type SHALL be the ASN.1 type NULL.

当这三个OID中的任何一个出现在ASN.1类型算法标识符中时,该类型的参数组件应为ASN.1类型NULL。

The RSA signature generation process and the encoding of the result is described in detail in PKCS #1 [RFC 2313].

RSA签名生成过程和结果编码在PKCS#1[RFC 2313]中有详细描述。

2.2.2 DSA Signature Algorithm
2.2.2 DSA签名算法

The Digital Signature Algorithm (DSA) is defined in the Digital Signature Standard (DSS). DSA was developed by the U.S. Government, and DSA is used in conjunction with the SHA-1 one-way hash function. DSA is fully described in [FIPS 186]. The ASN.1 OID used to identify this signature algorithm is:

数字签名算法(DSA)在数字签名标准(DSS)中定义。DSA由美国政府开发,DSA与SHA-1单向散列函数一起使用。DSA在[FIPS 186]中有详细描述。用于识别此签名算法的ASN.1 OID为:

      id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
           iso(1) member-body(2) us(840) x9-57 (10040)
           x9cm(4) 3 }
        
      id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
           iso(1) member-body(2) us(840) x9-57 (10040)
           x9cm(4) 3 }
        

When the id-dsa-with-sha1 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier, the encoding SHALL omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component: the OBJECT IDENTIFIER id-dsa-with-sha1.

当id-dsa-with-sha1算法标识符显示为算法标识符中的算法字段时,编码应忽略参数字段。也就是说,算法标识符应为一个组件的序列:对象标识符id-dsa-with-sha1。

The DSA parameters in the subjectPublicKeyInfo field of the certificate of the issuer SHALL apply to the verification of the signature.

签发人证书的subjectPublicKeyInfo字段中的DSA参数应适用于签名验证。

When signing, the DSA algorithm generates two values. These values are commonly referred to as r and s. To easily transfer these two values as one signature, they SHALL be ASN.1 encoded using the following ASN.1 structure:

签名时,DSA算法生成两个值。这些值通常称为r和s。为了方便地将这两个值作为一个签名传输,应使用以下ASN.1结构对其进行ASN.1编码:

      Dss-Sig-Value  ::=  SEQUENCE  {
              r       INTEGER,
              s       INTEGER  }
        
      Dss-Sig-Value  ::=  SEQUENCE  {
              r       INTEGER,
              s       INTEGER  }
        
2.2.3 ECDSA Signature Algorithm
2.2.3 ECDSA签名算法

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in [X9.62]. The ASN.1 object identifiers used to identify ECDSA are defined in the following arc:

[X9.62]中定义了椭圆曲线数字签名算法(ECDSA)。用于识别ECDSA的ASN.1对象标识符在以下arc中定义:

      ansi-X9-62  OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) us(840) 10045 }
        
      ansi-X9-62  OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) us(840) 10045 }
        
      id-ecSigType OBJECT IDENTIFIER  ::=  {
           ansi-X9-62 signatures(4) }
        
      id-ecSigType OBJECT IDENTIFIER  ::=  {
           ansi-X9-62 signatures(4) }
        

ECDSA is used in conjunction with the SHA-1 one-way hash function. The ASN.1 object identifier used to identify ECDSA with SHA-1 is:

ECDSA与SHA-1单向散列函数一起使用。用于通过SHA-1识别ECDSA的ASN.1对象标识符为:

      ecdsa-with-SHA1  OBJECT IDENTIFIER ::= {
           id-ecSigType 1 }
        
      ecdsa-with-SHA1  OBJECT IDENTIFIER ::= {
           id-ecSigType 1 }
        

When the ecdsa-with-SHA1 algorithm identifier appears as the algorithm field in an AlgorithmIdentifier, the encoding MUST omit the parameters field. That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one component: the OBJECT IDENTIFIER ecdsa-with-SHA1.

当ecdsa-with-SHA1算法标识符在算法标识符中显示为算法字段时,编码必须忽略参数字段。也就是说,算法标识符应为一个组件序列:对象标识符ecdsa-with-SHA1。

The elliptic curve parameters in the subjectPublicKeyInfo field of the certificate of the issuer SHALL apply to the verification of the signature.

签发人证书的subjectPublicKeyInfo字段中的椭圆曲线参数应适用于签名验证。

When signing, the ECDSA algorithm generates two values. These values are commonly referred to as r and s. To easily transfer these two values as one signature, they MUST be ASN.1 encoded using the following ASN.1 structure:

签名时,ECDSA算法生成两个值。这些值通常称为r和s。为了方便地将这两个值作为一个签名传输,必须使用以下ASN.1结构对它们进行ASN.1编码:

      Ecdsa-Sig-Value  ::=  SEQUENCE  {
           r     INTEGER,
           s     INTEGER  }
        
      Ecdsa-Sig-Value  ::=  SEQUENCE  {
           r     INTEGER,
           s     INTEGER  }
        
2.3 Subject Public Key Algorithms
2.3 主题公钥算法

Certificates conforming to [RFC 3280] may convey a public key for any public key algorithm. The certificate indicates the algorithm through an algorithm identifier. This algorithm identifier is an OID and optionally associated parameters.

符合[RFC 3280]的证书可传送任何公钥算法的公钥。证书通过算法标识符指示算法。此算法标识符是OID和可选关联参数。

This section identifies preferred OIDs and parameters for the RSA, DSA, Diffie-Hellman, KEA, ECDSA, and ECDH algorithms. Conforming CAs MUST use the identified OIDs when issuing certificates containing

本节确定了RSA、DSA、Diffie-Hellman、KEA、ECDSA和ECDH算法的首选OID和参数。合格CA在颁发包含以下内容的证书时必须使用识别的OID

public keys for these algorithms. Conforming applications supporting any of these algorithms MUST, at a minimum, recognize the OID identified in this section.

这些算法的公钥。支持这些算法的一致性应用程序必须至少识别本节中标识的OID。

2.3.1 RSA Keys
2.3.1 RSA密钥

The OID rsaEncryption identifies RSA public keys.

RSA加密识别RSA公钥。

      pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
                     rsadsi(113549) pkcs(1) 1 }
        
      pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
                     rsadsi(113549) pkcs(1) 1 }
        
      rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1}
        
      rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1}
        

The rsaEncryption OID is intended to be used in the algorithm field of a value of type AlgorithmIdentifier. The parameters field MUST have ASN.1 type NULL for this algorithm identifier.

RSAOID加密用于AlgorithmIdentifier类型值的算法字段。对于此算法标识符,参数字段的ASN.1类型必须为NULL。

The RSA public key MUST be encoded using the ASN.1 type RSAPublicKey:

必须使用ASN.1类型的RSA公钥对RSA公钥进行编码:

      RSAPublicKey ::= SEQUENCE {
         modulus            INTEGER,    -- n
         publicExponent     INTEGER  }  -- e
        
      RSAPublicKey ::= SEQUENCE {
         modulus            INTEGER,    -- n
         publicExponent     INTEGER  }  -- e
        

where modulus is the modulus n, and publicExponent is the public exponent e. The DER encoded RSAPublicKey is the value of the BIT STRING subjectPublicKey.

式中,模数为模数n,公共指数为公共指数e。DER编码的RSAPPublicKey是位字符串subjectPublicKey的值。

This OID is used in public key certificates for both RSA signature keys and RSA encryption keys. The intended application for the key MAY be indicated in the key usage field (see [RFC 3280]). The use of a single key for both signature and encryption purposes is not recommended, but is not forbidden.

