Network Working Group M. Crawford Request for Comments: 2894 Fermilab Category: Standards Track August 2000
Network Working Group M. Crawford Request for Comments: 2894 Fermilab Category: Standards Track August 2000
Router Renumbering for IPv6
IPv6路由器重新编号
Status of this Memo
本备忘录的状况
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2000). All Rights Reserved.
版权所有(C)互联网协会(2000年)。版权所有。
IESG Note:
IESG注:
This document defines mechanisms for informing a set of routers of renumbering operations they are to perform, including a mode of operation in environments in which the exact number of routers is unknown. Reliably informing all routers when the actual number of routers is unknown is a difficult problem. Implementation and operational experience will be needed to fully understand the applicabilty and scalability aspects of the mechanisms defined in this document when the number of routers is unknown.
本文档定义了通知一组路由器要执行的重新编号操作的机制,包括在路由器确切数量未知的环境中的操作模式。当路由器的实际数量未知时,可靠地通知所有路由器是一个困难的问题。当路由器数量未知时,需要有实施和操作经验来充分理解本文件中定义的机制的适用性和可伸缩性方面。
Abstract
摘要
IPv6 Neighbor Discovery and Address Autoconfiguration conveniently make initial assignments of address prefixes to hosts. Aside from the problem of connection survival across a renumbering event, these two mechanisms also simplify the reconfiguration of hosts when the set of valid prefixes changes.
IPv6邻居发现和地址自动配置方便地将地址前缀初始分配给主机。除了重新编号事件中的连接生存问题外,这两种机制还简化了有效前缀集更改时主机的重新配置。
This document defines a mechanism called Router Renumbering ("RR") which allows address prefixes on routers to be configured and reconfigured almost as easily as the combination of Neighbor Discovery and Address Autoconfiguration works for hosts. It provides a means for a network manager to make updates to the prefixes used by and advertised by IPv6 routers throughout a site.
本文档定义了一种称为路由器重新编号(“RR”)的机制,该机制允许配置和重新配置路由器上的地址前缀,几乎与主机上邻居发现和地址自动配置的组合一样简单。它为网络管理器提供了一种方法,使其能够更新整个站点中IPv6路由器使用的前缀和播发的前缀。
Table of Contents
目录
1. Functional Overview ....................................... 2 2. Definitions ............................................... 4 2.1. Terminology ......................................... 4 2.2. Requirements ........................................ 5 3. Message Format ............................................ 5 3.1. Router Renumbering Header ........................... 7 3.2. Message Body -- Command Message ..................... 9 3.2.1. Prefix Control Operation ...................... 9 3.2.1.1. Match-Prefix Part ....................... 9 3.2.1.2. Use-Prefix Part ......................... 11 3.3. Message Body -- Result Message ...................... 12 4. Message Processing ........................................ 14 4.1. Header Check ........................................ 14 4.2. Bounds Check ........................................ 15 4.3. Execution ........................................... 16 4.4. Summary of Effects .................................. 17 5. Sequence Number Reset ..................................... 18 6. IANA Considerations ....................................... 19 7. Security Considerations ................................... 19 7.1. Security Policy and Association Database Entries .... 19 8. Implementation and Usage Advice for Reliability ........... 20 8.1. Outline and Definitions ............................. 21 8.2. Computations ........................................ 23 8.3. Additional Assurance Methods ........................ 24 9. Usage Examples ............................................ 25 9.1. Maintaining Global-Scope Prefixes ................... 25 9.2. Renumbering a Subnet ................................ 26 10. Acknowledgments .......................................... 27 11. References ............................................... 28 12. Author's Address ......................................... 29 Appendix -- Derivation of Reliability Estimates ............... 30 Full Copyright Statement ...................................... 32
1. Functional Overview ....................................... 2 2. Definitions ............................................... 4 2.1. Terminology ......................................... 4 2.2. Requirements ........................................ 5 3. Message Format ............................................ 5 3.1. Router Renumbering Header ........................... 7 3.2. Message Body -- Command Message ..................... 9 3.2.1. Prefix Control Operation ...................... 9 3.2.1.1. Match-Prefix Part ....................... 9 3.2.1.2. Use-Prefix Part ......................... 11 3.3. Message Body -- Result Message ...................... 12 4. Message Processing ........................................ 14 4.1. Header Check ........................................ 14 4.2. Bounds Check ........................................ 15 4.3. Execution ........................................... 16 4.4. Summary of Effects .................................. 17 5. Sequence Number Reset ..................................... 18 6. IANA Considerations ....................................... 19 7. Security Considerations ................................... 19 7.1. Security Policy and Association Database Entries .... 19 8. Implementation and Usage Advice for Reliability ........... 20 8.1. Outline and Definitions ............................. 21 8.2. Computations ........................................ 23 8.3. Additional Assurance Methods ........................ 24 9. Usage Examples ............................................ 25 9.1. Maintaining Global-Scope Prefixes ................... 25 9.2. Renumbering a Subnet ................................ 26 10. Acknowledgments .......................................... 27 11. References ............................................... 28 12. Author's Address ......................................... 29 Appendix -- Derivation of Reliability Estimates ............... 30 Full Copyright Statement ...................................... 32
Router Renumbering Command packets contain a sequence of Prefix Control Operations (PCOs). Each PCO specifies an operation, a Match-Prefix, and zero or more Use-Prefixes. A router processes each PCO in sequence, checking each of its interfaces for an address or prefix which matches the Match-Prefix. For every interface on which a match is found, the operation is applied. The operation is one of ADD, CHANGE, or SET-GLOBAL to instruct the router to respectively add the Use-Prefixes to the set of configured prefixes, remove the prefix which matched the Match-Prefix and replace it with the Use-Prefixes,
路由器重新编号命令包包含一系列前缀控制操作(PCO)。每个PCO指定一个操作、一个匹配前缀和零个或多个使用前缀。路由器按顺序处理每个PCO,检查其每个接口是否有与匹配前缀匹配的地址或前缀。对于找到匹配项的每个接口,将应用该操作。该操作是ADD、CHANGE或SET-GLOBAL操作之一,用于指示路由器将使用前缀分别添加到已配置的前缀集中,移除与匹配前缀匹配的前缀,并将其替换为使用前缀,
or replace all global-scope prefixes with the Use-Prefixes. If the set of Use-Prefixes in the PCO is empty, the ADD operation does nothing and the other two reduce to deletions.
或者用Use前缀替换所有全局作用域前缀。如果PCO中的Use前缀集为空,则ADD操作不执行任何操作,而其他两个操作将减少为删除。
Additional information for each Use-Prefix is included in the Prefix Control Operation: the valid and preferred lifetimes to be included in Router Advertisement Prefix Information Options [ND], and either the L and A flags for the same option, or an indication that they are to be copied from the prefix that matched the Match-Prefix.
每个使用前缀的附加信息包含在前缀控制操作中:路由器广告前缀信息选项[ND]中包含的有效和首选生存期,以及同一选项的L和A标志,或从匹配前缀的前缀复制它们的指示。
It is possible to instruct routers to create new prefixes by combining the Use-Prefixes in a PCO with some portion of the existing prefix which matched the Match-Prefix. This simplifies certain operations which are expected to be among the most common. For every Use-Prefix, the PCO specifies a number of bits which should be copied from the existing address or prefix which matched the Match-Prefix and appended to the use-prefix prior to configuring the new prefix on the interface. The copied bits are zero or more bits from the positions immediately after the length of the Use- Prefix. If subnetting information is in the same portion of the old and new prefixes, this synthesis allows a single Prefix Control Operation to define a new global prefix on every router in a site, while preserving the subnetting structure.
通过将PCO中的使用前缀与匹配前缀匹配的现有前缀的某些部分组合,可以指示路由器创建新前缀。这简化了一些最常见的操作。对于每个使用前缀,PCO指定一个位数,在接口上配置新前缀之前,这些位数应从与匹配前缀匹配并附加到使用前缀的现有地址或前缀中复制。复制的位是在Use-Prefix长度之后的位置的零位或更多位。如果子网信息位于新旧前缀的相同部分,则此合成允许单个前缀控制操作在站点中的每个路由器上定义新的全局前缀,同时保留子网结构。
Because of the power of the Router Renumbering mechanism, each RR message includes a sequence number to guard against replays, and is required to be authenticated and integrity-checked. Each single Prefix Control Operation is idempotent and so could be retransmitted for improved reliability, as long as the sequence number is current, without concern about multiple processing. However, non-idempotent combinations of PCOs can easily be constructed and messages containing such combinations could not be safely reprocessed. Therefore, all routers are required to guard against processing an RR message more than once. To allow reliable verification that Commands have been received and processed by routers, a mechanism for duplicate-command notification to the management station is included.
