Network Working Group                                          T. Narten
Request for Comments: 3041                                           IBM
Category: Standards Track                                      R. Draves
                                                      Microsoft Research
                                                            January 2001
        
Network Working Group                                          T. Narten
Request for Comments: 3041                                           IBM
Category: Standards Track                                      R. Draves
                                                      Microsoft Research
                                                            January 2001
        

Privacy Extensions for Stateless Address Autoconfiguration in IPv6

IPv6中无状态地址自动配置的隐私扩展

Status of this Memo

本备忘录的状况

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。

Copyright Notice

版权公告

Copyright (C) The Internet Society (2001). All Rights Reserved.

版权所有(C)互联网协会(2001年)。版权所有。

Abstract

摘要

Nodes use IPv6 stateless address autoconfiguration to generate addresses without the necessity of a Dynamic Host Configuration Protocol (DHCP) server. Addresses are formed by combining network prefixes with an interface identifier. On interfaces that contain embedded IEEE Identifiers, the interface identifier is typically derived from it. On other interface types, the interface identifier is generated through other means, for example, via random number generation. This document describes an extension to IPv6 stateless address autoconfiguration for interfaces whose interface identifier is derived from an IEEE identifier. Use of the extension causes nodes to generate global-scope addresses from interface identifiers that change over time, even in cases where the interface contains an embedded IEEE identifier. Changing the interface identifier (and the global-scope addresses generated from it) over time makes it more difficult for eavesdroppers and other information collectors to identify when different addresses used in different transactions actually correspond to the same node.

节点使用IPv6无状态地址自动配置生成地址,而无需动态主机配置协议(DHCP)服务器。地址由网络前缀和接口标识符组合而成。在包含嵌入式IEEE标识符的接口上,接口标识符通常从中派生。在其他接口类型上,接口标识符通过其他方式生成,例如,通过随机数生成。本文档描述了对IPv6无状态地址自动配置的扩展,用于接口标识符派生自IEEE标识符的接口。使用扩展会导致节点从随时间变化的接口标识符生成全局作用域地址,即使在接口包含嵌入式IEEE标识符的情况下也是如此。随着时间的推移,更改接口标识符(以及由此生成的全局作用域地址)会使窃听者和其他信息收集器更难识别不同事务中使用的不同地址何时实际对应于同一节点。

Table of Contents

目录

   1.  Introduction.............................................    2
   2.  Background...............................................    3
      2.1.  Extended Use of the Same Identifier.................    3
      2.2.  Address Usage in IPv4 Today.........................    4
      2.3.  The Concern With IPv6 Addresses.....................    5
      2.4.  Possible Approaches.................................    6
   3.  Protocol Description.....................................    7
      3.1.  Assumptions.........................................    8
      3.2.  Generation Of Randomized Interface Identifiers......    9
      3.3.  Generating Temporary Addresses......................   10
      3.4.  Expiration of Temporary Addresses...................   11
      3.5.  Regeneration of Randomized Interface Identifiers....   12
   4.  Implications of Changing Interface Identifiers...........   13
   5.  Defined Constants........................................   14
   6.  Future Work..............................................   14
   7.  Security Considerations..................................   15
   8.  Acknowledgments..........................................   15
   9.  References...............................................   15
   10. Authors' Addresses.......................................   16
   11. Full Copyright Statement.................................   17
        
   1.  Introduction.............................................    2
   2.  Background...............................................    3
      2.1.  Extended Use of the Same Identifier.................    3
      2.2.  Address Usage in IPv4 Today.........................    4
      2.3.  The Concern With IPv6 Addresses.....................    5
      2.4.  Possible Approaches.................................    6
   3.  Protocol Description.....................................    7
      3.1.  Assumptions.........................................    8
      3.2.  Generation Of Randomized Interface Identifiers......    9
      3.3.  Generating Temporary Addresses......................   10
      3.4.  Expiration of Temporary Addresses...................   11
      3.5.  Regeneration of Randomized Interface Identifiers....   12
   4.  Implications of Changing Interface Identifiers...........   13
   5.  Defined Constants........................................   14
   6.  Future Work..............................................   14
   7.  Security Considerations..................................   15
   8.  Acknowledgments..........................................   15
   9.  References...............................................   15
   10. Authors' Addresses.......................................   16
   11. Full Copyright Statement.................................   17
        
1. Introduction
1. 介绍

Stateless address autoconfiguration [ADDRCONF] defines how an IPv6 node generates addresses without the need for a DHCP server. Some types of network interfaces come with an embedded IEEE Identifier (i.e., a link-layer MAC address), and in those cases stateless address autoconfiguration uses the IEEE identifier to generate a 64- bit interface identifier [ADDRARCH]. By design, the interface identifier is likely to be globally unique when generated in this fashion. The interface identifier is in turn appended to a prefix to form a 128-bit IPv6 address.

无状态地址自动配置[ADDRCONF]定义了IPv6节点如何在不需要DHCP服务器的情况下生成地址。某些类型的网络接口带有嵌入式IEEE标识符(即链路层MAC地址),在这些情况下,无状态地址自动配置使用IEEE标识符生成64位接口标识符[ADDRARCH]。根据设计,当以这种方式生成时,接口标识符可能是全局唯一的。接口标识符依次附加到前缀以形成128位IPv6地址。

All nodes combine interface identifiers (whether derived from an IEEE identifier or generated through some other technique) with the reserved link-local prefix to generate link-local addresses for their attached interfaces. Additional addresses, including site-local and global-scope addresses, are then created by combining prefixes advertised in Router Advertisements via Neighbor Discovery [DISCOVERY] with the interface identifier.

所有节点都将接口标识符(无论是从IEEE标识符派生的还是通过其他技术生成的)与保留的链路本地前缀相结合,为其连接的接口生成链路本地地址。其他地址,包括站点本地和全局作用域地址,然后通过将路由器广告中通过邻居发现[Discovery]播发的前缀与接口标识符相结合来创建。

Not all nodes and interfaces contain IEEE identifiers. In such cases, an interface identifier is generated through some other means (e.g., at random), and the resultant interface identifier is not globally unique and may also change over time. The focus of this document is on addresses derived from IEEE identifiers, as the

并非所有节点和接口都包含IEEE标识符。在这种情况下,通过一些其他方式(例如,随机)生成接口标识符,并且生成的接口标识符不是全局唯一的,并且也可能随时间而改变。本文档的重点是从IEEE标识符派生的地址,如

concern being addressed exists only in those cases where the interface identifier is globally unique and non-changing. The rest of this document assumes that IEEE identifiers are being used, but the techniques described may also apply to interfaces with other types of globally unique and/or persistent identifiers.

只有在接口标识符是全局唯一且不更改的情况下,才存在需要解决的问题。本文档的其余部分假设正在使用IEEE标识符,但所描述的技术也可能适用于具有其他类型的全局唯一和/或持久标识符的接口。

This document discusses concerns associated with the embedding of non-changing interface identifiers within IPv6 addresses and describes extensions to stateless address autoconfiguration that can help mitigate those concerns for individual users and in environments where such concerns are significant. Section 2 provides background information on the issue. Section 3 describes a procedure for generating alternate interface identifiers and global-scope addresses. Section 4 discusses implications of changing interface identifiers.