此OID用于RSA签名密钥和RSA加密密钥的公钥证书。钥匙的预期用途可在钥匙使用字段中指明(参见[RFC 3280])。不建议将单个密钥用于签名和加密目的,但也不禁止。

If the keyUsage extension is present in an end entity certificate which conveys an RSA public key, any combination of the following values MAY be present:

如果传递RSA公钥的最终实体证书中存在keyUsage扩展,则可能存在以下值的任意组合:

      digitalSignature;
      nonRepudiation;
      keyEncipherment; and
      dataEncipherment.
        
      digitalSignature;
      nonRepudiation;
      keyEncipherment; and
      dataEncipherment.
        

If the keyUsage extension is present in a CA or CRL issuer certificate which conveys an RSA public key, any combination of the following values MAY be present:

如果传递RSA公钥的CA或CRL颁发者证书中存在keyUsage扩展,则可能存在以下值的任意组合:

      digitalSignature;
      nonRepudiation;
        
      digitalSignature;
      nonRepudiation;
        
      keyEncipherment;
      dataEncipherment;
      keyCertSign; and
      cRLSign.
        
      keyEncipherment;
      dataEncipherment;
      keyCertSign; and
      cRLSign.
        

However, this specification RECOMMENDS that if keyCertSign or cRLSign is present, both keyEncipherment and dataEncipherment SHOULD NOT be present.

但是,本规范建议,如果存在keyCertSign或cRLSign,则不应同时存在KeyEncryption和DataEncryption。

2.3.2 DSA Signature Keys
2.3.2 DSA签名密钥

The Digital Signature Algorithm (DSA) is defined in the Digital Signature Standard (DSS) [FIPS 186]. The DSA OID supported by this profile is:

数字签名算法(DSA)在数字签名标准(DSS)[FIPS 186]中定义。此配置文件支持的DSA OID是:

      id-dsa OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }
        
      id-dsa OBJECT IDENTIFIER ::= {
           iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }
        

The id-dsa algorithm syntax includes optional domain parameters. These parameters are commonly referred to as p, q, and g. When omitted, the parameters component MUST be omitted entirely. That is, the AlgorithmIdentifier MUST be a SEQUENCE of one component: the OBJECT IDENTIFIER id-dsa.

id dsa算法语法包括可选的域参数。这些参数通常称为p、q和g。省略时,必须完全省略参数组件。也就是说,算法标识符必须是一个组件的序列:对象标识符id dsa。

If the DSA domain parameters are present in the subjectPublicKeyInfo AlgorithmIdentifier, the parameters are included using the following ASN.1 structure:

如果DSA域参数存在于subjectPublicKeyInfo算法标识符中,则使用以下ASN.1结构包含这些参数:

      Dss-Parms  ::=  SEQUENCE  {
          p             INTEGER,
          q             INTEGER,
          g             INTEGER  }
        
      Dss-Parms  ::=  SEQUENCE  {
          p             INTEGER,
          q             INTEGER,
          g             INTEGER  }
        

The AlgorithmIdentifier within subjectPublicKeyInfo is the only place within a certificate where the parameters may be used. If the DSA algorithm parameters are omitted from the subjectPublicKeyInfo AlgorithmIdentifier and the CA signed the subject certificate using DSA, then the certificate issuer's DSA parameters apply to the subject's DSA key. If the DSA domain parameters are omitted from the SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the subject certificate using a signature algorithm other than DSA, then the subject's DSA domain parameters are distributed by other means. If the subjectPublicKeyInfo AlgorithmIdentifier field omits the parameters component, the CA signed the subject with a signature algorithm other than DSA, and the subject's DSA parameters are not available through other means, then clients MUST reject the certificate.

subjectPublicKeyInfo中的AlgorithmIdentifier是证书中唯一可以使用参数的位置。如果subjectPublicKeyInfo算法标识符中省略了DSA算法参数,并且CA使用DSA签署了受试者证书,则证书颁发者的DSA参数将应用于受试者的DSA密钥。如果从SubjectPublicKeyInfo算法标识符中省略DSA域参数,并且CA使用DSA以外的签名算法对主体证书进行签名,则主体的DSA域参数将通过其他方式分发。如果subjectPublicKeyInfo AlgorithmIdentifier字段省略了参数组件,CA使用DSA以外的签名算法对受试者进行签名,并且受试者的DSA参数无法通过其他方式使用,则客户端必须拒绝证书。

The DSA public key MUST be ASN.1 DER encoded as an INTEGER; this encoding shall be used as the contents (i.e., the value) of the subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo data element.

DSA公钥必须是ASN.1 DER编码为整数;该编码应用作SubjectPublicKeyInfo数据元素的subjectPublicKey组件(位字符串)的内容(即值)。

      DSAPublicKey ::= INTEGER -- public key, Y
        
      DSAPublicKey ::= INTEGER -- public key, Y
        

If the keyUsage extension is present in an end entity certificate which conveys a DSA public key, any combination of the following values MAY be present:

如果传递DSA公钥的最终实体证书中存在keyUsage扩展,则可能存在以下值的任意组合:

      digitalSignature;
      nonRepudiation;
        
      digitalSignature;
      nonRepudiation;
        

If the keyUsage extension is present in a CA or CRL issuer certificate which conveys a DSA public key, any combination of the following values MAY be present:

如果传递DSA公钥的CA或CRL颁发者证书中存在keyUsage扩展,则可能存在以下值的任意组合:

      digitalSignature;
      nonRepudiation;
      keyCertSign; and
      cRLSign.
        
      digitalSignature;
      nonRepudiation;
      keyCertSign; and
      cRLSign.
        
2.3.3 Diffie-Hellman Key Exchange Keys
2.3.3 Diffie-Hellman密钥交换密钥

The Diffie-Hellman OID supported by this profile is defined in [X9.42].

[X9.42]中定义了此配置文件支持的Diffie-Hellman OID。

      dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
                us(840) ansi-x942(10046) number-type(2) 1 }
        
      dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
                us(840) ansi-x942(10046) number-type(2) 1 }
        

The dhpublicnumber OID is intended to be used in the algorithm field of a value of type AlgorithmIdentifier. The parameters field of that type, which has the algorithm-specific syntax ANY DEFINED BY algorithm, have the ASN.1 type DomainParameters for this algorithm.

dhpublicnumber OID用于AlgorithmIdentifier类型值的算法字段。该类型的参数字段具有任何算法定义的特定于算法的语法,具有此算法的ASN.1类型DomainParameters。

      DomainParameters ::= SEQUENCE {
            p       INTEGER, -- odd prime, p=jq +1
            g       INTEGER, -- generator, g
            q       INTEGER, -- factor of p-1
            j       INTEGER OPTIONAL, -- subgroup factor
            validationParms  ValidationParms OPTIONAL }
        
      DomainParameters ::= SEQUENCE {
            p       INTEGER, -- odd prime, p=jq +1
            g       INTEGER, -- generator, g
            q       INTEGER, -- factor of p-1
            j       INTEGER OPTIONAL, -- subgroup factor
            validationParms  ValidationParms OPTIONAL }
        
      ValidationParms ::= SEQUENCE {
            seed             BIT STRING,
            pgenCounter      INTEGER }
        
      ValidationParms ::= SEQUENCE {
            seed             BIT STRING,
            pgenCounter      INTEGER }
        

The fields of type DomainParameters have the following meanings:

DomainParameters类型的字段具有以下含义:

p identifies the prime p defining the Galois field;

p标识定义伽罗瓦域的素数p;

g specifies the generator of the multiplicative subgroup of order g;

g指定g阶乘法子群的生成器;

q specifies the prime factor of p-1;

q表示p-1的素因子;

j optionally specifies the value that satisfies the equation p=jq+1 to support the optional verification of group parameters;

j可选地指定满足方程式p=jq+1的值,以支持组参数的可选验证;

seed optionally specifies the bit string parameter used as the seed for the domain parameter generation process; and

seed可选地指定用作域参数生成过程种子的位字符串参数;和

pgenCounter optionally specifies the integer value output as part of the of the domain parameter prime generation process.