由于路由器重新编号机制的强大功能,每个RR消息都包含一个序列号以防止重播,并且需要进行身份验证和完整性检查。每个单前缀控制操作都是幂等的,因此可以重新传输以提高可靠性,只要序列号是当前的,而不需要考虑多个处理。然而,PCO的非幂等组合可以很容易地构造,并且包含这种组合的消息不能被安全地重新处理。因此,所有路由器都需要防止多次处理RR消息。为了可靠地验证路由器已接收和处理命令,包括向管理站发送重复命令通知的机制。
Possibly a network manager will want to perform more renumbering, or exercise more detailed control, than can be expressed in a single Router Renumbering packet on the available media. The RR mechanism is most powerful when RR packets are multicast, so IP fragmentation is undesirable. For these reasons, each RR packet contains a "Segment Number". All RR packets which have a Sequence Number greater than or equal to the highest value seen are valid and must be processed. However, a router must keep track of the Segment Numbers of RR messages already processed and avoid reprocessing a message
网络管理员可能希望执行比可用介质上的单个路由器重新编号数据包更详细的重新编号或执行更详细的控制。RR机制在RR数据包为多播时最为强大,因此不希望出现IP碎片。由于这些原因,每个RR数据包都包含一个“段号”。序列号大于或等于所看到的最高值的所有RR数据包都是有效的,必须进行处理。但是,路由器必须跟踪已经处理的RR消息的段号,并避免重新处理消息
whose Sequence Number and Segment Number match a previously processed message. (This list of processed segment numbers is reset when a new highest Sequence Number is seen.)
其序列号和段号与先前处理的消息匹配。(当看到新的最高序列号时,将重置此已处理段号列表。)
The Segment Number does not impose an ordering on packet processing. If a specific sequence of operations is desired, it may be achieved by ordering the PCOs in a single RR Command message or through the Sequence Number field.
段号不会对数据包处理施加排序。如果需要特定的操作序列,可以通过在单个RR命令消息中或通过序列号字段对PCO进行排序来实现。
There is a "Test" flag which indicates that all routers should simulate processing of the RR message and not perform any actual reconfiguration. A separate "Report" flag instructs routers to send a Router Renumbering Result message back to the source of the RR Command message indicating the actual or simulated result of the operations in the RR Command message.
有一个“测试”标志,指示所有路由器应模拟RR消息的处理,而不执行任何实际的重新配置。单独的“报告”标志指示路由器将路由器重新编号结果消息发送回RR命令消息源,指示RR命令消息中操作的实际或模拟结果。
The effect or simulated effect of an RR Command message may also be reported to network management by means outside the scope of this document, regardless of the value of the "Report" flag.
RR命令消息的效果或模拟效果也可通过本文件范围以外的方式报告给网络管理部门,无论“报告”标志的值如何。
Address This term always refers to a 128-bit IPv6 address [AARCH]. When referring to bits within an address, they are numbered from 0 to 127, with bit 0 being the first bit of the Format Prefix.
地址此术语始终指128位IPv6地址[AARCH]。当引用地址中的位时,它们从0到127进行编号,位0是格式前缀的第一位。
Prefix A prefix can be understood as an address plus a length, the latter being an integer in the range 0 to 128 indicating how many leading bits are significant. When referring to bits within a prefix, they are numbered in the same way as the bits of an address. For example, the significant bits of a prefix whose length is L are the bits numbered 0 through L-1, inclusive.
前缀前缀可以理解为地址加长度,长度是0到128范围内的整数,表示有多少前导位是有效的。当引用前缀中的位时,它们的编号方式与地址中的位相同。例如,长度为L的前缀的有效位是编号为0到L-1的位(包括)。
Match An address A "matches" a prefix P whose length is L if the first L bits of A are identical with the first L bits of P. (Every address matches a prefix of length 0.) A prefix P1 with length L1 matches a prefix P2 of length L2 if L1 >= L2 and the first L2 bits of P1 and P2 are identical.
匹配地址A“匹配”长度为L的前缀P(如果A的前L位与P的前L位相同)(每个地址匹配长度为0的前缀)。如果L1>=L2,则长度为L1的前缀P1与长度为L2的前缀P2匹配,并且P1和P2的前L2位相同。
Prefix Control Operation This is the smallest individual unit of Router Renumbering operation. A Router Renumbering Command packet includes zero or more of these, each comprising one matching condition, called a Match-Prefix Part, and zero or more substitution specifications, called Use-Prefix Parts.
前缀控制操作这是路由器重新编号操作的最小单个单元。路由器重新编号命令包包括其中的零个或多个,每个包括一个匹配条件(称为匹配前缀部分)和零个或多个替换规范(称为使用前缀部分)。
Match-Prefix This is a Prefix against which a router compares the addresses and prefixes configured on its interfaces.
匹配前缀这是路由器用来比较其接口上配置的地址和前缀的前缀。
Use-Prefix The prefix and associated information which is to be configured on a router interface when certain conditions are met.
使用前缀当满足某些条件时,将在路由器接口上配置的前缀和相关信息。
Matched Prefix The existing prefix or address which matched a Match-Prefix.
匹配前缀与匹配前缀匹配的现有前缀或地址。
New Prefix A prefix constructed from a Use-Prefix, possibly including some of the Matched Prefix.
新前缀从使用前缀构造的前缀,可能包括一些匹配的前缀。
Recorded Sequence Number The highest sequence number found in a valid message MUST be recorded in non-volatile storage.
记录的序列号在有效消息中找到的最高序列号必须记录在非易失性存储器中。
Note that "matches" is a transitive relation but not symmetric. If two prefixes match each other, they are identical.
注意,“matches”是一个传递关系,但不是对称的。如果两个前缀相互匹配,则它们是相同的。
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [KWORD].
本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[KWORD]中所述进行解释。
There are two types of Router Renumbering messages: Commands, which are sent to routers, and Results, which are sent by routers. A third message type is used to synchronize a reset of the Recorded Sequence Number with the cancellation of cryptographic keys. The three types of messages are distinguished the ICMPv6 "Code" field and differ in the contents of the "Message Body" field.
有两种类型的路由器重新编号消息:发送到路由器的命令和由路由器发送的结果。第三种消息类型用于将记录序列号的重置与加密密钥的取消同步。这三种类型的消息通过ICMPv6“代码”字段进行区分,“消息正文”字段的内容有所不同。
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / IPv6 header, extension headers / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / ICMPv6 & RR Header (16 octets) / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / RR Message Body / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / IPv6 header, extension headers / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / ICMPv6 & RR Header (16 octets) / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / RR Message Body / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Router Renumbering Message Format
路由器重新编号消息格式
Router Renumbering messages are carried in ICMPv6 packets with Type = 138. The RR message comprises an RR Header, containing the ICMPv6 header, the sequence and segment numbers and other information, and the RR Message Body, of variable length.
路由器重新编号消息在类型为138的ICMPv6数据包中传输。RR消息包括一个RR报头(包含ICMPv6报头)、序列号和段号以及其他信息,以及长度可变的RR消息正文。
All fields marked "reserved" or "res" MUST be set to zero on generation of an RR message, and ignored on receipt.
所有标记为“reserved”或“res”的字段必须在生成RR消息时设置为零,并在接收时忽略。
All implementations which generate Router Renumbering Command messages MUST support sending them to the All Routers multicast address with link and site scopes, and to unicast addresses of link-local and site-local formats. All routers MUST be capable of receiving RR Commands sent to those multicast addresses and to any of their link local and site local unicast addresses. Implementations SHOULD support sending and receiving RR messages addressed to other unicast addresses. An implementation which is both a sender and receiver of RR commands SHOULD support use of the All Routers multicast address with node scope.