本文档讨论了与在IPv6地址中嵌入不变接口标识符相关的问题,并描述了对无状态地址自动配置的扩展,该扩展可帮助缓解单个用户和此类问题严重的环境中的这些问题。第2节提供了有关该问题的背景资料。第3节描述了生成备用接口标识符和全局作用域地址的过程。第4节讨论了更改接口标识符的含义。

2. Background
2. 出身背景

This section discusses the problem in more detail, provides context for evaluating the significance of the concerns in specific environments and makes comparisons with existing practices.

本节将更详细地讨论这个问题,为评估特定环境中关注点的重要性提供上下文,并与现有实践进行比较。

2.1. Extended Use of the Same Identifier
2.1. 同一标识符的扩展使用

The use of a non-changing interface identifier to form addresses is a specific instance of the more general case where a constant identifier is reused over an extended period of time and in multiple independent activities. Anytime the same identifier is used in multiple contexts, it becomes possible for that identifier to be used to correlate seemingly unrelated activity. For example, a network sniffer placed strategically on a link across which all traffic to/from a particular host crosses could keep track of which destinations a node communicated with and at what times. Such information can in some cases be used to infer things, such as what hours an employee was active, when someone is at home, etc.

使用不改变的接口标识符来形成地址是更一般情况下的一个具体实例,在这种情况下,常量标识符在一段较长的时间内以及在多个独立的活动中被重用。只要在多个上下文中使用同一标识符,就可以使用该标识符关联看似无关的活动。例如,将网络嗅探器战略性地放置在一条链路上,通过该链路,进出特定主机的所有流量都可以跟踪节点与哪个目的地通信以及在什么时候通信。在某些情况下,此类信息可用于推断事件,例如员工的工作时间、某人在家的时间等。

One of the requirements for correlating seemingly unrelated activities is the use (and reuse) of an identifier that is recognizable over time within different contexts. IP addresses provide one obvious example, but there are more. Many nodes also have DNS names associated with their addresses, in which case the DNS name serves as a similar identifier. Although the DNS name associated with an address is more work to obtain (it may require a DNS query) the information is often readily available. In such cases, changing the address on a machine over time would do little to address the concerns raised in this document, unless the DNS name is changed as well (see Section 4).

关联看似不相关的活动的一个要求是使用(和重用)一个标识符,该标识符在不同的上下文中随着时间的推移是可识别的。IP地址提供了一个明显的例子,但还有更多。许多节点还具有与其地址关联的DNS名称,在这种情况下,DNS名称用作类似的标识符。虽然与地址关联的DNS名称需要更多的工作才能获得(可能需要DNS查询),但信息通常是现成的。在这种情况下,随着时间的推移更改计算机上的地址对解决本文档中提出的问题几乎没有帮助,除非DNS名称也发生了更改(请参见第4节)。

Web browsers and servers typically exchange "cookies" with each other [COOKIES]. Cookies allow web servers to correlate a current activity with a previous activity. One common usage is to send back targeted advertising to a user by using the cookie supplied by the browser to identify what earlier queries had been made (e.g., for what type of information). Based on the earlier queries, advertisements can be targeted to match the (assumed) interests of the end-user.

Web浏览器和服务器通常相互交换“cookies”[cookies]。Cookie允许web服务器将当前活动与以前的活动关联起来。一种常见的用法是通过使用浏览器提供的cookie向用户发送有针对性的广告,以识别先前的查询(例如,针对什么类型的信息)。根据前面的查询,广告的目标可以匹配最终用户的(假定)兴趣。

The use of a constant identifier within an address is of special concern because addresses are a fundamental requirement of communication and cannot easily be hidden from eavesdroppers and other parties. Even when higher layers encrypt their payloads, addresses in packet headers appear in the clear. Consequently, if a mobile host (e.g., laptop) accessed the network from several different locations, an eavesdropper might be able to track the movement of that mobile host from place to place, even if the upper layer payloads were encrypted [SERIALNUM].

在地址中使用常量标识符是一个特别值得关注的问题,因为地址是通信的基本要求,不容易被窃听者和其他方隐藏。即使当更高层加密其有效载荷时,数据包头中的地址也会显示为明文。因此,如果移动主机(例如笔记本电脑)从几个不同的位置访问网络,则窃听者可能能够跟踪该移动主机从一个地方到另一个地方的移动,即使上层有效载荷被加密[SERIALNUM]。

2.2. Address Usage in IPv4 Today
2.2. 当前IPv4中的地址使用情况

Addresses used in today's Internet are often non-changing in practice for extended periods of time, especially in non-home environments (e.g., corporations, campuses, etc.). In such sites, addresses are assigned statically and typically change infrequently. Over the last few years, sites have begun moving away from static allocation to dynamic allocation via DHCP [DHCP]. In theory, the address a client gets via DHCP can change over time, but in practice servers often return the same address to the same client (unless addresses are in such short supply that they are reused immediately by a different node when they become free). Thus, even within sites using DHCP, clients frequently end up using the same address for weeks to months at a time.

在今天的互联网上使用的地址通常在很长一段时间内是不变的,特别是在非家庭环境中(如公司、校园等)。在这些站点中,地址是静态分配的,通常很少更改。在过去几年中,站点已经开始从静态分配转向通过DHCP[DHCP]进行动态分配。理论上,客户机通过DHCP获得的地址可能会随着时间的推移而改变,但实际上服务器通常会将相同的地址返回给同一客户机(除非地址非常短缺,当地址空闲时会立即被其他节点重新使用)。因此,即使在使用DHCP的站点中,客户端也常常一次使用同一地址达数周到数月之久。

For home users accessing the Internet over dialup lines, the situation is generally different. Such users do not have permanent connections and are often assigned temporary addresses each time they connect to their ISP (e.g., AOL). Consequently, the addresses they use change frequently over time and are shared among a number of different users. Thus, an address does not reliably identify a particular device over time spans of more than a few minutes.

对于通过拨号线路访问互联网的家庭用户来说,情况通常是不同的。此类用户没有永久连接,每次连接到ISP(如AOL)时,通常都会被分配临时地址。因此,他们使用的地址会随着时间的推移而频繁更改,并在多个不同的用户之间共享。因此,地址在超过几分钟的时间跨度内不能可靠地识别特定设备。

A more interesting case concerns always-on connections (e.g., cable modems, ISDN, DSL, etc.) that result in a home site using the same address for extended periods of time. This is a scenario that is just starting to become common in IPv4 and promises to become more of a concern as always-on internet connectivity becomes widely available. Although it might appear that changing an address regularly in such environments would be desirable to lessen privacy

一个更有趣的情况是,总是在连接上(例如,电缆调制解调器、ISDN、DSL等),这会导致家庭站点长时间使用同一地址。这是一个在IPv4中刚刚开始变得普遍的场景,并且随着“始终在线”互联网连接变得广泛可用,它有望成为一个更令人关注的问题。尽管在这样的环境中,定期更改地址似乎有助于减少隐私

concerns, it should be noted that the network prefix portion of an address also serves as a constant identifier. All nodes at (say) a home, would have the same network prefix, which identifies the topological location of those nodes. This has implications for privacy, though not at the same granularity as the concern that this document addresses. Specifically, all nodes within a home would be grouped together for the purposes of collecting information. This issue is difficult to address, because the routing prefix part of an address contains topology information and cannot contain arbitrary values.