PgConference可选地指定整数值输出,作为域参数生成过程的一部分。

If either of the domain parameter generation components (pgenCounter or seed) is provided, the other MUST be present as well.

如果提供了域参数生成组件(pgmeeting或seed),则另一个也必须存在。

The Diffie-Hellman public key MUST be ASN.1 encoded as an INTEGER; this encoding shall be used as the contents (i.e., the value) of the subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo data element.

Diffie-Hellman公钥必须是ASN.1编码的整数;该编码应用作SubjectPublicKeyInfo数据元素的subjectPublicKey组件(位字符串)的内容(即值)。

      DHPublicKey ::= INTEGER -- public key, y = g^x mod p
        
      DHPublicKey ::= INTEGER -- public key, y = g^x mod p
        

If the keyUsage extension is present in a certificate which conveys a DH public key, the following values may be present:

如果传递DH公钥的证书中存在keyUsage扩展,则可能存在以下值:

keyAgreement; encipherOnly; and decipherOnly.

关键协议;仅加密;而且只能破译。

If present, the keyUsage extension MUST assert keyAgreement and MAY assert either encipherOnly and decipherOnly. The keyUsage extension MUST NOT assert both encipherOnly and decipherOnly.

如果存在,keyUsage扩展必须声明keyAgreement,并且可以声明encipherOnly和decipherOnly。keyUsage扩展不能同时声明EncrypherOnly和DecrypherOnly。

2.3.4 KEA Public Keys
2.3.4 KEA公钥

This section identifies the preferred OID and parameters for the inclusion of a KEA public key in a certificate. The Key Exchange Algorithm (KEA) is a key agreement algorithm. Two parties may generate a "pairwise key" if and only if they share the same KEA parameters. The KEA parameters are not included in a certificate; instead a domain identifier is supplied in the parameters field.

本节确定了在证书中包含KEA公钥的首选OID和参数。密钥交换算法(KEA)是一种密钥协商算法。当且仅当双方共享相同的KEA参数时,双方可生成“成对密钥”。KEA参数不包括在证书中;而是在参数字段中提供域标识符。

When the SubjectPublicKeyInfo field contains a KEA key, the algorithm identifier and parameters SHALL be as defined in [SDN.701r]:

当SubjectPublicKeyInfo字段包含KEA密钥时,算法标识符和参数应符合[SDN.701r]中的定义:

      id-keyExchangeAlgorithm  OBJECT IDENTIFIER   ::=
             { 2 16 840 1 101 2 1 1 22 }
        
      id-keyExchangeAlgorithm  OBJECT IDENTIFIER   ::=
             { 2 16 840 1 101 2 1 1 22 }
        
      KEA-Parms-Id     ::= OCTET STRING
        
      KEA-Parms-Id     ::= OCTET STRING
        

CAs MUST populate the parameters field of the AlgorithmIdentifier within the SubjectPublicKeyInfo field of each certificate containing a KEA public key with an 80-bit parameter identifier (OCTET STRING), also known as the domain identifier. The domain identifier is computed in three steps:

CA必须在每个证书的SubjectPublicKeyInfo字段中填充算法标识符的参数字段,该证书包含一个具有80位参数标识符(八进制字符串)的KEA公钥,也称为域标识符。域标识符分三步计算:

(1) the KEA domain parameters (p, q, and g) are DER encoded using the Dss-Parms structure;

(1) KEA域参数(p、q和g)使用Dss Parms结构进行DER编码;

(2) a 160-bit SHA-1 hash is generated from the parameters; and

(2) 从参数生成160位SHA-1散列;和

(3) the 160-bit hash is reduced to 80-bits by performing an "exclusive or" of the 80 high order bits with the 80 low order bits.

(3) 通过对80个高阶位和80个低阶位执行“异或”,160位散列减少到80位。

The resulting value is encoded such that the most significant byte of the 80-bit value is the first octet in the octet string. The Dss-Parms is provided above in Section 2.3.2.

对结果值进行编码,使得80位值的最高有效字节是八位字节字符串中的第一个八位字节。Dss参数见上文第2.3.2节。

A KEA public key, y, is conveyed in the subjectPublicKey BIT STRING such that the most significant bit (MSB) of y becomes the MSB of the BIT STRING value field and the least significant bit (LSB) of y becomes the LSB of the BIT STRING value field. This results in the following encoding:

KEA公钥y在subjectPublicKey位字符串中传输,以便y的最高有效位(MSB)成为位字符串值字段的MSB,y的最低有效位(LSB)成为位字符串值字段的LSB。这将导致以下编码:

      BIT STRING tag;
      BIT STRING length;
      0 (indicating that there are zero unused bits in the final octet
      of y); and
      BIT STRING value field including y.
        
      BIT STRING tag;
      BIT STRING length;
      0 (indicating that there are zero unused bits in the final octet
      of y); and
      BIT STRING value field including y.
        

The key usage extension may optionally appear in a KEA certificate. If a KEA certificate includes the keyUsage extension, only the following values may be asserted:

密钥使用扩展可以选择性地出现在KEA证书中。如果KEA证书包含keyUsage扩展,则只能断言以下值:

keyAgreement; encipherOnly; and decipherOnly.

关键协议;仅加密;而且只能破译。

If present, the keyUsage extension MUST assert keyAgreement and MAY assert either encipherOnly and decipherOnly. The keyUsage extension MUST NOT assert both encipherOnly and decipherOnly.

如果存在,keyUsage扩展必须声明keyAgreement,并且可以声明encipherOnly和decipherOnly。keyUsage扩展不能同时声明EncrypherOnly和DecrypherOnly。

2.3.5 ECDSA and ECDH Keys
2.3.5 ECDSA和ECDH密钥

This section identifies the preferred OID and parameter encoding for the inclusion of an ECDSA or ECDH public key in a certificate. The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in [X9.62]. ECDSA is the elliptic curve mathematical analog of the Digital Signature Algorithm [FIPS 186]. The Elliptic Curve Diffie Hellman (ECDH) algorithm is a key agreement algorithm defined in [X9.63].

本节确定在证书中包含ECDSA或ECDH公钥的首选OID和参数编码。[X9.62]中定义了椭圆曲线数字签名算法(ECDSA)。ECDSA是数字签名算法的椭圆曲线数学模拟[FIPS 186]。椭圆曲线Diffie-Hellman(ECDH)算法是[X9.63]中定义的密钥协商算法。

ECDH is the elliptic curve mathematical analog of the Diffie-Hellman key agreement algorithm as specified in [X9.42]. The ECDSA and ECDH specifications use the same OIDs and parameter encodings. The ASN.1 object identifiers used to identify these public keys are defined in the following arc:

ECDH是[X9.42]中规定的Diffie-Hellman密钥协商算法的椭圆曲线数学模拟。ECDSA和ECDH规范使用相同的OID和参数编码。用于识别这些公钥的ASN.1对象标识符在以下arc中定义:

   ansi-X9-62 OBJECT IDENTIFIER ::=
                             { iso(1) member-body(2) us(840) 10045 }
        
   ansi-X9-62 OBJECT IDENTIFIER ::=
                             { iso(1) member-body(2) us(840) 10045 }
        

When certificates contain an ECDSA or ECDH public key, the id-ecPublicKey algorithm identifier MUST be used. The id-ecPublicKey algorithm identifier is defined as follows:

当证书包含ECDSA或ECDH公钥时,必须使用id ecPublicKey算法标识符。id ecPublicKey算法标识符定义如下:

     id-public-key-type OBJECT IDENTIFIER  ::= { ansi-X9.62 2 }
        
     id-public-key-type OBJECT IDENTIFIER  ::= { ansi-X9.62 2 }
        
     id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
        
     id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
        

This OID is used in public key certificates for both ECDSA signature keys and ECDH encryption keys. The intended application for the key may be indicated in the key usage field (see [RFC 3280]). The use of a single key for both signature and encryption purposes is not recommended, but is not forbidden.