生成路由器重新编号命令消息的所有实现必须支持将它们发送到具有链路和站点范围的所有路由器多播地址,以及链路本地和站点本地格式的单播地址。所有路由器必须能够接收发送到这些多播地址及其任何链路本地和站点本地单播地址的RR命令。实现应该支持向其他单播地址发送和接收RR消息。作为RR命令的发送方和接收方的实现应该支持使用节点范围内的所有路由器多播地址。
Data authentication and message integrity MUST be provided for all Router Renumbering Command messages by appropriate IP Security [IPSEC] means. The integrity assurance must include the IPv6 destination address and the RR Header and Message Body. See section 7, "Security Considerations".
必须通过适当的IP安全[IPSEC]方式为所有路由器重新编号命令消息提供数据认证和消息完整性。完整性保证必须包括IPv6目标地址、RR头和消息体。见第7节“安全考虑”。
The use of authentication for Router Renumbering Result messages is RECOMMENDED.
建议对路由器重新编号结果消息使用身份验证。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SequenceNumber | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SegmentNumber | Flags | MaxDelay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SequenceNumber | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SegmentNumber | Flags | MaxDelay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fields:
领域:
Type 138 (decimal), the ICMPv6 type value assigned to Router Renumbering
类型138(十进制),分配给路由器重新编号的ICMPv6类型值
Code 0 for a Router Renumbering Command 1 for a Router Renumbering Result 255 for a Sequence Number Reset. The Sequence Number Reset is described in section 5.
路由器重新编号命令1的代码0,用于路由器重新编号结果255,用于序列号重置。第5节描述了序列号重置。
Checksum The ICMPv6 checksum, as specified in [ICMPV6]. The checksum covers the IPv6 pseudo-header and all fields of the RR message from the Type field onward.
校验和[ICMPv6]中指定的ICMPv6校验和。校验和覆盖IPv6伪报头和从类型字段开始的RR消息的所有字段。
SequenceNumber An unsigned 32-bit sequence number. The sequence number MUST be non-decreasing between Sequence Number Resets.
SequenceNumber无符号32位序列号。序列号在序列号重置之间必须是非递减的。
SegmentNumber An unsigned 8-bit field which enumerates different valid RR messages having the same SequenceNumber. No ordering among RR messages is imposed by the SegmentNumber.
SegmentNumber一个无符号8位字段,用于枚举具有相同SequenceNumber的不同有效RR消息。分段编号不强制RR消息之间的排序。
Flags A combination of one-bit flags. Five are defined and three bits are reserved.
标志一位标志的组合。定义了5位,保留了3位。
+-+-+-+-+-+-+-+-+ |T|R|A|S|P| res | +-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+ |T|R|A|S|P| res | +-+-+-+-+-+-+-+-+
The flags T, R, A and S have defined meanings in an RR Command message. In a Result message they MUST be copied from the corresponding Command. The P flag is meaningful only in a Result message and MUST be zero in a transmitted Command and ignored in a received Command.
标志T、R、A和S在RR命令消息中具有定义的含义。在结果消息中,它们必须从相应的命令中复制。P标志仅在结果消息中有意义,在发送的命令中必须为零,在接收的命令中必须忽略。
T Test command -- 0 indicates that the router configuration is to be modified; 1 indicates a "Test" message: processing is to be simulated and no configuration changes are to be made.
T Test命令--0表示要修改路由器配置;1表示“测试”消息:模拟处理,不进行配置更改。
R Result requested -- 0 indicates that a Result message MUST NOT be sent (but other forms of logging are not precluded); 1 indicates that the router MUST send a Result message upon completion of processing the Command message;
R Result requested -- 0 indicates that a Result message MUST NOT be sent (but other forms of logging are not precluded); 1 indicates that the router MUST send a Result message upon completion of processing the Command message;
A All interfaces -- 0 indicates that the Command MUST NOT be applied to interfaces which are administratively shut down; 1 indicates that the Command MUST be applied to all interfaces regardless of administrative shutdown status.
A All interfaces--0表示该命令不能应用于以管理方式关闭的接口;1表示无论管理关闭状态如何,命令必须应用于所有接口。
S Site-specific -- This flag MUST be ignored unless the router treats interfaces as belonging to different "sites". 0 indicates that the Command MUST be applied to interfaces regardless of which site they belong to; 1 indicates that the Command MUST be applied only to interfaces which belong to the same site as the interface to which the Command is addressed. If the destination address is appropriate for interfaces belonging to more than one site, then the Command MUST be applied only to interfaces belonging to the same site as the interface on which the Command was received.
S站点特定——除非路由器将接口视为属于不同的“站点”,否则必须忽略此标志。0表示无论接口属于哪个站点,该命令都必须应用于接口;1表示该命令必须仅应用于与该命令所寻址的接口属于同一站点的接口。如果目标地址适用于属于多个站点的接口,则命令必须仅应用于与接收命令的接口属于同一站点的接口。
P Processed previously -- 0 indicates that the Result message contains the complete report of processing the Command;
P Processed previous--0表示结果消息包含处理命令的完整报告;
1 indicates that the Command message was previously processed (and is not a Test) and the responding router is not processing it again. This Result message MAY have an empty body.
1表示命令消息之前已处理(且不是测试),且响应路由器未再次处理该消息。此结果消息的正文可能为空。
MaxDelay An unsigned 16-bit field specifying the maximum time, in milliseconds, by which a router MUST delay sending any reply to this Command. Implementations MAY generate the random delay between 0 and MaxDelay milliseconds with a finer granularity than 1ms.
MaxDelay一个无符号的16位字段,指定路由器必须延迟发送对此命令的任何回复的最长时间(以毫秒为单位)。实现可能会生成0到MaxDelay毫秒之间的随机延迟,其粒度比1ms更细。
The body of an RR Command message is a sequence of zero or more Prefix Control Operations, each of variable length. The end of the sequence MAY be inferred from the IPv6 length and the lengths of extension headers which precede the ICMPv6 header.
RR命令消息的主体是一系列零个或多个前缀控制操作,每个操作的长度可变。序列的结尾可以从IPv6长度和ICMPv6头之前的扩展头的长度推断出来。
A Prefix Control Operation has one Match-Prefix Part of 24 octets, followed by zero or more Use-Prefix Parts of 32 octets each.
前缀控制操作有一个由24个八位字节组成的匹配前缀部分,然后是零个或多个由32个八位字节组成的使用前缀部分。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode | OpLength | Ordinal | MatchLen | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MinLen | MaxLen | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- MatchPrefix -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | OpCode | OpLength | Ordinal | MatchLen | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MinLen | MaxLen | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- MatchPrefix -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fields:
领域:
OpCode An unsigned 8-bit field specifying the operation to be performed when the associated MatchPrefix matches an interface's prefix or address. Values are:
操作码一个无符号8位字段,指定当关联的MatchPrefix与接口的前缀或地址匹配时要执行的操作。价值观是:
1 the ADD operation
1添加操作
2 the CHANGE operation
2变更操作
3 the SET-GLOBAL operation
3集合全局运算
OpLength The total length of this Prefix Control Operation, in units of 8 octets. A valid OpLength will always be of the form 4N+3, with N equal to the number of UsePrefix parts (possibly zero).
OpLength此前缀控制操作的总长度,以8个八位字节为单位。有效的OpLength将始终采用4N+3的形式,其中N等于UsePrefix部分的数量(可能为零)。
Ordinal An 8-bit field which MUST have a different value in each Prefix Control Operation contained in a given RR Command message. The value is otherwise unconstrained.
序号在给定RR命令消息中包含的每个前缀控制操作中必须具有不同值的8位字段。该值在其他方面不受约束。
MatchLen An 8-bit unsigned integer between 0 and 128 inclusive specifying the number of initial bits of MatchPrefix which are significant in matching.
MatchLen一个介于0和128(含0和128)之间的8位无符号整数,指定MatchPrefix中在匹配中有效的初始位数。
MinLen An 8-bit unsigned integer specifying the minimum length which any configured prefix must have in order to be eligible for testing against the MatchPrefix.
MinLen一个8位无符号整数,指定任何配置的前缀必须具有的最小长度,以便有资格针对MatchPrefix进行测试。
MaxLen An 8-bit unsigned integer specifying the maximum length which any configured prefix may have in order to be eligible for testing against the MatchPrefix.