考虑到这些问题,应当注意,地址的网络前缀部分也用作常量标识符。一个家庭中的所有节点都将具有相同的网络前缀,用于标识这些节点的拓扑位置。这对隐私有影响,但与本文档涉及的问题的粒度不同。具体来说,为了收集信息,家庭中的所有节点都将分组在一起。这个问题很难解决,因为地址的路由前缀部分包含拓扑信息,不能包含任意值。

Finally, it should be noted that nodes that need a (non-changing) DNS name generally have static addresses assigned to them to simplify the configuration of DNS servers. Although Dynamic DNS [DDNS] can be used to update the DNS dynamically, it is not yet widely deployed. In addition, changing an address but keeping the same DNS name does not really address the underlying concern, since the DNS name becomes a non-changing identifier. Servers generally require a DNS name (so clients can connect to them), and clients often do as well (e.g., some servers refuse to speak to a client whose address cannot be mapped into a DNS name that also maps back into the same address). Section 4 describes one approach to this issue.

最后,应该注意的是,需要(非更改)DNS名称的节点通常具有分配给它们的静态地址,以简化DNS服务器的配置。虽然动态DNS[DDNS]可用于动态更新DNS,但尚未广泛部署。此外,更改地址但保持相同的DNS名称并不能真正解决根本问题,因为DNS名称将成为一个不变的标识符。服务器通常需要DNS名称(因此客户端可以连接到它们),客户端通常也需要DNS名称(例如,一些服务器拒绝与地址无法映射到DNS名称(该名称也映射回同一地址)的客户端通话)。第4节描述了解决此问题的一种方法。

2.3. The Concern With IPv6 Addresses
2.3. 与IPv6地址有关的问题

The division of IPv6 addresses into distinct topology and interface identifier portions raises an issue new to IPv6 in that a fixed portion of an IPv6 address (i.e., the interface identifier) can contain an identifier that remains constant even when the topology portion of an address changes (e.g., as the result of connecting to a different part of the Internet). In IPv4, when an address changes, the entire address (including the local part of the address) usually changes. It is this new issue that this document addresses.

将IPv6地址划分为不同的拓扑和接口标识符部分对IPv6提出了一个新问题,即IPv6地址的固定部分(即接口标识符)可以包含一个标识符,即使地址的拓扑部分发生变化,该标识符也会保持不变(例如,由于连接到Internet的不同部分)。在IPv4中,当地址更改时,整个地址(包括地址的本地部分)通常都会更改。本文档针对的正是这个新问题。

If addresses are generated from an interface identifier, a home user's address could contain an interface identifier that remains the same from one dialup session to the next, even if the rest of the address changes. The way PPP is used today, however, PPP servers typically unilaterally inform the client what address they are to use (i.e., the client doesn't generate one on its own). This practice, if continued in IPv6, would avoid the concerns that are the focus of this document.

如果地址是由接口标识符生成的,则家庭用户的地址可能包含一个接口标识符,该接口标识符在一个拨号会话到下一个拨号会话期间保持不变,即使其余地址发生变化。然而,按照目前使用PPP的方式,PPP服务器通常会单方面通知客户端他们要使用的地址(即,客户端不会自行生成地址)。如果在IPv6中继续使用这种做法,将避免本文档重点关注的问题。

A more troubling case concerns mobile devices (e.g., laptops, PDAs, etc.) that move topologically within the Internet. Whenever they move (in the absence of technology such as mobile IP [MOBILEIP]), they form new addresses for their current topological point of attachment. This is typified today by the "road warrior" who has

一个更令人不安的情况涉及在互联网内拓扑移动的移动设备(例如笔记本电脑、PDA等)。无论何时移动(在缺乏移动IP[MOBILEIP]等技术的情况下),它们都会为当前拓扑连接点形成新地址。今天的“道路战士”就是一个典型,他

Internet connectivity both at home and at the office. While the node's address changes as it moves, however, the interface identifier contained within the address remains the same (when derived from an IEEE Identifier). In such cases, the interface identifier can be used to track the movement and usage of a particular machine [SERIALNUM]. For example, a server that logs usage information together with a source addresses, is also recording the interface identifier since it is embedded within an address. Consequently, any data-mining technique that correlates activity based on addresses could easily be extended to do the same using the interface identifier. This is of particular concern with the expected proliferation of next-generation network-connected devices (e.g., PDAs, cell phones, etc.) in which large numbers of devices are in practice associated with individual users (i.e., not shared). Thus, the interface identifier embedded within an address could be used to track activities of an individual, even as they move topologically within the internet.

家庭和办公室的互联网连接。然而,尽管节点的地址随着移动而改变,但地址中包含的接口标识符保持不变(当从IEEE标识符派生时)。在这种情况下,接口标识符可用于跟踪特定机器的移动和使用[SERIALNUM]。例如,记录使用信息和源地址的服务器也在记录接口标识符,因为它嵌入在地址中。因此,任何基于地址关联活动的数据挖掘技术都可以通过使用接口标识符轻松地进行扩展。下一代网络连接设备(如PDA、手机等)的预期激增尤其令人担忧,在这些设备中,大量设备实际上与个人用户相关(即,不共享)。因此,嵌入在地址中的接口标识符可用于跟踪个人的活动,即使这些活动在互联网中按拓扑结构移动。

In summary, IPv6 addresses on a given interface generated via Stateless Autoconfiguration contain the same interface identifier, regardless of where within the Internet the device connects. This facilitates the tracking of individual devices (and thus potentially users). The purpose of this document is to define mechanisms that eliminate this issue, in those situations where it is a concern.

总之,通过无状态自动配置生成的给定接口上的IPv6地址包含相同的接口标识符,而不管设备连接到Internet中的何处。这有助于跟踪单个设备(以及潜在用户)。本文件的目的是确定在该问题引起关注的情况下消除该问题的机制。

2.4. Possible Approaches
2.4. 可能的办法

One way to avoid some of the problems discussed above is to use DHCP for obtaining addresses. With DHCP, the DHCP server could arrange to hand out addresses that change over time.

避免上述某些问题的一种方法是使用DHCP获取地址。使用DHCP,DHCP服务器可以安排分发随时间变化的地址。

Another approach, compatible with the stateless address autoconfiguration architecture, would be to change the interface id portion of an address over time and generate new addresses from the interface identifier for some address scopes. Changing the interface identifier can make it more difficult to look at the IP addresses in independent transactions and identify which ones actually correspond to the same node, both in the case where the routing prefix portion of an address changes and when it does not.