此OID用于ECDSA签名密钥和ECDH加密密钥的公钥证书。钥匙的预期用途可在钥匙使用字段中指明(参见[RFC 3280])。不建议将单个密钥用于签名和加密目的,但也不禁止。

ECDSA and ECDH require use of certain parameters with the public key. The parameters may be inherited from the issuer, implicitly included through reference to a "named curve," or explicitly included in the certificate.

ECDSA和ECDH要求使用带有公钥的某些参数。这些参数可以从颁发者继承,通过引用“命名曲线”隐式包含,也可以显式包含在证书中。

      EcpkParameters ::= CHOICE {
        ecParameters  ECParameters,
        namedCurve    OBJECT IDENTIFIER,
        implicitlyCA  NULL }
        
      EcpkParameters ::= CHOICE {
        ecParameters  ECParameters,
        namedCurve    OBJECT IDENTIFIER,
        implicitlyCA  NULL }
        

When the parameters are inherited, the parameters field SHALL contain implictlyCA, which is the ASN.1 value NULL. When parameters are specified by reference, the parameters field SHALL contain the named-Curve choice, which is an object identifier. When the parameters are explicitly included, they SHALL be encoded in the ASN.1 structure ECParameters:

继承参数时,参数字段应包含IMPLITLYCA,即ASN.1值NULL。当通过引用指定参数时,参数字段应包含命名曲线选项,这是一个对象标识符。当明确包含参数时,应在ASN.1结构参数中对其进行编码:

      ECParameters ::= SEQUENCE {
         version   ECPVer,          -- version is always 1
         fieldID   FieldID,         -- identifies the finite field over
                                    -- which the curve is defined
         curve     Curve,           -- coefficients a and b of the
                                    -- elliptic curve
         base      ECPoint,         -- specifies the base point P
                                    -- on the elliptic curve
         order     INTEGER,         -- the order n of the base point
         cofactor  INTEGER OPTIONAL -- The integer h = #E(Fq)/n
         }
        
      ECParameters ::= SEQUENCE {
         version   ECPVer,          -- version is always 1
         fieldID   FieldID,         -- identifies the finite field over
                                    -- which the curve is defined
         curve     Curve,           -- coefficients a and b of the
                                    -- elliptic curve
         base      ECPoint,         -- specifies the base point P
                                    -- on the elliptic curve
         order     INTEGER,         -- the order n of the base point
         cofactor  INTEGER OPTIONAL -- The integer h = #E(Fq)/n
         }
        
      ECPVer ::= INTEGER {ecpVer1(1)}
        
      ECPVer ::= INTEGER {ecpVer1(1)}
        
      Curve ::= SEQUENCE {
         a         FieldElement,
         b         FieldElement,
         seed      BIT STRING OPTIONAL }
        
      Curve ::= SEQUENCE {
         a         FieldElement,
         b         FieldElement,
         seed      BIT STRING OPTIONAL }
        
      FieldElement ::= OCTET STRING
        
      FieldElement ::= OCTET STRING
        
      ECPoint ::= OCTET STRING
        
      ECPoint ::= OCTET STRING
        

The value of FieldElement SHALL be the octet string representation of a field element following the conversion routine in [X9.62], Section 4.3.3. The value of ECPoint SHALL be the octet string representation of an elliptic curve point following the conversion routine in [X9.62], Section 4.3.6. Note that this octet string may represent an elliptic curve point in compressed or uncompressed form.

FieldElement的值应为[X9.62]第4.3.3节中转换程序后字段元素的八进制字符串表示。ECPoint的值应为[X9.62]第4.3.6节中转换程序后椭圆曲线点的八进制字符串表示。请注意,此八位字节字符串可以表示压缩或未压缩形式的椭圆曲线点。

Implementations that support elliptic curve according to this specification MUST support the uncompressed form and MAY support the compressed form.

根据本规范支持椭圆曲线的实现必须支持未压缩形式,并且可能支持压缩形式。

The components of type ECParameters have the following meanings:

ECParameters类型的组件具有以下含义:

version specifies the version number of the elliptic curve parameters. It MUST have the value 1 (ecpVer1).

version指定椭圆曲线参数的版本号。它必须具有值1(ecpVer1)。

fieldID identifies the finite field over which the elliptic curve is defined. Finite fields are represented by values of the parameterized type FieldID, constrained to the values of the objects defined in the information object set FieldTypes. Additional detail regarding fieldID is provided below.

fieldID标识定义椭圆曲线的有限域。有限字段由参数化类型FieldID的值表示,该值受信息对象集FieldTypes中定义的对象值的约束。下面提供了有关fieldID的更多详细信息。

curve specifies the coefficients a and b of the elliptic curve E. Each coefficient is represented as a value of type FieldElement, an OCTET STRING. seed is an optional parameter used to derive the coefficients of a randomly generated elliptic curve.

曲线指定椭圆曲线E的系数a和b。每个系数表示为FieldElement类型的值,即八位字节字符串。seed是一个可选参数,用于推导随机生成的椭圆曲线的系数。

base specifies the base point P on the elliptic curve. The base point is represented as a value of type ECPoint, an OCTET STRING.

base指定椭圆曲线上的基点P。基点表示为ECPoint类型的值,即八位字节字符串。

order specifies the order n of the base point.

顺序指定基点的顺序n。

      cofactor is the integer h = #E(Fq)/n.  This parameter is specified
      as OPTIONAL.  However, the cofactor MUST be included in ECDH
      public key parameters.  The cofactor is not required to support
      ECDSA, except in parameter validation.  The cofactor MAY be
      included to support parameter validation for ECDSA keys.
      Parameter validation is not required by this specification.
        
      cofactor is the integer h = #E(Fq)/n.  This parameter is specified
      as OPTIONAL.  However, the cofactor MUST be included in ECDH
      public key parameters.  The cofactor is not required to support
      ECDSA, except in parameter validation.  The cofactor MAY be
      included to support parameter validation for ECDSA keys.
      Parameter validation is not required by this specification.
        

The AlgorithmIdentifier within SubjectPublicKeyInfo is the only place within a certificate where the parameters may be used. If the elliptic curve parameters are specified as implicitlyCA in the SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the subject certificate using ECDSA, then the certificate issuer's ECDSA parameters apply to the subject's ECDSA key. If the elliptic curve parameters are specified as implicitlyCA in the SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the certificate using a signature algorithm other than ECDSA, then clients MUST not make use of the elliptic curve public key.

SubjectPublicKeyInfo中的AlgorithmIdentifier是证书中唯一可以使用参数的位置。如果在SubjectPublicKeyInfo算法标识符中将椭圆曲线参数隐式指定为YCA,并且CA使用ECDSA签署了主体证书,则证书颁发者的ECDSA参数将应用于主体的ECDSA密钥。如果在SubjectPublicKeyInfo算法标识符中将椭圆曲线参数隐式指定为YCA,并且CA使用ECDSA以外的签名算法对证书进行签名,则客户端不得使用椭圆曲线公钥。

      FieldID ::= SEQUENCE {
         fieldType   OBJECT IDENTIFIER,
         parameters  ANY DEFINED BY fieldType }
        
      FieldID ::= SEQUENCE {
         fieldType   OBJECT IDENTIFIER,
         parameters  ANY DEFINED BY fieldType }
        

FieldID is a SEQUENCE of two components, fieldType and parameters. The fieldType contains an object identifier value that uniquely identifies the type contained in the parameters.