MaxLen一个8位无符号整数,指定任何配置的前缀可能具有的最大长度,以便有资格针对MatchPrefix进行测试。
MatchPrefix The 128-bit prefix to be compared with each interface's prefix or address.
MatchPrefix要与每个接口的前缀或地址进行比较的128位前缀。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | UseLen | KeepLen | FlagMask | RAFlags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Valid Lifetime | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Preferred Lifetime | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V|P| reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- UsePrefix -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | UseLen | KeepLen | FlagMask | RAFlags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Valid Lifetime | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Preferred Lifetime | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V|P| reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- UsePrefix -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fields:
领域:
UseLen An 8-bit unsigned integer less than or equal to 128 specifying the number of initial bits of UsePrefix to use in creating a new prefix for an interface.
UseLen小于或等于128的8位无符号整数,指定UsePrefix的初始位数,用于为接口创建新前缀。
KeepLen An 8-bit unsigned integer less than or equal to (128- UseLen) specifying the number of bits of the prefix or address which matched the associated Match-Prefix which should be retained in the new prefix. The retained bits are those at positions UseLen through (UseLen+KeepLen-1) in the matched address or prefix, and they are copied to the same positions in the New Prefix.
KeepLen是一个小于或等于(128-UseLen)的8位无符号整数,指定与新前缀中应保留的关联匹配前缀匹配的前缀或地址的位数。保留位是在匹配地址或前缀中的位置UseLen到(UseLen+KeepLen-1)处的位,它们被复制到新前缀中的相同位置。
FlagMask An 8-bit mask. A 1 bit in any position means that the corresponding flag bit in a Router Advertisement (RA) Prefix Information Option for the New Prefix should be set from the RAFlags field in this Use-Prefix Part. A 0 bit in the FlagMask means that the RA flag bit for the New Prefix should be copied from the corresponding RA flag bit of the Matched Prefix.
FlagMask是一个8位掩码。任何位置的1位意味着新前缀的路由器广告(RA)前缀信息选项中的相应标志位应从该使用前缀部分的RAFlags字段中设置。FlagMask中的0位表示新前缀的RA标志位应从匹配前缀的相应RA标志位复制。
RAFlags An 8 bit field which, under control of the FlagMask field, may be used to initialize the flags in Router Advertisement Prefix Information Options [ND] which advertise the New Prefix. Note that only two flags have
RAFlags一个8位字段,在FlagMask字段的控制下,该字段可用于初始化路由器广告前缀信息选项[ND]中的标志,该选项广告新前缀。请注意,只有两个标志具有
defined meanings to date: the L (on-link) and A (autonomous configuration) flags. These flags occupy the two leftmost bit positions in the RAFlags field, corresponding to their position in the Prefix Information Option.
迄今定义的含义:L(链路上)和A(自主配置)标志。这些标志占据RAFlags字段中最左边的两个位位置,对应于它们在前缀信息选项中的位置。
Valid Lifetime A 32-bit unsigned integer which is the number of seconds for which the New Prefix will be valid [ND, SAA].
有效生存期32位无符号整数,是新前缀有效的秒数[ND,SAA]。
Preferred Lifetime A 32-bit unsigned integer which is the number of seconds for which the New Prefix will be preferred [ND, SAA].
首选生存期32位无符号整数,是新前缀首选的秒数[ND,SAA]。
V A 1-bit flag indicating that the valid lifetime of the New Prefix MUST be effectively decremented in real time.
V一个1位标志,指示新前缀的有效生存期必须实时有效递减。
P A 1-bit flag indicating that the preferred lifetime of the New Prefix MUST be effectively decremented in real time.
P 1位标志,指示新前缀的首选生存期必须实时有效递减。
UsePrefix The 128-bit Use-prefix which either becomes or is used in forming (if KeepLen is nonzero) the New Prefix. It MUST NOT have the form of a multicast or link-local address [AARCH].
UsePrefix 128位Use前缀,它成为或用于形成新前缀(如果KeepLen为非零)。它不能具有多播或链路本地地址[AARCH]的形式。
The body of an RR Result message is a sequence of zero or more Match Reports of 24 octets. An RR Command message with the "R" flag set will elicit an RR Result message containing one Match Report for each Prefix Control Operation, for each different prefix it matches on each interface. The Match Report has the following format.
RR结果消息的主体是24个八位字节的零或多个匹配报告序列。设置了“R”标志的RR命令消息将引发一条RR结果消息,该消息包含每个前缀控制操作的一个匹配报告,用于它在每个接口上匹配的每个不同前缀。匹配报告具有以下格式。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved |B|F| Ordinal | MatchedLen | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | InterfaceIndex | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- MatchedPrefix -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved |B|F| Ordinal | MatchedLen | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | InterfaceIndex | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- MatchedPrefix -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fields:
领域:
B A one-bit flag which, when set, indicates that one or more fields in the associated PCO were out of bounds. The bounds check is described in section 4.2.
B一个一位标志,设置时表示相关PCO中的一个或多个字段超出范围。第4.2节描述了边界检查。
F A one-bit flag which, when set, indicates that one or more Use-Prefix parts from the associated PCO were not honored by the router because of attempted formation of a forbidden prefix format, such as a multicast or loopback address.
F一个一位标志,当设置该标志时,表示由于试图形成禁止的前缀格式(如多播或环回地址),路由器未遵守相关PCO的一个或多个使用前缀部分。
Ordinal Copied from the Prefix Control Operation whose MatchPrefix matched the MatchedPrefix on the interface indicated by InterfaceIndex.
从前缀控制操作复制的序号,其MatchPrefix与InterfaceIndex指示的接口上的MatchedPrefix匹配。
MatchedLen The length of the Matched Prefix.
MatchedLen匹配前缀的长度。
InterfaceIndex The router's numeric designation of the interface on which the MatchedPrefix was configured. This MUST be the same as the value of ipv6IfIndex which designates that index in the SNMP IPv6 MIB General Group [IPV6MIB].
InterfaceIndex路由器配置MatchedPrefix的接口的数字名称。这必须与IPV6iIndex的值相同,IPV6iIndex在SNMP IPv6 MIB常规组[IPV6MIB]中指定该索引。
It is possible for a Result message to be larger than the Command message which elicited it. Such a Result message may have to be fragmented for transmission. If so, it SHOULD be fragmented to the IPv6 minimum required MTU [IPV6].
结果消息可能大于引发它的命令消息。这样的结果消息可能必须分段传输。如果是这样,则应将其分段为IPv6所需的最低MTU[IPv6]。
Processing of received Router Renumbering Result messages is entirely implementation-defined. Implementation of Command message processing may vary in detail from the procedure set forth below, so long as the result is not affected.
接收到的路由器重新编号结果消息的处理完全由实现定义。只要结果不受影响,命令消息处理的实现可能与下面所述的过程在细节上有所不同。
Processing of received Router Renumbering Command messages consists of three conceptual parts: header check, bounds check, and execution.
接收到的路由器重新编号命令消息的处理包括三个概念部分:头检查、边界检查和执行。
The ICMPv6 checksum and type are presumed to have been checked before a Router Renumbering module receives a Command to process. In an implementation environment where this may not be the case, those checks MUST be made at this point in the processing.
假定在路由器重新编号模块接收到要处理的命令之前,已检查了ICMPv6校验和和类型。在可能不是这种情况的实现环境中,这些检查必须在处理过程中的此时进行。
If the ICMPv6 length derived from the IPv6 length is less than 16 octets, the message MUST be discarded and SHOULD be logged to network management.
如果从IPv6长度派生的ICMPv6长度小于16个八位字节,则必须丢弃该消息并将其记录到网络管理。
If the ICMPv6 Code field indicates a Result message, a router which is not a source of RR Command messages MUST discard the message and SHOULD NOT log it to network management.
如果ICMPv6代码字段指示结果消息,则不是RR命令消息源的路由器必须丢弃该消息,并且不应将其记录到网络管理。
If the IPv6 destination address is neither an All Routers multicast address [AARCH] nor one of the receiving router's unicast addresses, the message MUST be discarded and SHOULD be logged to network management.