另一种与无状态地址自动配置体系结构兼容的方法是随着时间的推移更改地址的接口id部分,并从某些地址范围的接口标识符生成新地址。更改接口标识符会使查看独立事务中的IP地址以及识别哪些IP地址实际上对应于同一节点变得更加困难,无论是在地址的路由前缀部分发生更改的情况下,还是在地址的路由前缀部分未发生更改的情况下。

Many machines function as both clients and servers. In such cases, the machine would need a DNS name for its use as a server. Whether the address stays fixed or changes has little privacy implication since the DNS name remains constant and serves as a constant identifier. When acting as a client (e.g., initiating communication), however, such a machine may want to vary the addresses it uses. In such environments, one may need multiple addresses: a "public" (i.e., non-secret) server address, registered

许多机器同时充当客户机和服务器。在这种情况下,机器需要DNS名称才能用作服务器。由于DNS名称保持不变并充当不变的标识符,因此地址保持不变还是更改对隐私几乎没有影响。然而,当充当客户机(例如,启动通信)时,这样的机器可能希望改变其使用的地址。在这样的环境中,可能需要多个地址:一个“公共”(即非机密)服务器地址,已注册

in the DNS, that is used to accept incoming connection requests from other machines, and a "temporary" address used to shield the identity of the client when it initiates communication. These two cases are roughly analogous to telephone numbers and caller ID, where a user may list their telephone number in the public phone book, but disable the display of its number via caller ID when initiating calls.

在DNS中,用于接受来自其他机器的传入连接请求的“临时”地址,以及用于在客户端启动通信时屏蔽其身份的“临时”地址。这两种情况大致类似于电话号码和呼叫者ID,其中用户可以在公用电话簿中列出其电话号码,但在发起呼叫时禁用通过呼叫者ID显示其号码。

To make it difficult to make educated guesses as to whether two different interface identifiers belong to the same node, the algorithm for generating alternate identifiers must include input that has an unpredictable component from the perspective of the outside entities that are collecting information. Picking identifiers from a pseudo-random sequence suffices, so long as the specific sequence cannot be determined by an outsider examining information that is readily available or easily determinable (e.g., by examining packet contents). This document proposes the generation of a pseudo-random sequence of interface identifiers via an MD5 hash. Periodically, the next interface identifier in the sequence is generated, a new set of temporary addresses is created, and the previous temporary addresses are deprecated to discourage their further use. The precise pseudo-random sequence depends on both a random component and the globally unique interface identifier (when available), to increase the likelihood that different nodes generate different sequences.

为了使对两个不同接口标识符是否属于同一节点进行有根据的猜测变得困难,用于生成备用标识符的算法必须包括从收集信息的外部实体的角度来看具有不可预测组件的输入。只要外部人员检查容易获得或容易确定的信息(例如,通过检查数据包内容)无法确定特定序列,从伪随机序列中选择标识符就足够了。本文档建议通过MD5哈希生成接口标识符的伪随机序列。定期生成序列中的下一个接口标识符,创建一组新的临时地址,并弃用以前的临时地址以阻止其进一步使用。精确的伪随机序列取决于随机分量和全局唯一接口标识符(如果可用),以增加不同节点生成不同序列的可能性。

3. Protocol Description
3. 协议描述

The goal of this section is to define procedures that:

本节的目标是定义以下程序:

1) Do not result in any changes to the basic behavior of addresses generated via stateless address autoconfiguration [ADDRCONF].

1) 不要对通过无状态地址自动配置[ADDRCONF]生成的地址的基本行为进行任何更改。

2) Create additional global-scope addresses based on a random interface identifier for use with global scope addresses. Such addresses would be used to initiate outgoing sessions. These "random" or temporary addresses would be used for a short period of time (hours to days) and would then be deprecated. Deprecated address can continue to be used for already established connections, but are not used to initiate new connections. New temporary addresses are generated periodically to replace temporary addresses that expire, with the exact time between address generation a matter of local policy.

2) 基于随机接口标识符创建其他全局作用域地址,以便与全局作用域地址一起使用。这些地址将用于启动传出会话。这些“随机”或临时地址将在短时间内(数小时到数天)使用,然后将被弃用。不推荐使用的地址可继续用于已建立的连接,但不用于启动新连接。定期生成新的临时地址以替换过期的临时地址,地址生成之间的确切时间取决于本地策略。

3) Produce a sequence of temporary global-scope addresses from a sequence of interface identifiers that appear to be random in the sense that it is difficult for an outside observer to predict a

3) 从接口标识符序列生成一个临时全局作用域地址序列,该序列看起来是随机的,因为外部观察者很难预测

future address (or identifier) based on a current one and it is difficult to determine previous addresses (or identifiers) knowing only the present one.

未来地址(或标识符)基于当前地址,并且仅知道当前地址很难确定以前的地址(或标识符)。

4) Generate a set of addresses from the same (randomized) interface identifier, one address for each prefix for which a global address has been generated via stateless address autoconfiguration. Using the same interface identifier to generate a set of temporary addresses reduces the number of IP multicast groups a host must join. Nodes join the solicited-node multicast address for each unicast address they support, and solicited-node addresses are dependent only on the low-order bits of the corresponding address. This decision was made to address the concern that a node that joins a large number of multicast groups may be required to put its interface into promiscuous mode, resulting in possible reduced performance.

4) 从相同(随机)接口标识符生成一组地址,每个前缀一个地址,通过无状态地址自动配置为其生成全局地址。使用相同的接口标识符生成一组临时地址可以减少主机必须加入的IP多播组的数量。节点为其支持的每个单播地址加入请求节点多播地址,请求节点地址仅依赖于相应地址的低位。做出此决定是为了解决这样一个问题,即加入大量多播组的节点可能需要将其接口置于混杂模式,从而可能导致性能降低。

3.1. Assumptions
3.1. 假设

The following algorithm assumes that each interface maintains an associated randomized interface identifier. When temporary addresses are generated, the current value of the associated randomized interface identifier is used. The actual value of the identifier changes over time as described below, but the same identifier can be used to generate more than one temporary address.

以下算法假设每个接口都维护一个关联的随机接口标识符。生成临时地址时,将使用关联的随机接口标识符的当前值。标识符的实际值随时间变化,如下所述,但同一标识符可用于生成多个临时地址。

The algorithm also assumes that for a given temporary address, an implementation can determine the corresponding public address from which it was generated. When a temporary address is deprecated, a new temporary address is generated. The specific valid and preferred lifetimes for the new address are dependent on the corresponding lifetime values in the public address.