FieldID是由两个组件组成的序列,fieldType和parameters。fieldType包含唯一标识参数中包含的类型的对象标识符值。

The object identifier id-fieldType specifies an arc containing the object identifiers of each field type. It has the following value:

对象标识符id fieldType指定包含每个字段类型的对象标识符的弧。它具有以下值:

      id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }
        
      id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }
        

The object identifiers prime-field and characteristic-two-field name the two kinds of fields defined in this Standard. They have the following values:

对象标识符prime field和characteristic two field命名了本标准中定义的两种字段。它们具有以下值:

      prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
        
      prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
        
      Prime-p ::= INTEGER    -- Field size p (p in bits)
        
      Prime-p ::= INTEGER    -- Field size p (p in bits)
        
      characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
        
      characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
        
      Characteristic-two ::= SEQUENCE {
         m           INTEGER,                      -- Field size 2^m
         basis       OBJECT IDENTIFIER,
         parameters  ANY DEFINED BY basis }
        
      Characteristic-two ::= SEQUENCE {
         m           INTEGER,                      -- Field size 2^m
         basis       OBJECT IDENTIFIER,
         parameters  ANY DEFINED BY basis }
        

The object identifier id-characteristic-two-basis specifies an arc containing the object identifiers for each type of basis for the characteristic-two finite fields. It has the following value:

对象标识符id characteristic two basis为特征两个有限字段的每种类型的基指定一个包含对象标识符的弧。它具有以下值:

      id-characteristic-two-basis OBJECT IDENTIFIER ::= {
           characteristic-two-field basisType(1) }
        
      id-characteristic-two-basis OBJECT IDENTIFIER ::= {
           characteristic-two-field basisType(1) }
        

The object identifiers gnBasis, tpBasis and ppBasis name the three kinds of basis for characteristic-two finite fields defined by [X9.62]. They have the following values:

对象标识符gnBasis、tpBasis和ppBasis为[X9.62]定义的特征两个有限字段命名了三种基。它们具有以下值:

      gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
        
      gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
        

-- for gnBasis, the value of the parameters field is NULL

--对于gnBasis,参数字段的值为空

      tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
        
      tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
        

-- type of parameters field for tpBasis is Trinomial

--tpBasis的参数字段类型为三项式

      Trinomial ::= INTEGER
        
      Trinomial ::= INTEGER
        
      ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
        
      ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
        

-- type of parameters field for ppBasis is Pentanomial

--ppBasis的参数字段类型为五项式

      Pentanomial ::= SEQUENCE {
         k1  INTEGER,
         k2  INTEGER,
         k3  INTEGER }
        
      Pentanomial ::= SEQUENCE {
         k1  INTEGER,
         k2  INTEGER,
         k3  INTEGER }
        

The elliptic curve public key (an ECPoint which is an OCTET STRING) is mapped to a subjectPublicKey (a BIT STRING) as follows: the most significant bit of the OCTET STRING becomes the most significant bit of the BIT STRING, and the least significant bit of the OCTET STRING becomes the least significant bit of the BIT STRING. Note that this octet string may represent an elliptic curve point in compressed or uncompressed form. Implementations that support elliptic curve according to this specification MUST support the uncompressed form and MAY support the compressed form.

椭圆曲线公钥(ECPoint,它是八位字符串)映射到subjectPublicKey(位字符串),如下所示:八位字符串的最高有效位成为位字符串的最高有效位,八位字符串的最低有效位成为位字符串的最低有效位。请注意,此八位字节字符串可以表示压缩或未压缩形式的椭圆曲线点。根据本规范支持椭圆曲线的实现必须支持未压缩形式,并且可能支持压缩形式。

If the keyUsage extension is present in a CA or CRL issuer certificate which conveys an elliptic curve public key, any combination of the following values MAY be present:

如果密钥使用扩展存在于传送椭圆曲线公钥的CA或CRL颁发者证书中,则可能存在以下值的任意组合:

digitalSignature; nonRepudiation; and keyAgreement.

数字签名;不否认;和关键协议。

If the keyAgreement value is present, either of the following values MAY be present:

如果存在keyAgreement值,则可能存在以下任一值:

encipherOnly; and decipherOnly.

仅加密;而且只能破译。

The keyUsage extension MUST NOT assert both encipherOnly and decipherOnly.

keyUsage扩展不能同时声明EncrypherOnly和DecrypherOnly。

If the keyUsage extension is present in a CA certificate which conveys an elliptic curve public key, any combination of the following values MAY be present:

如果密钥使用扩展存在于传送椭圆曲线公钥的CA证书中,则可能存在以下值的任意组合:

      digitalSignature;
      nonRepudiation;
      keyAgreement;
      keyCertSign; and
      cRLSign.
        
      digitalSignature;
      nonRepudiation;
      keyAgreement;
      keyCertSign; and
      cRLSign.
        

As above, if the keyUsage extension asserts keyAgreement then it MAY assert either encipherOnly and decipherOnly. However, this specification RECOMMENDS that if keyCertSign or cRLSign is present, keyAgreement, encipherOnly, and decipherOnly SHOULD NOT be present.

如上所述,如果keyUsage扩展断言keyAgreement,那么它可以断言encipherOnly和decipherOnly。但是,本规范建议,如果存在keyCertSign或cRLSign,则不应存在keyAgreement、EncrypherOnly和DecrypherOnly。

3 ASN.1 Module

3 ASN.1模块

   PKIX1Algorithms88 { iso(1) identified-organization(3) dod(6)
   internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
   id-mod-pkix1-algorithms(17) }
        
   PKIX1Algorithms88 { iso(1) identified-organization(3) dod(6)
   internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
   id-mod-pkix1-algorithms(17) }
        
   DEFINITIONS EXPLICIT TAGS ::= BEGIN
        
   DEFINITIONS EXPLICIT TAGS ::= BEGIN
        

-- EXPORTS All;

--全部出口;

-- IMPORTS NONE;

--没有进口;

-- -- One-way Hash Functions --

----单向散列函数--

   md2  OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 2 }
        
   md2  OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 2 }
        
   md5  OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 5 }
        
   md5  OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 5 }
        
   id-sha1  OBJECT IDENTIFIER ::= {
     iso(1) identified-organization(3) oiw(14) secsig(3)
     algorithms(2) 26 }
        
   id-sha1  OBJECT IDENTIFIER ::= {
     iso(1) identified-organization(3) oiw(14) secsig(3)
     algorithms(2) 26 }
        

-- -- DSA Keys and Signatures --

----DSA密钥和签名--

-- OID for DSA public key

--DSA公钥的OID

   id-dsa OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }
        
   id-dsa OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }
        

-- encoding for DSA public key

--DSA公钥的编码

   DSAPublicKey ::= INTEGER  -- public key, y
        
   DSAPublicKey ::= INTEGER  -- public key, y
        
   Dss-Parms  ::=  SEQUENCE  {
      p             INTEGER,
      q             INTEGER,
      g             INTEGER  }
        
   Dss-Parms  ::=  SEQUENCE  {
      p             INTEGER,
      q             INTEGER,
      g             INTEGER  }
        

-- OID for DSA signature generated with SHA-1 hash

--使用SHA-1哈希生成的DSA签名的OID

   id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
        iso(1) member-body(2) us(840) x9-57 (10040) x9algorithm(4) 3 }
        
   id-dsa-with-sha1 OBJECT IDENTIFIER ::=  {
        iso(1) member-body(2) us(840) x9-57 (10040) x9algorithm(4) 3 }
        