如果IPv6目标地址既不是全路由器多播地址[AARCH],也不是接收路由器的单播地址之一,则必须丢弃该消息并将其记录到网络管理。
Next, the SequenceNumber is compared to the Recorded Sequence Number. (If no RR messages have been received and accepted since system initialization, the Recorded Sequence Number is zero.) This comparison is done with the two numbers considered as unsigned integers, not as DNS-style serial numbers. If the SequenceNumber is less than the Recorded Sequence Number, the message MUST be discarded and SHOULD be logged to network management.
接下来,将SequenceNumber与记录的序列号进行比较。(如果自系统初始化以来未接收和接受RR消息,则记录的序列号为零。)此比较是将两个数字视为无符号整数,而不是DNS样式的序列号。如果SequenceNumber小于记录的序列号,则必须丢弃该消息,并将其记录到网络管理。
Finally, if the SequenceNumber in the message is greater than the Recorded Sequence Number or the T flag is set, skip to the bounds check. Otherwise the SegmentNumber MUST now be checked. If a correctly authenticated message with the same SequenceNumber and SegmentNumber has not already been processed, skip to the bounds check. Otherwise, this Command is a duplicate and not a Test Command. If the R flag is not set, the duplicate message MUST be discarded and SHOULD NOT be logged to network management. If R is set, an RR Result message with the P flag set MUST be scheduled for transmission to the source address of the Command after a random time
最后,如果消息中的SequenceNumber大于记录的序列号或设置了T标志,则跳到边界检查。否则,现在必须检查段号。如果尚未处理具有相同SequenceNumber和SegmentNumber的经过正确身份验证的消息,请跳到边界检查。否则,此命令是重复的,而不是测试命令。如果未设置R标志,则必须丢弃重复消息,并且不应将其记录到网络管理。如果设置了R,则必须计划在随机时间后将设置了P标志的RR结果消息传输到命令的源地址
uniformly distributed between 0 and MaxDelay milliseconds. The body of that Result message MUST either be empty or be a saved copy of the Result message body generated by processing of the previous message with the same SequenceNumber and SegmentNumber. After scheduling the Result message, the Command MUST be discarded without further processing.
均匀分布在0和MaxDelay毫秒之间。该结果消息的正文必须为空,或者是通过处理具有相同SequenceNumber和SegmentNumber的前一条消息而生成的结果消息正文的保存副本。调度结果消息后,必须放弃该命令,而无需进一步处理。
If the SequenceNumber is greater than the Recorded Sequence Number, then the list of processed SegmentNumbers and the set of saved Result messages, if any, MUST be cleared and the Recorded Sequence Number MUST be updated to the value used in the current message, regardless of subsequent processing errors.
如果SequenceNumber大于记录的序列号,则必须清除处理的段号列表和保存的结果消息集(如果有),并且记录的序列号必须更新为当前消息中使用的值,而不考虑后续的处理错误。
Next, if the ICMPv6 Code field indicates a Sequence Number Reset, skip to section 5.
接下来,如果ICMPv6代码字段指示序列号重置,请跳到第5节。
At this point, if T is set in the RR header and R is not set, the message MAY be discarded without further processing.
此时,如果在RR报头中设置了T而未设置R,则消息可能会被丢弃,而无需进一步处理。
If the R flag is set, begin constructing an RR Result message. The RR header of the Result message is completely determined at this time except for the Checksum.
如果设置了R标志,则开始构造RR结果消息。结果消息的RR头此时完全确定,除了校验和。
The values of the following fields of a PCO MUST be checked to ensure that they are within the appropriate bounds.
必须检查PCO的以下字段的值,以确保它们在适当的范围内。
OpCode must be a defined value.
操作码必须是定义的值。
OpLength must be of the form 4N+3 and consistent the the length of the Command packet and the PCO's offset within the packet.
OpLength的格式必须为4N+3,并且命令包的长度与包内PCO的偏移量一致。
MatchLen must be between 0 and 128 inclusive
MatchLen必须介于0和128之间(含0和128)
UseLen, KeepLen in each Use-Prefix Part must be between 0 and 128 inclusive, as must the sum of the two.
每个使用前缀部分中的UseLen和KeepLen必须介于0和128之间(包括0和128),两者之和也必须介于0和128之间。
If any of these fields are out of range in a PCO, the entire PCO MUST NOT be performed on any interface. If the R flag is set in the RR header then add to the RR Result message a Match Report with the B flag set, the F flag clear, the Ordinal copied from the PCO, and all other fields zero. This Match Report MUST be included only once, not once per interface.
如果PCO中的任何字段超出范围,则不得在任何接口上执行整个PCO。如果在RR头中设置了R标志,则在RR结果消息中添加设置了B标志的匹配报告、清除F标志、从PCO复制的序号以及所有其他字段为零。此匹配报告只能包含一次,而不是每个接口包含一次。
Note that MinLen and MaxLen need not be explicitly bounds checked, even though certain combinations of values will make any matches impossible.
注意,MinLen和MaxLen不需要显式地进行边界检查,即使某些值的组合将使任何匹配都不可能。
For each applicable router interface, as determined by the A and S flags, the Prefix Control Operations in an RR Command message must be carried out in order of appearance. The relative order of PCO processing among different interfaces is not specified.
对于由A和S标志确定的每个适用路由器接口,必须按照出现顺序执行RR命令消息中的前缀控制操作。未指定不同接口之间PCO处理的相对顺序。
If the T flag is set, create a copy of each interface's configuration on which to operate, because the results of processing a PCO may affect the processing of subsequent PCOs. Note that if all operations are performed on one interface before proceeding to another interface, only one interface-configuration copy will be required at a time.
如果设置了T标志,则创建要操作的每个接口配置的副本,因为处理PCO的结果可能会影响后续PCO的处理。请注意,如果在进入另一个接口之前在一个接口上执行所有操作,则一次只需要一个接口配置副本。
For each interface and for each Prefix Control Operation, each prefix configured on that interface with a length between the MinLen and MaxLen values in the PCO is tested to determine whether it matches (as defined in section 2.1) the MatchPrefix of the PCO. The configured prefixes are tested in an arbitrary order. Any new prefix configured on an interface by the effect of a given PCO MUST NOT be tested against that PCO, but MUST be tested against all subsequent PCOs in the same RR Command message.
对于每个接口和每个前缀控制操作,测试该接口上配置的每个前缀,其长度在PCO中的MinLen和MaxLen值之间,以确定其是否匹配(如第2.1节所定义)PCO的MatchPrefix。配置的前缀按任意顺序进行测试。不得针对给定PCO在接口上配置的任何新前缀进行测试,但必须针对同一RR命令消息中的所有后续PCO进行测试。
Under a certain condition the addresses on an interface are also tested to see whether any of them matches the MatchPrefix. If and only if a configured prefix "P" does have a length between MinLen and MaxLen inclusive, does not match the MatchPrefix "M", but M does match P (this can happen only if M is longer than P), then those addresses on that interface which match P MUST be tested to determine whether any of them matches M. If any such address does match M, process the PCO as if P matched M, but when forming New Prefixes, if KeepLen is non-zero, bits are copied from the address. This special case allows a PCO to be easily targeted to a single specific interface in a network.
在特定条件下,还将测试接口上的地址,以查看其中是否有与MatchPrefix匹配的地址。如果且仅当配置的前缀“P”的长度介于MinLen和MaxLen之间(包括MinLen和MaxLen),与匹配前缀“M”不匹配,但M与P匹配(仅当M大于P时才会发生这种情况),则必须测试该接口上与P匹配的地址,以确定其中是否有匹配的地址。如果有任何此类地址与M匹配,将PCO当作P匹配M进行处理,但在形成新前缀时,如果KeepLen为非零,则从地址复制位。这种特殊情况允许PCO轻松定位到网络中的单个特定接口。
If P does not match M, processing is finished for this combination of PCO, interface and prefix. Continue with another prefix on the same interface if there are any more prefixes which have not been tested against this PCO and were not created by the action of this PCO. If no such prefixes remain on the current interface, continue processing with the next PCO on the same interface, or with another interface.
如果P与M不匹配,则完成对PCO、接口和前缀组合的处理。如果有更多的前缀尚未针对此PCO进行测试,并且不是通过此PCO的操作创建的,则在同一接口上继续使用另一个前缀。如果当前接口上没有保留此类前缀,请继续使用同一接口上的下一个PCO或另一个接口进行处理。
If P does match M, either directly or because a configured address which matches P also matches M, then P is the Matched Prefix. Perform the following steps.