该算法还假设,对于给定的临时地址,实现可以确定生成该临时地址的相应公共地址。不推荐使用临时地址时,将生成新的临时地址。新地址的特定有效和首选生存期取决于公共地址中相应的生存期值。

Finally, this document assumes that when a node initiates outgoing communication, temporary addresses can be given preference over public addresses. This can mean that all connections initiated by the node use temporary addresses by default, or that applications individually indicate whether they prefer to use temporary or public addresses. Giving preference to temporary address is consistent with on-going work that addresses the topic of source-address selection in the more general case [ADDR_SELECT]. An implementation may make it a policy that it does not select a public address in the event that no temporary address is available (e.g., if generation of a useable temporary address fails).

最后,本文假设当节点发起传出通信时,临时地址可以优先于公共地址。这可能意味着默认情况下节点启动的所有连接都使用临时地址,或者应用程序单独指示它们是喜欢使用临时地址还是公共地址。优先选择临时地址与在更一般的情况下解决源地址选择主题的正在进行的工作是一致的[ADDR_SELECT]。如果没有可用的临时地址(例如,如果生成可用的临时地址失败),实施可能会制定一项政策,即不选择公共地址。

3.2. Generation Of Randomized Interface Identifiers.

3.2. 随机接口标识符的生成。

We describe two approaches for the maintenance of the randomized interface identifier. The first assumes the presence of stable storage that can be used to record state history for use as input into the next iteration of the algorithm across system restarts. A second approach addresses the case where stable storage is unavailable and there is a need to generate randomized interface identifiers without previous state.

我们描述了两种维护随机接口标识符的方法。第一种方法假设存在稳定的存储,可用于记录状态历史,作为下一次迭代算法在系统重启时的输入。第二种方法解决了稳定存储不可用的情况,并且需要在没有先前状态的情况下生成随机接口标识符。

3.2.1. When Stable Storage Is Present
3.2.1. 当存在稳定的存储时

The following algorithm assumes the presence of a 64-bit "history value" that is used as input in generating a randomized interface identifier. The very first time the system boots (i.e., out-of-the-box), a random value should be generated using techniques that help ensure the initial value is hard to guess [RANDOM]. Whenever a new interface identifier is generated, a value generated by the computation is saved in the history value for the next iteration of the algorithm.

以下算法假设存在64位“历史值”,该值用作生成随机接口标识符的输入。系统第一次启动(即开箱即用)时,应使用有助于确保初始值难以猜测的技术生成随机值[随机]。每当生成新的接口标识符时,计算生成的值将保存在历史值中,以供算法的下一次迭代使用。

A randomized interface identifier is created as follows:

随机接口标识符的创建如下所示:

1) Take the history value from the previous iteration of this algorithm (or a random value if there is no previous value) and append to it the interface identifier generated as described in [ADDRARCH]. 2) Compute the MD5 message digest [MD5] over the quantity created in the previous step. 3) Take the left-most 64-bits of the MD5 digest and set bit 6 (the left-most bit is numbered 0) to zero. This creates an interface identifier with the universal/local bit indicating local significance only. Save the generated identifier as the associated randomized interface identifier. 4) Take the rightmost 64-bits of the MD5 digest computed in step 2) and save them in stable storage as the history value to be used in the next iteration of the algorithm.

1) 从该算法的上一次迭代中获取历史值(如果没有以前的值,则为随机值),并将[ADDRARCH]中所述生成的接口标识符附加到该值中。2) 根据上一步中创建的数量计算MD5消息摘要[MD5]。3) 获取MD5摘要最左边的64位,并将第6位(最左边的位编号为0)设置为零。这将创建一个接口标识符,其通用/本地位仅表示本地重要性。将生成的标识符保存为关联的随机接口标识符。4) 获取在步骤2)中计算的MD5摘要最右边的64位,并将其保存在稳定存储器中,作为历史值,以便在算法的下一次迭代中使用。

MD5 was chosen for convenience, and because its particular properties were adequate to produce the desired level of randomization. IPv6 nodes are already required to implement MD5 as part of IPsec [IPSEC], thus the code will already be present on IPv6 machines.

选择MD5是为了方便,因为它的特殊性质足以产生所需的随机化水平。IPv6节点已经被要求作为IPsec[IPsec]的一部分实现MD5,因此该代码已经出现在IPv6机器上。

In theory, generating successive randomized interface identifiers using a history scheme as above has no advantages over generating them at random. In practice, however, generating truly random numbers can be tricky. Use of a history value is intended to avoid the particular scenario where two nodes generate the same randomized

理论上,使用如上所述的历史方案生成连续的随机接口标识符与随机生成它们相比没有任何优势。然而,在实践中,生成真正的随机数可能很棘手。使用历史值旨在避免两个节点生成相同数据的特定场景

interface identifier, both detect the situation via DAD, but then proceed to generate identical randomized interface identifiers via the same (flawed) random number generation algorithm. The above algorithm avoids this problem by having the interface identifier (which will often be globally unique) used in the calculation that generates subsequent randomized interface identifiers. Thus, if two nodes happen to generate the same randomized interface identifier, they should generate different ones on the followup attempt.

接口标识符,两者都通过DAD检测情况,但随后通过相同的(有缺陷的)随机数生成算法生成相同的随机接口标识符。上述算法通过在生成后续随机接口标识符的计算中使用接口标识符(通常是全局唯一的)来避免此问题。因此,如果两个节点碰巧生成了相同的随机接口标识符,那么它们应该在后续尝试中生成不同的标识符。

3.2.2. In The Absence of Stable Storage
3.2.2. 在缺乏稳定储存的情况下

In the absence of stable storage, no history value will be available across system restarts to generate a pseudo-random sequence of interface identifiers. Consequently, the initial history value used above will need to be generated at random. A number of techniques might be appropriate. Consult [RANDOM] for suggestions on good sources for obtaining random numbers. Note that even though machines may not have stable storage for storing a history value, they will in many cases have configuration information that differs from one machine to another (e.g., user identity, security keys, serial numbers, etc.). One approach to generating a random initial history value in such cases is to use the configuration information to generate some data bits (which may remain constant for the life of the machine, but will vary from one machine to another), append some random data and compute the MD5 digest as before.

在没有稳定存储的情况下,在系统重新启动时,将没有可用的历史值来生成接口标识符的伪随机序列。因此,需要随机生成上面使用的初始历史值。一些技术可能是合适的。有关获取随机数的良好来源的建议,请参考[RANDOM]。请注意,尽管计算机可能没有用于存储历史值的稳定存储器,但在许多情况下,它们的配置信息在不同的计算机之间是不同的(例如,用户身份、安全密钥、序列号等)。在这种情况下,生成随机初始历史值的一种方法是使用配置信息生成一些数据位(在机器的使用寿命内可能保持不变,但在不同的机器上会有所不同),附加一些随机数据并像以前一样计算MD5摘要。

3.3. Generating Temporary Addresses
3.3. 生成临时地址

[ADDRCONF] describes the steps for generating a link-local address when an interface becomes enabled as well as the steps for generating addresses for other scopes. This document extends [ADDRCONF] as follows. When processing a Router Advertisement with a Prefix Information option carrying a global-scope prefix for the purposes of address autoconfiguration (i.e., the A bit is set), perform the following steps:

[ADDRCONF]描述了在启用接口时生成链接本地地址的步骤以及为其他作用域生成地址的步骤。本文档对[ADDRCONF]进行了如下扩展。处理带有带有全局作用域前缀的前缀信息选项的路由器播发时,用于地址自动配置(即,设置了a位),请执行以下步骤:

1) Process the Prefix Information Option as defined in [ADDRCONF], either creating a public address or adjusting the lifetimes of existing addresses, both public and temporary. When adjusting the lifetimes of an existing temporary address, only lower the lifetimes. Implementations must not increase the lifetimes of an existing temporary address when processing a Prefix Information Option. 2) When a new public address is created as described in [ADDRCONF] (because the prefix advertised does not match the prefix of any address already assigned to the interface, and the Valid Lifetime in the option is not zero), also create a new temporary address.