-- encoding for DSA signature generated with SHA-1 hash

--使用SHA-1哈希生成的DSA签名的编码

   Dss-Sig-Value  ::=  SEQUENCE  {
      r       INTEGER,
      s       INTEGER  }
        
   Dss-Sig-Value  ::=  SEQUENCE  {
      r       INTEGER,
      s       INTEGER  }
        

-- -- RSA Keys and Signatures --

----RSA密钥和签名--

-- arc for RSA public key and RSA signature OIDs

--RSA公钥和RSA签名ID的arc

   pkcs-1 OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }
        
   pkcs-1 OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }
        

-- OID for RSA public keys

--RSA公钥的OID

   rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1 }
        
   rsaEncryption OBJECT IDENTIFIER ::=  { pkcs-1 1 }
        

-- OID for RSA signature generated with MD2 hash

--使用MD2哈希生成的RSA签名的OID

   md2WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 2 }
        
   md2WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 2 }
        

-- OID for RSA signature generated with MD5 hash

--使用MD5哈希生成的RSA签名的OID

   md5WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 4 }
        
   md5WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 4 }
        

-- OID for RSA signature generated with SHA-1 hash

--使用SHA-1哈希生成的RSA签名的OID

   sha1WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 5 }
        
   sha1WithRSAEncryption OBJECT IDENTIFIER  ::=  { pkcs-1 5 }
        

-- encoding for RSA public key

--RSA公钥的编码

   RSAPublicKey ::= SEQUENCE {
      modulus            INTEGER,    -- n
      publicExponent     INTEGER  }  -- e
        
   RSAPublicKey ::= SEQUENCE {
      modulus            INTEGER,    -- n
      publicExponent     INTEGER  }  -- e
        

-- -- Diffie-Hellman Keys --

--——迪菲·赫尔曼·凯斯--

   dhpublicnumber OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) ansi-x942(10046)
        number-type(2) 1 }
        
   dhpublicnumber OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) ansi-x942(10046)
        number-type(2) 1 }
        

-- encoding for DSA public key

--DSA公钥的编码

   DHPublicKey ::= INTEGER  -- public key, y = g^x mod p
        
   DHPublicKey ::= INTEGER  -- public key, y = g^x mod p
        
   DomainParameters ::= SEQUENCE {
      p       INTEGER,           -- odd prime, p=jq +1
      g       INTEGER,           -- generator, g
      q       INTEGER,           -- factor of p-1
      j       INTEGER OPTIONAL,  -- subgroup factor, j>= 2
      validationParms  ValidationParms OPTIONAL }
        
   DomainParameters ::= SEQUENCE {
      p       INTEGER,           -- odd prime, p=jq +1
      g       INTEGER,           -- generator, g
      q       INTEGER,           -- factor of p-1
      j       INTEGER OPTIONAL,  -- subgroup factor, j>= 2
      validationParms  ValidationParms OPTIONAL }
        
   ValidationParms ::= SEQUENCE {
      seed             BIT STRING,
      pgenCounter      INTEGER }
        
   ValidationParms ::= SEQUENCE {
      seed             BIT STRING,
      pgenCounter      INTEGER }
        

-- -- KEA Keys --

----基亚·凯斯--

   id-keyExchangeAlgorithm  OBJECT IDENTIFIER  ::=
        { 2 16 840 1 101 2 1 1 22 }
        
   id-keyExchangeAlgorithm  OBJECT IDENTIFIER  ::=
        { 2 16 840 1 101 2 1 1 22 }
        
   KEA-Parms-Id ::= OCTET STRING
        
   KEA-Parms-Id ::= OCTET STRING
        

-- -- Elliptic Curve Keys, Signatures, and Curves --

----椭圆曲线密钥、签名和曲线--

   ansi-X9-62 OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) 10045 }
        
   ansi-X9-62 OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) 10045 }
        
   FieldID ::= SEQUENCE {                    -- Finite field
      fieldType   OBJECT IDENTIFIER,
      parameters  ANY DEFINED BY fieldType }
        
   FieldID ::= SEQUENCE {                    -- Finite field
      fieldType   OBJECT IDENTIFIER,
      parameters  ANY DEFINED BY fieldType }
        

-- Arc for ECDSA signature OIDS

--ECDSA特征码的Arc

   id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
        
   id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }
        

-- OID for ECDSA signatures with SHA-1

--具有SHA-1的ECDSA签名的OID

   ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }
        
   ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }
        
   -- OID for an elliptic curve signature
   -- format for the value of an ECDSA signature value
        
   -- OID for an elliptic curve signature
   -- format for the value of an ECDSA signature value
        
   ECDSA-Sig-Value ::= SEQUENCE {
      r     INTEGER,
      s     INTEGER }
        
   ECDSA-Sig-Value ::= SEQUENCE {
      r     INTEGER,
      s     INTEGER }
        

-- recognized field type OIDs are defined in the following arc

--可识别的字段类型OID在以下弧中定义

   id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }
        
   id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }
        

-- where fieldType is prime-field, the parameters are of type Prime-p

--如果fieldType是prime field,则参数的类型为prime-p

   prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
        
   prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
        
   Prime-p ::= INTEGER -- Finite field F(p), where p is an odd prime
        
   Prime-p ::= INTEGER -- Finite field F(p), where p is an odd prime
        
   -- where fieldType is characteristic-two-field, the parameters are
   -- of type Characteristic-two
        
   -- where fieldType is characteristic-two-field, the parameters are
   -- of type Characteristic-two
        
   characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
        
   characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
        
   Characteristic-two ::= SEQUENCE {
      m           INTEGER,                   -- Field size 2^m
      basis       OBJECT IDENTIFIER,
      parameters  ANY DEFINED BY basis }
        
   Characteristic-two ::= SEQUENCE {
      m           INTEGER,                   -- Field size 2^m
      basis       OBJECT IDENTIFIER,
      parameters  ANY DEFINED BY basis }
        

-- recognized basis type OIDs are defined in the following arc

--可识别的基础类型OID在以下弧中定义

   id-characteristic-two-basis OBJECT IDENTIFIER ::= {
        characteristic-two-field basisType(3) }
        
   id-characteristic-two-basis OBJECT IDENTIFIER ::= {
        characteristic-two-field basisType(3) }
        
   -- gnbasis is identified by OID gnBasis and indicates
   -- parameters are NULL
        
   -- gnbasis is identified by OID gnBasis and indicates
   -- parameters are NULL
        
   gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
        
   gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
        

-- parameters for this basis are NULL

--此基础的参数为空

   -- trinomial basis is identified by OID tpBasis and indicates
   -- parameters of type Pentanomial
        
   -- trinomial basis is identified by OID tpBasis and indicates
   -- parameters of type Pentanomial
        
   tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
        
   tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
        
   -- Trinomial basis representation of F2^m
   -- Integer k for reduction polynomial xm + xk + 1
        
   -- Trinomial basis representation of F2^m
   -- Integer k for reduction polynomial xm + xk + 1
        
   Trinomial ::= INTEGER
        
   Trinomial ::= INTEGER
        
   -- for pentanomial basis is identified by OID ppBasis and indicates
   -- parameters of type Pentanomial
        
   -- for pentanomial basis is identified by OID ppBasis and indicates
   -- parameters of type Pentanomial
        
   ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
        
   ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
        
   -- Pentanomial basis representation of F2^m
   -- reduction polynomial integers k1, k2, k3
   -- f(x) = x**m + x**k3 + x**k2 + x**k1 + 1
        