如果P直接匹配M,或者因为与P匹配的配置地址也与M匹配,那么P是匹配的前缀。执行以下步骤。
If the Command has the R flag set, add a Match Report to the Result message being constructed.
如果命令设置了R标志,则向正在构造的结果消息添加匹配报告。
If the OpCode is CHANGE, mark P for deletion from the current interface.
如果操作码已更改,请将P标记为从当前界面删除。
If the OpCode is SET-GLOBAL, mark all global-scope prefixes on the current interface for deletion.
如果操作码设置为全局,则将当前接口上的所有全局作用域前缀标记为删除。
If there are any Use-Prefix parts in the current PCO, form the New Prefixes. Discard any New Prefix which has a forbidden format, and if the R flag is set in the command, set the F flag in the Match Report for this PCO and interface. Forbidden prefix formats include, at a minimum, multicast, unspecified and loopback addresses. [AARCH] Any implementation MAY forbid, or allow the network manager to forbid other formats as well.
如果当前PCO中存在任何使用前缀部分,请形成新前缀。丢弃任何具有禁止格式的新前缀,如果在命令中设置了R标志,则在该PCO和接口的匹配报告中设置F标志。禁止的前缀格式至少包括多播、未指定和环回地址。[AARCH]任何实现都可能禁止,或者允许网络管理器也禁止其他格式。
For each New Prefix which is already configured on the current interface, unmark that prefix for deletion and update the lifetimes and RA flags. For each New Prefix which is not already configured, add the prefix and, if appropriate, configure an address with that prefix.
对于当前接口上已配置的每个新前缀,取消该前缀的删除标记,并更新生存期和RA标志。对于每个尚未配置的新前缀,添加前缀,如果合适,使用该前缀配置地址。
Delete any prefixes which are still marked for deletion, together with any addresses which match those prefixes but do not match any prefix which is not marked for deletion.
删除仍标记为删除的任何前缀,以及与这些前缀匹配但与未标记为删除的任何前缀不匹配的任何地址。
After processing all the Prefix Control Operations on all the interfaces, an implementation MUST record the SegmentNumber of the packet in a list associated with the SequenceNumber.
在处理所有接口上的所有前缀控制操作后,实现必须将数据包的段号记录在与SequenceNumber关联的列表中。
If the Command has the R flag set, compute the Checksum and schedule the Result message for transmission after a random time interval uniformly distributed between 0 and MaxDelay milliseconds. This interval SHOULD begin at the conclusion of processing, not the beginning. A copy of the Result message MAY be saved to be retransmitted in response to a duplicate Command.
如果命令设置了R标志,则计算校验和,并在0到MaxDelay毫秒之间均匀分布的随机时间间隔后安排结果消息的传输。此间隔应在处理结束时开始,而不是开始。可以保存结果消息的副本以响应重复命令而重新传输。
The only Neighbor Discovery [ND] parameters which can be affected by Router Renumbering are the following.
唯一受路由器重新编号影响的邻居发现[ND]参数如下。
A router's addresses and advertised prefixes, including the prefix lengths.
路由器的地址和公布的前缀,包括前缀长度。
The flag bits (L and A, and any which may be defined in the future) and the valid and preferred lifetimes which appear in a Router Advertisement Prefix Information Option.
在路由器广告前缀信息选项中出现的标志位(L和A,以及将来可能定义的任何标志位)以及有效和首选寿命。
That unnamed property of the lifetimes which specifies whether they are fixed values or decrementing in real time.
生命周期的未命名属性,指定它们是固定值还是实时递减。
Other internal router information, such as the time until the next unsolicited Router Advertisement or MIB variables MAY be affected as needed.
其他内部路由器信息,例如直到下一个未经请求的路由器广告或MIB变量的时间,可能会根据需要受到影响。
All configuration changes resulting from Router Renumbering SHOULD be saved to non-volatile storage where this facility exists. The problem of properly restoring prefix lifetimes from non-volatile storage exists independently of Router Renumbering and deserves careful attention, but is outside the scope of this document.
因路由器重新编号而导致的所有配置更改都应保存到存在此设施的非易失性存储器中。从非易失性存储器正确恢复前缀生存期的问题独立于路由器重新编号而存在,值得仔细注意,但不在本文档的范围内。
It may prove necessary in practice to reset a router's Recorded Sequence Number. This is a safe operation only when all cryptographic keys previously used to authenticate RR Commands have expired or been revoked. For this reason, the Sequence Number Reset message is defined to accomplish both functions.
在实践中,可能需要重置路由器记录的序列号。只有在以前用于验证RR命令的所有加密密钥都已过期或被吊销时,这才是安全的操作。因此,序列号重置消息被定义为完成这两个功能。
When a Sequence Number Reset (SNR) has been authenticated and has passed the header check, the router MUST invalidate all keys which have been used to authenticate previous RR Commands, including the key which authenticated the SNR itself. Then it MUST discard any saved RR Result messages, clear the list of recorded SegmentNumbers and reset the Recorded Sequence Number to zero.
当序列号重置(SNR)已通过身份验证并通过报头检查时,路由器必须使用于验证先前RR命令的所有密钥无效,包括对SNR本身进行身份验证的密钥。然后必须丢弃任何保存的RR结果消息,清除记录的段号列表,并将记录的序列号重置为零。
If the router has no other, unused authentication keys already available for Router Renumbering use it SHOULD establish one or more new valid keys. The details of this process will depend on whether manual keying or a key management protocol is used. In either case, if no keys are available, no new Commands can be processed.
如果路由器没有其他未使用的身份验证密钥可供路由器重新编号使用,则应建立一个或多个新的有效密钥。此过程的细节将取决于是使用手动密钥还是密钥管理协议。在这两种情况下,如果没有可用的键,则无法处理新命令。
A SNR message SHOULD contain no PCOs, since they will be ignored. If and only if the R flag is set in the SNR message, a router MUST respond with a Result Message containing no Match Reports. The header and transmission of the Result are as described in section 3.
SNR消息不应包含PCO,因为它们将被忽略。当且仅当SNR消息中设置了R标志时,路由器必须以不包含匹配报告的结果消息进行响应。标题和结果传输如第3节所述。
The invalidation of authentication keys caused by a valid SNR message will cause retransmitted copies of that message to be ignored.
有效SNR消息导致的身份验证密钥无效将导致忽略该消息的重新传输副本。
Following the policies outlined in [IANACON], new values of the Code field in the Router Renumbering Header (section 3.1) and the OpCode field of the Match-Prefix Part (section 3.2.1.1) are to be allocated by IETF consensus only.
按照[IANACON]中概述的策略,路由器重新编号头(第3.1节)中的代码字段和匹配前缀部分(第3.2.1.1节)的操作码字段的新值仅由IETF协商一致分配。
The Router Renumbering mechanism proposed here is very powerful and prevention of spoofing it is important. Replay of old messages must, in general, be prevented (even though a narrow class of messages exists for which replay would be harmless). What constitutes a sufficiently strong authentication algorithm may change from time to time, but algorithms should be chosen which are strong against current key-recovery and forgery attacks.
这里提出的路由器重新编号机制非常强大,防止欺骗非常重要。一般来说,必须防止重播旧消息(即使存在一小类重播无害的消息)。构成足够强的身份验证算法的内容可能会不时发生变化,但应选择能够抵抗当前密钥恢复和伪造攻击的算法。
Authentication keys must be as well protected as any other access method that allows reconfiguration of a site's routers. Distribution of keys must not expose them or permit alteration, and key validity must be limited in terms of time and number of messages authenticated.
身份验证密钥必须与允许重新配置站点路由器的任何其他访问方法一样受到保护。密钥的分发不得公开密钥或允许更改密钥,并且密钥的有效性必须在经过身份验证的消息的时间和数量方面受到限制。
Note that although a reset of the Recorded Sequence Number requires the cancellation of previously-used authentication keys, introduction of new keys and expiration of old keys does not require resetting the Recorded Sequence Number.