1) 处理[ADDRCONF]中定义的前缀信息选项,创建公共地址或调整现有公共和临时地址的生存期。调整现有临时地址的生存期时,只需降低生存期。在处理前缀信息选项时,实现不得增加现有临时地址的生存期。2) 当按照[ADDRCONF]中的说明创建新的公共地址时(因为播发的前缀与已分配给接口的任何地址的前缀不匹配,并且选项中的有效生存期不为零),还应创建一个新的临时地址。

3) When creating a temporary address, the lifetime values are derived from the corresponding public address as follows:

3) 创建临时地址时,生存期值从相应的公共地址派生,如下所示:

- Its Valid Lifetime is the lower of the Valid Lifetime of the public address or TEMP_VALID_LIFETIME. - Its Preferred Lifetime is the lower of the Preferred Lifetime of the public address or TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR.

- 其有效生存期为公共广播的有效生存期或临时有效生存期中的较低者。-其首选寿命是公共广播的首选寿命或临时首选寿命-去同步系数中的较低者。

A temporary address is created only if this calculated Preferred Lifetime is greater than REGEN_ADVANCE time units. In particular, an implementation must not create a temporary address with a zero Preferred Lifetime. 4) New temporary addresses are created by appending the interface's current randomized interface identifier to the prefix that was used to generate the corresponding public address. If by chance the new temporary address is the same as an address already assigned to the interface, generate a new randomized interface identifier and repeat this step. 5) Perform duplicate address detection (DAD) on the generated temporary address. If DAD indicates the address is already in use, generate a new randomized interface identifier as described in Section 3.2 above, and repeat the previous steps as appropriate up to 5 times. If after 5 consecutive attempts no non-unique address was generated, log a system error and give up attempting to generate temporary addresses for that interface.

仅当计算的首选生存期大于REGEN_提前时间单位时,才会创建临时地址。特别是,实现不能创建首选生存期为零的临时地址。4) 通过将接口的当前随机接口标识符附加到用于生成相应公共地址的前缀,可以创建新的临时地址。如果新临时地址碰巧与已分配给接口的地址相同,则生成一个新的随机接口标识符并重复此步骤。5) 对生成的临时地址执行重复地址检测(DAD)。如果DAD指示地址已在使用中,则按照上文第3.2节所述生成一个新的随机接口标识符,并根据需要重复前面的步骤最多5次。如果连续5次尝试后未生成非唯一地址,请记录系统错误并放弃为该接口生成临时地址的尝试。

Note: because multiple temporary addresses are generated from the same associated randomized interface identifier, there is little benefit in running DAD on every temporary address. This document recommends that DAD be run on the first address generated from a given randomized identifier, but that DAD be skipped on all subsequent addresses generated from the same randomized interface identifier.

注意:因为多个临时地址是从同一个关联的随机接口标识符生成的,所以在每个临时地址上运行DAD并没有什么好处。本文档建议在给定随机标识符生成的第一个地址上运行DAD,但在同一随机接口标识符生成的所有后续地址上跳过DAD。

3.4. Expiration of Temporary Addresses
3.4. 临时地址过期

When a temporary address becomes deprecated, a new one should be generated. This is done by repeating the actions described in Section 3.3, starting at step 3). Note that, except for the transient period when a temporary address is being regenerated, in normal operation at most one temporary address corresponding to a public address should be in a non-deprecated state at any given time. Note that if a temporary address becomes deprecated as result of processing a Prefix Information Option with a zero Preferred Lifetime, then a new temporary address must not be generated. The Prefix Information Option will also deprecate the corresponding public address.

当临时地址不推荐使用时,应生成一个新地址。从步骤3)开始,通过重复第3.3节中描述的操作来完成。请注意,除了重新生成临时地址的过渡期外,在正常操作中,在任何给定时间,最多一个与公共地址相对应的临时地址应处于非弃用状态。请注意,如果临时地址因处理首选生存期为零的前缀信息选项而被弃用,则不得生成新的临时地址。前缀信息选项还将拒绝使用相应的公共地址。

To insure that a preferred temporary address is always available, a new temporary address should be regenerated slightly before its predecessor is deprecated. This is to allow sufficient time to avoid race conditions in the case where generating a new temporary address is not instantaneous, such as when duplicate address detection must be run. It is recommended that an implementation start the address regeneration process REGEN_ADVANCE time units before a temporary address would actually be deprecated.

为确保首选临时地址始终可用,应在不推荐使用新临时地址之前重新生成新临时地址。这是为了在生成新临时地址不是即时的情况下(例如必须运行重复地址检测时),允许有足够的时间避免争用情况。建议在实际不推荐使用临时地址之前,实施启动地址重新生成过程REGEN_ADVANCE time units。

As an optional optimization, an implementation may wish to remove a deprecated temporary address that is not in use by applications or upper-layers. For TCP connections, such information is available in control blocks. For UDP-based applications, it may be the case that only the applications have knowledge about what addresses are actually in use. Consequently, one may need to use heuristics in deciding when an address is no longer in use (e.g., the default TEMP_VALID_LIFETIME suggested above).

作为可选优化,实现可能希望删除应用程序或上层未使用的已弃用临时地址。对于TCP连接,此类信息在控制块中可用。对于基于UDP的应用程序,可能只有应用程序才知道实际使用的地址。因此,可能需要使用试探法来决定何时不再使用地址(例如,上面建议的默认临时有效生存期)。

3.5. Regeneration of Randomized Interface Identifiers
3.5. 随机接口标识符的再生

The frequency at which temporary addresses should change depends on how a device is being used (e.g., how frequently it initiates new communication) and the concerns of the end user. The most egregious privacy concerns appear to involve addresses used for long periods of time (weeks to months to years). The more frequently an address changes, the less feasible collecting or coordinating information keyed on interface identifiers becomes. Moreover, the cost of collecting information and attempting to correlate it based on interface identifiers will only be justified if enough addresses contain non-changing identifiers to make it worthwhile. Thus, having large numbers of clients change their address on a daily or weekly basis is likely to be sufficient to alleviate most privacy concerns.