   -- Pentanomial basis representation of F2^m
   -- reduction polynomial integers k1, k2, k3
   -- f(x) = x**m + x**k3 + x**k2 + x**k1 + 1
        
   Pentanomial ::= SEQUENCE {
      k1  INTEGER,
      k2  INTEGER,
      k3  INTEGER }
        
   Pentanomial ::= SEQUENCE {
      k1  INTEGER,
      k2  INTEGER,
      k3  INTEGER }
        
   -- The object identifiers gnBasis, tpBasis and ppBasis name
   -- three kinds of basis for characteristic-two finite fields
        
   -- The object identifiers gnBasis, tpBasis and ppBasis name
   -- three kinds of basis for characteristic-two finite fields
        
   FieldElement ::= OCTET STRING             -- Finite field element
        
   FieldElement ::= OCTET STRING             -- Finite field element
        
   ECPoint  ::= OCTET STRING                 -- Elliptic curve point
        
   ECPoint  ::= OCTET STRING                 -- Elliptic curve point
        
   -- Elliptic Curve parameters may be specified explicitly,
   -- specified implicitly through a "named curve", or
   -- inherited from the CA
        
   -- Elliptic Curve parameters may be specified explicitly,
   -- specified implicitly through a "named curve", or
   -- inherited from the CA
        
   EcpkParameters ::= CHOICE {
      ecParameters  ECParameters,
      namedCurve    OBJECT IDENTIFIER,
      implicitlyCA  NULL }
        
   EcpkParameters ::= CHOICE {
      ecParameters  ECParameters,
      namedCurve    OBJECT IDENTIFIER,
      implicitlyCA  NULL }
        
   ECParameters  ::= SEQUENCE {         -- Elliptic curve parameters
      version   ECPVer,
      fieldID   FieldID,
      curve     Curve,
      base      ECPoint,                -- Base point G
      order     INTEGER,                -- Order n of the base point
      cofactor  INTEGER  OPTIONAL }     -- The integer h = #E(Fq)/n
        
   ECParameters  ::= SEQUENCE {         -- Elliptic curve parameters
      version   ECPVer,
      fieldID   FieldID,
      curve     Curve,
      base      ECPoint,                -- Base point G
      order     INTEGER,                -- Order n of the base point
      cofactor  INTEGER  OPTIONAL }     -- The integer h = #E(Fq)/n
        
   ECPVer ::= INTEGER {ecpVer1(1)}
        
   ECPVer ::= INTEGER {ecpVer1(1)}
        
   Curve  ::= SEQUENCE {
      a     FieldElement,            -- Elliptic curve coefficient a
      b     FieldElement,            -- Elliptic curve coefficient b
      seed  BIT STRING  OPTIONAL }
        
   Curve  ::= SEQUENCE {
      a     FieldElement,            -- Elliptic curve coefficient a
      b     FieldElement,            -- Elliptic curve coefficient b
      seed  BIT STRING  OPTIONAL }
        
   id-publicKeyType OBJECT IDENTIFIER  ::= { ansi-X9-62 keyType(2) }
        
   id-publicKeyType OBJECT IDENTIFIER  ::= { ansi-X9-62 keyType(2) }
        
   id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
        
   id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
        

-- Named Elliptic Curves in ANSI X9.62.

--ANSI X9.62中的命名椭圆曲线。

   ellipticCurve OBJECT IDENTIFIER ::= { ansi-X9-62 curves(3) }
        
   ellipticCurve OBJECT IDENTIFIER ::= { ansi-X9-62 curves(3) }
        
   c-TwoCurve OBJECT IDENTIFIER ::= {
        ellipticCurve characteristicTwo(0) }
        
   c-TwoCurve OBJECT IDENTIFIER ::= {
        ellipticCurve characteristicTwo(0) }
        
   c2pnb163v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  1 }
   c2pnb163v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve  2 }
   c2pnb163v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve  3 }
   c2pnb176w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  4 }
   c2tnb191v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  5 }
   c2tnb191v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve  6 }
   c2tnb191v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve  7 }
   c2onb191v4  OBJECT IDENTIFIER  ::=  { c-TwoCurve  8 }
   c2onb191v5  OBJECT IDENTIFIER  ::=  { c-TwoCurve  9 }
   c2pnb208w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 10 }
   c2tnb239v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 11 }
   c2tnb239v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve 12 }
   c2tnb239v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve 13 }
   c2onb239v4  OBJECT IDENTIFIER  ::=  { c-TwoCurve 14 }
   c2onb239v5  OBJECT IDENTIFIER  ::=  { c-TwoCurve 15 }
   c2pnb272w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 16 }
   c2pnb304w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 17 }
   c2tnb359v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 18 }
   c2pnb368w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 19 }
   c2tnb431r1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 20 }
        
   c2pnb163v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  1 }
   c2pnb163v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve  2 }
   c2pnb163v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve  3 }
   c2pnb176w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  4 }
   c2tnb191v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve  5 }
   c2tnb191v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve  6 }
   c2tnb191v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve  7 }
   c2onb191v4  OBJECT IDENTIFIER  ::=  { c-TwoCurve  8 }
   c2onb191v5  OBJECT IDENTIFIER  ::=  { c-TwoCurve  9 }
   c2pnb208w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 10 }
   c2tnb239v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 11 }
   c2tnb239v2  OBJECT IDENTIFIER  ::=  { c-TwoCurve 12 }
   c2tnb239v3  OBJECT IDENTIFIER  ::=  { c-TwoCurve 13 }
   c2onb239v4  OBJECT IDENTIFIER  ::=  { c-TwoCurve 14 }
   c2onb239v5  OBJECT IDENTIFIER  ::=  { c-TwoCurve 15 }
   c2pnb272w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 16 }
   c2pnb304w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 17 }
   c2tnb359v1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 18 }
   c2pnb368w1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 19 }
   c2tnb431r1  OBJECT IDENTIFIER  ::=  { c-TwoCurve 20 }
        
   primeCurve OBJECT IDENTIFIER ::= { ellipticCurve prime(1) }
        
   primeCurve OBJECT IDENTIFIER ::= { ellipticCurve prime(1) }
        
   prime192v1  OBJECT IDENTIFIER  ::=  { primeCurve  1 }
   prime192v2  OBJECT IDENTIFIER  ::=  { primeCurve  2 }
   prime192v3  OBJECT IDENTIFIER  ::=  { primeCurve  3 }
   prime239v1  OBJECT IDENTIFIER  ::=  { primeCurve  4 }
   prime239v2  OBJECT IDENTIFIER  ::=  { primeCurve  5 }
   prime239v3  OBJECT IDENTIFIER  ::=  { primeCurve  6 }
   prime256v1  OBJECT IDENTIFIER  ::=  { primeCurve  7 }
        
   prime192v1  OBJECT IDENTIFIER  ::=  { primeCurve  1 }
   prime192v2  OBJECT IDENTIFIER  ::=  { primeCurve  2 }
   prime192v3  OBJECT IDENTIFIER  ::=  { primeCurve  3 }
   prime239v1  OBJECT IDENTIFIER  ::=  { primeCurve  4 }
   prime239v2  OBJECT IDENTIFIER  ::=  { primeCurve  5 }
   prime239v3  OBJECT IDENTIFIER  ::=  { primeCurve  6 }
   prime256v1  OBJECT IDENTIFIER  ::=  { primeCurve  7 }
        

END

终止

4 References

4参考文献

[FIPS 180-1] Federal Information Processing Standards Publication (FIPS PUB) 180-1, Secure Hash Standard, 17 April 1995. [Supersedes FIPS PUB 180 dated 11 May 1993.]