注意,尽管重置记录的序列号需要取消以前使用的认证密钥,但引入新密钥和旧密钥过期不需要重置记录的序列号。
The Security Policy Database (SPD) [IPSEC] of a router implementing this specification MUST cause incoming Router Renumbering Command packets to either be discarded or have IPsec applied. (The determination of "discard" or "apply" MAY be based on the source address.) The resulting Security Association Database (SAD) entries MUST ensure authentication and integrity of the destination address and the RR Header and Message Body, and the body length implied by the IPv6 length and intervening extension headers. These requirements are met by the use of the Authentication Header [AH] in transport or tunnel mode, or the Encapsulating Security Payload [ESP] in tunnel mode with non-NULL authentication. The mandatory-to-implement IPsec authentication algorithms (other than NULL) seem strong enough for Router Renumbering at the time of this writing.
实现此规范的路由器的安全策略数据库(SPD)[IPSEC]必须导致传入的路由器重新编号命令数据包被丢弃或应用IPSEC。(确定“丢弃”或“应用”可能基于源地址。)生成的安全关联数据库(SAD)条目必须确保目标地址、RR标头和消息正文的身份验证和完整性,以及IPv6长度和中间扩展标头所暗示的正文长度。通过在传输或隧道模式下使用身份验证头[AH],或在隧道模式下使用非空身份验证封装安全有效负载[ESP],可以满足这些要求。在撰写本文时,实现IPsec身份验证算法(而不是NULL)的强制要求似乎足够强,可以对路由器重新编号。
Note that for the SPD to distinguish Router Renumbering from other ICMP packets requires the use of the ICMP Type field as a selector. This is consistent with, although not mentioned by, the Security Architecture specification [IPSEC].
请注意,为了使SPD区分路由器重新编号与其他ICMP数据包,需要使用ICMP类型字段作为选择器。这与安全体系结构规范[IPSEC]一致,尽管未提及。
At the time of this writing, there exists no multicast key management protocol for IPsec and none is on the horizon. Manually configured Security Associations will therefore be common. The occurrence of "from traffic" in the table below would therefore more realistically be a wildcard or a fixed range. Use of a small set of shared keys per management station suffices, so long as key distribution and storage are sufficiently safeguarded.
在撰写本文时,还没有针对IPsec的多播密钥管理协议,也没有一个即将推出。因此,手动配置的安全关联将很常见。因此,下表中出现的“来自流量”更现实地是通配符或固定范围。只要密钥分发和存储得到充分保护,每个管理站使用一小组共享密钥就足够了。
A sufficient set of SPD entries for incoming traffic could select
可以为传入流量选择一组足够的SPD条目
Field SPD Entry SAD Entry ------- --------- --------- Source wildcard from traffic Destination wildcard from SPD Transport ICMPv6 from SPD ICMP Type Rtr. Renum. from SPD Action Apply IPsec SA Spec AH/Transport Mode
Field SPD Entry SAD Entry ------- --------- --------- Source wildcard from traffic Destination wildcard from SPD Transport ICMPv6 from SPD ICMP Type Rtr. Renum. from SPD Action Apply IPsec SA Spec AH/Transport Mode
or there might be an entry for each management station and/or for each of the router's unicast addresses and for each of the defined All-Routers multicast addresses, and a final wildcard entry to discard all other incoming RR messages.
或者,每个管理站和/或每个路由器的单播地址和每个已定义的所有路由器的多播地址都可能有一个条目,以及丢弃所有其他传入RR消息的最终通配符条目。
The SPD and SAD are conceptually per-interface databases. This fact may be exploited to permit shared management of a border router, for example, or to discard all Router Renumbering traffic arriving over tunnels.
SPD和SAD在概念上是每个接口的数据库。例如,可以利用这一事实来允许对边界路由器进行共享管理,或者丢弃通过隧道到达的所有路由器重新编号流量。
Users of Router Renumbering will want to be sure that every non-trivial message reaches every intended router. Well-considered exploitation of Router Renumbering's retransmission and response-directing features should make that goal achievable with high confidence even in a minimally reliable network.
路由器重新编号的用户将希望确保每一条非平凡的消息都到达每一个预期的路由器。充分利用路由器重新编号的重传和响应引导功能,即使在最不可靠的网络中,也应该能够以高信心实现这一目标。
In one set of cases, probably the majority, the network management station will know the complete set of routers under its control. Commands can be retransmitted, with the "R" (Reply-requested) flag set in the RR header, until Results have been collected from all routers. If unicast Security Associations (or the means for creating them) are available, the management station may switch from multicast to unicast transmission when the number of routers still unheard-from is suitably small.
在一组情况下,可能是大多数情况下,网络管理站将知道其控制下的整套路由器。命令可以重新传输,在RR头中设置“R”(请求回复)标志,直到从所有路由器收集结果。如果单播安全关联(或创建它们的方法)可用,则当仍然听不到的路由器的数量适当小时,管理站可以从多播切换到单播传输。
To maintain a list of managed routers, the management station can employ any of several automatic methods which may be more convenient than manual entry in a large network. Multicast RR "Test" commands can be sent periodically and the results archived, or the management station can use SNMP to "peek" into a link-state routing protocol such as OSPF [OSPFMIB]. (In the case of OSPF, roughly one router per area would need to be examined to build a complete list of routers.)
为了维护被管理路由器的列表,管理站可以采用几种自动方法中的任何一种,这些方法可能比在大型网络中手动输入更方便。可以定期发送多播RR“测试”命令并存档结果,或者管理站可以使用SNMP“窥视”链路状态路由协议,如OSPF[OSPFMIB]。(在OSPF的情况下,每个区域大约需要检查一个路由器,以建立完整的路由器列表。)
In a large dynamic network where the set of managed routers is not known but reliable execution is desired, a scalable method for achieving confidence in delivery is described here. Nothing in this section affects the format or content of Router Renumbering messages, nor their processing by routers.
在一个大型动态网络中,管理的路由器集未知,但需要可靠执行,这里描述了一种用于实现交付信心的可伸缩方法。本节中的任何内容都不会影响路由器重新编号消息的格式或内容,也不会影响路由器对这些消息的处理。
A management station implementing these reliability mechanisms MUST alert an operator who attempts to commence a set of Router Renumbering Commands when retransmission of a previous set is not yet completed, but SHOULD allow the operator to override the warning.
实施这些可靠性机制的管理站必须在前一组路由器重新编号命令的重新传输尚未完成时提醒试图开始一组路由器重新编号命令的操作员,但应允许操作员覆盖警告。
The set of routers being managed with Router Renumbering is considered as a set of populations, each population having a characteristic probability of successful round-trip delivery of a Command/Result pair. The goal is to estimate a lower bound, P, on the round-trip probability for the whole set. With this estimate and other data about the responses to retransmissions of the Command, a confidence level can be computed for hypothesis that all routers have been heard from.
通过路由器重新编号管理的路由器集被视为一组总体,每个总体具有成功往返传递命令/结果对的特征概率。目标是估计整个集合的往返概率的下限P。利用该估计值和关于命令重传响应的其他数据,可以计算所有路由器都已收到消息的假设的置信水平。
If the true probability of successful round-trip communication with a managed router were a constant, p, for all managed routers then an estimate P of p could be derived from either of these statistics:
如果对于所有受管路由器,与受管路由器成功往返通信的真实概率为常数p,则可从以下任一统计数据中得出p的估计值p:
The expected ratio of the number of routers first heard from after transmission (N + 1) to the number first heard from after N is (1 - p).
传输后第一次听到的路由器数量(N+1)与N后第一次听到的路由器数量的预期比率为(1-p)。
When N different routers have been heard from after M transmissions of a Command, the expected total number of Result messages received is pNM. If R is the number of Results actually received, then P = R/MN.
当在M次命令传输之后从N个不同的路由器听到消息时,接收到的结果消息的预期总数为pNM。如果R是实际收到的结果数,则P=R/MN。
The two methods are not equivalent. The first suffers numerical problems when the number of routers still to be heard from gets small, so the P = R/MN estimate should be used.
这两种方法并不等同。第一个问题是当仍然要听到的路由器数量变少时出现数值问题,因此应该使用P=R/MN估计。
Since the round-trip probability is not expected to be uniform in the real world, and the less-reliable units are more important to a lower-bound estimate but more likely to be missed in sampling, the sample from which P is computed is biased toward the less-reliable routers. After the Nth transmission interval, N > 2, neglect all routers heard from in intervals 1 through F from the reliability estimate, where F is the greatest integer less than one-half of N. For example, after five intervals, only routers first heard from in the third through fifth intervals will be counted.