临时地址应更改的频率取决于设备的使用方式(例如,它启动新通信的频率)和最终用户的关注点。最令人震惊的隐私问题似乎涉及长时间(数周到数月到数年)使用的地址。地址更改越频繁,收集或协调接口标识符上键入的信息就越不可行。此外,只有当足够多的地址包含不变的标识符,使信息变得有价值时,收集信息并尝试基于接口标识符将其关联起来的成本才是合理的。因此,让大量客户每天或每周更改地址可能足以缓解大多数隐私问题。

There are also client costs associated with having a large number of addresses associated with a node (e.g., in doing address lookups, the need to join many multicast groups, etc.). Thus, changing addresses frequently (e.g., every few minutes) may have performance implications.

还有与具有大量与节点相关联的地址相关联的客户端成本(例如,在进行地址查找时,需要加入许多多播组等)。因此,频繁更改地址(例如,每隔几分钟)可能会影响性能。

This document recommends that implementations generate new temporary addresses on a periodic basis. This can be achieved automatically by generating a new randomized interface identifier at least once every (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR) time units. As described above, generating a new temporary address REGEN_ADVANCE time units before a temporary address becomes deprecated produces addresses with a preferred lifetime no larger than TEMP_PREFERRED_LIFETIME. The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't

本文档建议实现定期生成新的临时地址。这可以通过至少每一个时间单位生成一个新的随机接口标识符(TEMP_PREFERRED_LIFETIME-REGEN_ADVANCE-DESYNC_FACTOR)自动实现。如上所述,在临时地址不推荐使用之前生成新的临时地址REGEN_ADVANCE time units会生成首选生存期不大于TEMP_首选生存期的地址。值DESYNC_因子是一个随机值(每个客户端不同),它确保客户端不会

synchronize with each other and generate new addresses at exactly the same time. When the preferred lifetime expires, a new temporary address is generated using the new randomized interface identifier.

相互同步并在同一时间生成新地址。当首选生存期到期时,将使用新的随机接口标识符生成新的临时地址。

Because the precise frequency at which it is appropriate to generate new addresses varies from one environment to another, implementations should provide end users with the ability to change the frequency at which addresses are regenerated. The default value is given in TEMP_PREFERRED_LIFETIME and is one day. In addition, the exact time at which to invalidate a temporary address depends on how applications are used by end users. Thus the default value given of one week (TEMP_VALID_LIFETIME) may not be appropriate in all environments. Implementations should provide end users with the ability to override both of these default values.

由于生成新地址的准确频率因环境而异,因此实现应使最终用户能够更改重新生成地址的频率。默认值在TEMP_PREFERRED_LIFETIME中给出,为一天。此外,使临时地址无效的确切时间取决于最终用户如何使用应用程序。因此,给定的一周默认值(TEMP\u VALID\u life)可能不适用于所有环境。实现应该为最终用户提供覆盖这两个默认值的能力。

Finally, when an interface connects to a new link, a new randomized interface identifier should be generated immediately together with a new set of temporary addresses. If a device moves from one ethernet to another, generating a new set of temporary addresses from a different randomized interface identifier ensures that the device uses different randomized interface identifiers for the temporary addresses associated with the two links, making it more difficult to correlate addresses from the two different links as being from the same node.

最后,当接口连接到新链接时,应立即生成新的随机接口标识符和一组新的临时地址。如果设备从一个以太网移动到另一个以太网,则从不同的随机接口标识符生成一组新的临时地址可确保设备对与两个链路相关联的临时地址使用不同的随机接口标识符,这使得将来自两个不同链路的地址关联为来自同一节点的地址变得更加困难。

4. Implications of Changing Interface Identifiers
4. 更改接口标识符的含义

The IPv6 addressing architecture goes to some lengths to ensure that interface identifiers are likely to be globally unique where easy to do so. During the IPng discussions of the GSE proposal [GSE], it was felt that keeping interface identifiers globally unique in practice might prove useful to future transport protocols. Usage of the algorithms in this document may complicate providing such a future flexibility.

IPv6寻址体系结构在一定程度上确保了接口标识符在容易做到的地方可能是全局唯一的。在IPng对GSE提案[GSE]的讨论中,人们认为,在实践中保持接口标识符的全局唯一性可能对未来的传输协议有用。使用本文中的算法可能会使提供这种未来灵活性变得复杂。

The desires of protecting individual privacy vs. the desire to effectively maintain and debug a network can conflict with each other. Having clients use addresses that change over time will make it more difficult to track down and isolate operational problems. For example, when looking at packet traces, it could become more difficult to determine whether one is seeing behavior caused by a single errant machine, or by a number of them.

保护个人隐私的愿望与有效维护和调试网络的愿望可能相互冲突。让客户机使用随时间变化的地址将使跟踪和隔离操作问题变得更加困难。例如,当查看数据包跟踪时,确定一个人看到的行为是由一台出错的机器引起的,还是由多台机器引起的,可能会变得更加困难。

Some servers refuse to grant access to clients for which no DNS name exists. That is, they perform a DNS PTR query to determine the DNS name, and may then also perform an A query on the returned name to verify that the returned DNS name maps back into the address being used. Consequently, clients not properly registered in the DNS may

某些服务器拒绝向不存在DNS名称的客户端授予访问权限。也就是说,它们执行DNS PTR查询以确定DNS名称,然后还可以对返回的名称执行a查询以验证返回的DNS名称映射回正在使用的地址。因此,未在DNS中正确注册的客户端可能会

be unable to access some services. As noted earlier, however, a node's DNS name (if non-changing) serves as a constant identifier. The wide deployment of the extension described in this document could challenge the practice of inverse-DNS-based "authentication," which has little validity, though it is widely implemented. In order to meet server challenges, nodes could register temporary addresses in the DNS using random names (for example a string version of the random address itself).

无法访问某些服务。但是,如前所述,节点的DNS名称(如果不更改)用作常量标识符。本文档中描述的扩展的广泛部署可能会挑战基于DNS的反向“身份验证”的实践,该实践的有效性很低,尽管它已被广泛实施。为了应对服务器挑战,节点可以使用随机名称(例如随机地址本身的字符串版本)在DNS中注册临时地址。

Use of the extensions defined in this document may complicate debugging and other operational troubleshooting activities. Consequently, it may be site policy that temporary addresses should not be used. Implementations may provide a method for a trusted administrator to override the use of temporary addresses.

使用本文档中定义的扩展可能会使调试和其他操作故障排除活动复杂化。因此,不应使用临时地址可能是现场政策。实现可以为受信任的管理员提供一种覆盖临时地址使用的方法。

5. Defined Constants
5. 定义常数

Constants defined in this document include:

本文件中定义的常量包括:

TEMP_VALID_LIFETIME -- Default value: 1 week. Users should be able to override the default value. TEMP_PREFERRED_LIFETIME -- Default value: 1 day. Users should be able to override the default value. REGEN_ADVANCE -- 5 seconds MAX_DESYNC_FACTOR -- 10 minutes. Upper bound on DESYNC_FACTOR. DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE).