[FIPS 180-1]联邦信息处理标准出版物(FIPS PUB)180-1,安全哈希标准,1995年4月17日。[取代1993年5月11日发布的FIPS PUB 180。]

[FIPS 186-2] Federal Information Processing Standards Publication (FIPS PUB) 186, Digital Signature Standard, 27 January 2000. [Supersedes FIPS PUB 186-1 dated 15 December 1998.]

[FIPS 186-2]联邦信息处理标准出版物(FIPS PUB)186,数字签名标准,2000年1月27日。[取代1998年12月15日发布的FIPS PUB 186-1。]

[P1363] IEEE P1363, "Standard Specifications for Public-Key Cryptography", 2001.

[P1363]IEEE P1363,“公钥加密的标准规范”,2001年。

[RC95] Rogier, N. and Chauvaud, P., "The compression function of MD2 is not collision free," Presented at Selected Areas in Cryptography '95, May 1995.

[RC95]Rogier,N.和Chauvaud,P.,“MD2的压缩功能不是无冲突的”,发表于1995年5月《密码学》95的选定领域。

[RFC 1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November 1987.

[RFC 1034]Mockapetris,P.,“域名-概念和设施”,STD 13,RFC 1034,1987年11月。

[RFC 1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, April 1992.

[RFC 1319]Kaliski,B.,“MD2消息摘要算法”,RFC 1319,1992年4月。

[RFC 1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.

[RFC 1321]Rivest,R.,“MD5消息摘要算法”,RFC 1321,1992年4月。

[RFC 1422] Kent, S., "Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management", RFC 1422, February 1993.

[RFC 1422]Kent,S.,“互联网电子邮件的隐私增强:第二部分:基于证书的密钥管理”,RFC 1422,1993年2月。

[RFC 1423] Balenson, D., "Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers", RFC 1423, February 1993.

[RFC 1423]Balenson,D.,“互联网电子邮件的隐私增强:第三部分:算法、模式和标识符”,RFC 1423,1993年2月。

[RFC 2119] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC 2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC 2313] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5", RFC 2313, March 1998.

[RFC 2313]Kaliski,B.,“PKCS#1:RSA加密版本1.5”,RFC 2313,1998年3月。

[RFC 2459] Housley, R., Ford, W., Polk, W. and D. Solo "Internet X.509 Public Key Infrastructure: Certificate and CRL Profile", RFC 2459, January, 1999.

[RFC 2459]Housley,R.,Ford,W.,Polk,W.和D.Solo“Internet X.509公钥基础设施:证书和CRL配置文件”,RFC 2459,1999年1月。

[RFC 3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1 (SHA1)", RFC 3174, September 2001.

[RFC 3174]Eastlake,D.和P.Jones,“美国安全哈希算法1(SHA1)”,RFC 3174,2001年9月。

[RFC 3280] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002.

[RFC 3280]Housley,R.,Polk,W.,Ford,W.和D.Solo,“互联网X.509公钥基础设施证书和证书撤销列表(CRL)概要”,RFC 3280,2002年4月。

[SDN.701r] SDN.701, "Message Security Protocol 4.0", Revision A 1997-02-06.

[SDN.701r]SDN.701,“消息安全协议4.0”,修订版A 1997-02-06。

[X.208] CCITT Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1), 1988.

[X.208]CCITT建议X.208:抽象语法符号1规范(ASN.1),1988年。

[X.660] ITU-T Recommendation X.660 Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), 1997.

[X.660]ITU-T建议X.660信息技术-ASN.1编码规则:基本编码规则(BER)、规范编码规则(CER)和区分编码规则(DER)规范,1997年。

[X9.42] ANSI X9.42-2000, "Public Key Cryptography for The Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography", December, 1999.

[X9.42]ANSI X9.42-2000,“金融服务业的公钥加密:使用离散对数加密的对称密钥协议”,1999年12月。

[X9.62] X9.62-1998, "Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)", January 7, 1999.

[X9.62]X9.62-1998,“金融服务业的公钥加密:椭圆曲线数字签名算法(ECDSA)”,1999年1月7日。

[X9.63] ANSI X9.63-2001, "Public Key Cryptography For The Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography", Work in Progress.

[X9.63]ANSI X9.63-2001,“金融服务业的公钥加密:使用椭圆曲线加密的密钥协议和密钥传输”,正在进行中。

5 Security Considerations

5安全考虑

This specification does not constrain the size of public keys or their parameters for use in the Internet PKI. However, the key size selected impacts the strength achieved when implementing cryptographic services. Selection of appropriate key sizes is critical to implementing appropriate security.

本规范不限制Internet PKI中使用的公钥大小或其参数。但是,选择的密钥大小会影响实现加密服务时达到的强度。选择适当的密钥大小对于实现适当的安全性至关重要。

This specification does not identify particular elliptic curves for use in the Internet PKI. However, the particular curve selected impact the strength of the digital signatures. Some curves are cryptographically stronger than others!

本规范不确定在Internet PKI中使用的特定椭圆曲线。但是,选择的特定曲线会影响数字签名的强度。有些曲线在加密方面比其他曲线更强大!

In general, use of "well-known" curves, such as the "named curves" from ANSI X9.62, is a sound strategy. For additional information, refer to X9.62 Appendix H.1.3, "Key Length Considerations" and Appendix A.1, "Avoiding Cryptographically Weak Keys".

一般来说,使用“众所周知的”曲线,如ANSI X9.62中的“命名曲线”,是一种合理的策略。有关更多信息,请参阅X9.62附录H.1.3“密钥长度注意事项”和附录A.1“避免加密弱密钥”。

This specification supplements RFC 3280. The security considerations section of that document applies to this specification as well.

本规范是对RFC 3280的补充。该文件的安全注意事项部分也适用于本规范。

6 Intellectual Property Rights

6知识产权

The IETF has been notified of intellectual property rights claimed in regard to some or all of the specification contained in this document. For more information consult the online list of claimed rights.

IETF已收到关于本文件所含部分或全部规范的知识产权声明。有关更多信息,请查阅在线权利主张列表。

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards- related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

IETF对可能声称与本文件所述技术的实施或使用有关的任何知识产权或其他权利的有效性或范围,或此类权利下的任何许可可能或可能不可用的程度,不采取任何立场;它也不表示它已作出任何努力来确定任何此类权利。有关IETF在标准跟踪和标准相关文件中权利的程序信息,请参见BCP-11。可从IETF秘书处获得可供发布的权利声明副本和任何许可证保证,或本规范实施者或用户试图获得使用此类专有权利的一般许可证或许可的结果。

7 Author Addresses:

7作者地址:

Tim Polk NIST 100 Bureau Drive, Stop 8930 Gaithersburg, MD 20899-8930 USA EMail: tim.polk@nist.gov

Tim Polk NIST 100 Bureau Drive,美国马里兰州盖瑟斯堡站8930邮编:20899-8930电子邮件:Tim。polk@nist.gov

Russell Housley RSA Laboratories 918 Spring Knoll Drive Herndon, VA 20170 USA EMail: rhousley@rsasecurity.com

Russell Housley RSA Laboratories 918 Spring Knoll Drive Herndon,弗吉尼亚州20170美国电子邮件:rhousley@rsasecurity.com

Larry Bassham NIST 100 Bureau Drive, Stop 8930 Gaithersburg, MD 20899-8930 USA EMail: lbassham@nist.gov

Larry Bassham NIST 100 Bureau Drive,马里兰州盖瑟斯堡站8930邮编:20899-8930美国电子邮件:lbassham@nist.gov

8. Full Copyright Statement
8. 完整版权声明

Copyright (C) The Internet Society (2002). All Rights Reserved.

版权所有(C)互联网协会(2002年)。版权所有。

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。