临时有效生命周期--默认值:1周。用户应该能够覆盖默认值。TEMP_PREFERRED_LIFETIME--默认值:1天。用户应该能够覆盖默认值。重新同步-最多5秒-10分钟。失同步因子的上界。失同步系数——0-最大失同步系数范围内的随机值。它在系统启动时计算一次(而不是每次使用时),并且不得大于(临时有效寿命-重新生成提前)。

6. Future Work
6. 今后的工作

An implementation might want to keep track of which addresses are being used by upper layers so as to be able to remove a deprecated temporary address from internal data structures once no upper layer protocols are using it (but not before). This is in contrast to current approaches where addresses are removed from an interface when they become invalid [ADDRCONF], independent of whether or not upper layer protocols are still using them. For TCP connections, such information is available in control blocks. For UDP-based applications, it may be the case that only the applications have knowledge about what addresses are actually in use. Consequently, an implementation generally will need to use heuristics in deciding when an address is no longer in use (e.g., as is suggested in Section 3.4).

实现可能希望跟踪上层使用的地址,以便在没有上层协议使用临时地址时(但在此之前),能够从内部数据结构中删除不推荐使用的临时地址。这与当前的方法不同,当前的方法是当地址变为无效[ADDRCONF]时从接口中删除地址,这与上层协议是否仍在使用地址无关。对于TCP连接,此类信息在控制块中可用。对于基于UDP的应用程序,可能只有应用程序才知道实际使用的地址。因此,实现通常需要使用试探法来决定何时不再使用地址(例如,如第3.4节所述)。

The determination as to whether to use public vs. temporary addresses can in some cases only be made by an application. For example, some applications may always want to use temporary addresses, while others may want to use them only in some circumstances or not at all. Suitable API extensions will likely need to be developed to enable individual applications to indicate with sufficient granularity their needs with regards to the use of temporary addresses.

在某些情况下,只能通过应用程序确定是否使用公共地址或临时地址。例如,一些应用程序可能总是希望使用临时地址,而其他应用程序可能只希望在某些情况下使用临时地址,或者根本不使用临时地址。可能需要开发合适的API扩展,以使各个应用程序能够以足够的粒度表示其对临时地址使用的需求。

7. Security Considerations
7. 安全考虑

The motivation for this document stems from privacy concerns for individuals. This document does not appear to add any security issues beyond those already associated with stateless address autoconfiguration [ADDRCONF].

本文档的动机源于对个人隐私的关注。除了与无状态地址自动配置[ADDRCONF]相关的安全问题外,本文档似乎没有添加任何其他安全问题。

8. Acknowledgments
8. 致谢

The authors would like to acknowledge the contributions of the IPNGWG working group and, in particular, Matt Crawford, Steve Deering and Allison Mankin for their detailed comments.

作者要感谢IPNGWG工作组的贡献,特别是Matt Crawford、Steve Deering和Allison Mankin的详细评论。

9. References
9. 工具书类

[ADDRARCH] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 2373, July 1998.

[ADDRARCH]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 23731998年7月。

[ADDRCONF] Thomson, S. and T. Narten, "IPv6 Address Autoconfiguration", RFC 2462, December 1998.

[ADDRCONF]Thomson,S.和T.Narten,“IPv6地址自动配置”,RFC 2462,1998年12月。

[ADDR_SELECT] Draves, R. "Default Address Selection for IPv6", Work in Progress.

[ADDR_SELECT]Draves,R.“IPv6的默认地址选择”,正在进行中。

[COOKIES] Kristol, D. and L. Montulli, "HTTP State Management Mechanism", RFC 2965, October 2000.

[COOKIES]Kristol,D.和L.Montulli,“HTTP状态管理机制”,RFC 29652000年10月。

[DHCP] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997.

[DHCP]Droms,R.,“动态主机配置协议”,RFC 21311997年3月。

[DDNS] Vixie, R., Thomson, S., Rekhter, Y. and J. Bound, "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136, April 1997.

[DDNS]Vixie,R.,Thomson,S.,Rekhter,Y.和J.Bound,“域名系统中的动态更新(DNS更新)”,RFC 21361997年4月。

[DISCOVERY] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998.

[DISCOVERY]Narten,T.,Nordmark,E.和W.Simpson,“IP版本6(IPv6)的邻居发现”,RFC 246112998年12月。

[GSE] Crawford, et al., "Separating Identifiers and Locators in Addresses: An Analysis of the GSE Proposal for IPv6", Work in Progress.

[GSE]Crawford等人,“分离地址中的标识符和定位器:对GSE IPv6提案的分析”,正在进行的工作。

[IPSEC] Kent, S., Atkinson, R., "Security Architecture for the Internet Protocol", RFC 2401, November 1998.

[IPSEC]Kent,S.,Atkinson,R.,“互联网协议的安全架构”,RFC 2401,1998年11月。

[MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.

[MD5]Rivest,R.,“MD5消息摘要算法”,RFC 13211992年4月。

[MOBILEIP] Perkins, C., "IP Mobility Support", RFC 2002, October 1996.

[MOBILEIP]Perkins,C.,“IP移动支持”,RFC 2002,1996年10月。

[RANDOM] Eastlake 3rd, D., Crocker S. and J. Schiller, "Randomness Recommendations for Security", RFC 1750, December 1994.

[随机]Eastlake 3rd,D.,Crocker S.和J.Schiller,“安全的随机性建议”,RFC 1750,1994年12月。

[SERIALNUM] Moore, K., "Privacy Considerations for the Use of Hardware Serial Numbers in End-to-End Network Protocols", Work in Progress.

[SERIALNUM]Moore,K.,“端到端网络协议中使用硬件序列号的隐私注意事项”,正在进行中。

10. Authors' Addresses
10. 作者地址

Thomas Narten IBM Corporation P.O. Box 12195 Research Triangle Park, NC 27709-2195 USA

美国北卡罗来纳州三角研究园12195号邮政信箱托马斯·纳顿IBM公司,邮编:27709-2195

   Phone: +1 919 254 7798
   EMail: narten@raleigh.ibm.com
        
   Phone: +1 919 254 7798
   EMail: narten@raleigh.ibm.com
        

Richard Draves Microsoft Research One Microsoft Way Redmond, WA 98052

Richard在华盛顿州雷德蒙市微软研究中心一号撰写微软研究报告,邮编:98052

   Phone: +1 425 936 2268
   EMail: richdr@microsoft.com
        
   Phone: +1 425 936 2268
   EMail: richdr@microsoft.com
        
11. Full Copyright Statement
11. 完整版权声明

Copyright (C) The Internet Society (2001). All Rights Reserved.

版权所有(C)互联网协会(2001年)。版权所有。

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。

Acknowledgement

确认

Funding for the RFC Editor function is currently provided by the Internet Society.

RFC编辑功能的资金目前由互联网协会提供。