由于往返概率在现实世界中并不一致,且较不可靠的单元对于下限估计更为重要,但在采样中更可能丢失,因此计算P的样本偏向于较不可靠的路由器。在第N个传输间隔N>2之后,忽略从可靠性估计中在间隔1到F中听到的所有路由器,其中F是小于N的一半的最大整数。例如,在五个间隔之后,只有在第三到第五个间隔中第一次听到的路由器将被计数。
A management station implementing the methods of this section should allow the user to specify the following parameters, and default them to the indicated values.
实现本节方法的管理站应允许用户指定以下参数,并将其默认为指示值。
Ct The target delivery confidence, default 0.999.
Ct目标交付置信度,默认值为0.999。
Pp A presumptive, pessimistic initial estimate of the lower bound of the round-trip probability, P, to prevent early termination. (See below.) Default 0.75.
Pp为防止提前终止,对往返概率下界P的一个假定的、悲观的初始估计。(见下文)默认值为0.75。
Ti The initial time between Command retransmissions. Default 4 seconds. MaxDelay milliseconds (see section 3.1) must be added to the retransmission timer. Knowledge of the routers' processing time for RR Commands may influence the setting of Ti. Ti+MaxDelay is also the minimum time the management station must wait for Results after each transmission before computing a new confidence level. The phrase "end of the Nth interval" means a time Ti+MaxDelay after the Nth transmission of a Command.
Ti命令重新传输之间的初始时间。默认值为4秒。必须将MaxDelay毫秒(见第3.1节)添加到重传计时器中。了解路由器对RR命令的处理时间可能会影响Ti的设置。Ti+MaxDelay也是管理站在计算新的置信水平之前,在每次传输后必须等待结果的最短时间。短语“第n个间隔的结束”是指命令第n次传输后的时间Ti+MaxDelay。
Tu The upper bound on the period between Command retransmissions. Default 512 seconds.
Tu命令重新传输之间的时间上限。默认512秒。
The following variables, some a function of the retransmission counter N, are used in the next section.
下一节将使用以下变量,其中一些变量是重传计数器N的函数。
T(N) The time between Command transmissions N and N+1 is V*T(N) + MaxDelay, where V is random and roughly uniform in the range [0.75, 1.0]. T(1) = Ti and for N > 1, T(N) = min(2*T(N-1), Tu).
T(N)命令传输N和N+1之间的时间为V*T(N)+MaxDelay,其中V是随机的,在[0.75,1.0]范围内大致均匀。T(1)=Ti,对于N>1,T(N)=min(2*T(N-1),Tu)。
M(N) The cumulative number of distinct routers from which replies have been received to any of the first N transmissions of the Command.
M(N)已从中接收到对命令的前N次传输中的任何一次的应答的不同路由器的累积数量。
F=F(N) FLOOR((N-1)/2). All routers from which responses were received in the first F intervals will be effectively omitted from the estimate of the round-trip probability computed at the Nth interval.
F=F(N)层((N-1)/2)。在第一个F间隔中接收到响应的所有路由器将从在第n个间隔计算的往返概率的估计中有效地忽略。
R(N,F) The total number of RR Result messages, including duplicates, received by the end of the Nth interval from those routers which were NOT heard from in any of the first F intervals.
R(N,F)在第N个间隔结束时从那些在任何前F个间隔中没有听到的路由器接收的RR结果消息(包括重复消息)的总数。
p(N) The estimate of the worst-case round-trip delivery probability.
p(N)最坏情况下往返交付概率的估计。
c(N) The computed confidence level.
c(N)计算出的置信水平。
An asterisk (*) is used to denote multiplication and a caret (^) denotes exponentiation.
星号(*)表示乘法,插入符号(^)表示幂运算。
If the difference in reliability between the "good" and "bad" parts of a managed network is very great, early c(N) values will be too high. Retransmissions should continue for at least Nmin = log(1- Ct)/log(1-Pp) intervals, regardless of the current confidence estimate. (In fact, there's no need to compute p(N) and c(N) until after Nmin intervals.)
如果受管网络的“好”部分和“坏”部分之间的可靠性差异很大,则早期的c(N)值将过高。无论当前的置信度估计值如何,重新传输应至少持续Nmin=log(1-Ct)/log(1-Pp)的时间间隔。(事实上,直到Nmin间隔之后,才需要计算p(N)和c(N)
Letting A = N*(M(N)-M(F))/R(N,F) for brevity, the estimate of the round-trip delivery probability is p(N) = 1-Q, where Q is that root of the equation
Letting A = N*(M(N)-M(F))/R(N,F) for brevity, the estimate of the round-trip delivery probability is p(N) = 1-Q, where Q is that root of the equation
Q^N - A*Q + (A-1) = 0
Q^N - A*Q + (A-1) = 0
which lies between 0 and 1. (Q = 1 is always a root. If N is odd there is also a negative root.) This may be solved numerically, for example with Newton's method (see any standard text, for example [ANM]). The first-order approximation
它位于0和1之间。(Q=1始终是一个根。如果N为奇数,则还有一个负根。)这可以通过数值求解,例如使用牛顿法(参见任何标准文本,例如[ANM])。一阶近似
Q1 = 1 - 1/A
Q1 = 1 - 1/A
may be used as a starting point for iteration. But Q1 should NOT be used as an approximate solution as it always underestimates Q, and hence overestimates p(N), which would cause an overestimate of the confidence level.
可以用作迭代的起点。但Q1不应用作近似解,因为它总是低估Q,从而高估p(N),这将导致高估置信水平。
If necessary, the spurious root Q = 1 can be divided out, leaving
如有必要,可以划分出伪根Q=1,留下
Q^(N-1) + Q^(N-2) + ... + Q - (A-1) = 0
Q^(N-1) + Q^(N-2) + ... + Q - (A-1) = 0
as the equation to solve. Depending on the numerical method used, this could be desirable as it's just possible (but very unlikely) that A=N and so Q=1 was a double root of the earlier equation.
作为要求解的方程。根据使用的数值方法,这可能是可取的,因为A=N和Q=1可能是早期方程的双根(但不太可能)。
After N > 2 (or N >= Nmin) intervals have been completed, Compute the lower-bound reliability estimate
完成N>2(或N>=Nmin)间隔后,计算下限可靠性估计
p(N) = R(N,F)/((N-F)*(M(N) - M(F))).
p(N)=R(N,F)/((N-F)*(M(N)-M(F)))。
Compute the confidence estimate
计算置信度估计
c(N) = (1 - (1-p(N))^N)^(M(N) - M(F) + 1).
c(N) = (1 - (1-p(N))^N)^(M(N) - M(F) + 1).
which is the Bayesian probability that M(N) is the number of routers present given the number of responses which were collected, as opposed to M(N)+1 or any greater number. It is assumed that the a priori probability of there being K routers was no greater than that of K-1 routers, for all K > M(N).
这是贝叶斯概率,M(N)是给定收集的响应数量的路由器数量,而不是M(N)+1或任何更大的数量。对于所有K>M(N),假设存在K个路由器的先验概率不大于K-1个路由器的先验概率。
When c(N) >= Ct and N >= Nmin, retransmissions of the Command may cease. Otherwise another transmission should be scheduled at a time V*T(N) + MaxDelay after the previous (Nth) transmission, or V*T(N) after the conclusion of processing responses to the Nth transmission, whichever is later.
当c(N)>=Ct和N>=Nmin时,命令的重传可能停止。否则,应在上一(N)次传输后的时间V*T(N)+MaxDelay,或在对第N次传输的处理响应结束后的时间V*T(N)调度另一次传输,以较晚者为准。
One corner case needs consideration. Divide-by-zero may occur when computing p. This can happen only when no new routers have been heard from in the last N-F intervals. Generally, the confidence estimate c(N) will be close to unity by then, but in a pathological case such as a large number of routers with reliable communication and a much smaller number with very poor communication, the confidence estimate may still be less than Ct when p's denominator vanishes. The implementation may continue, and should continue if the minimum number of transmissions given in the previous paragraph have not yet been made. If new routers are heard from, p(N) will again be non-singular.
一个极端的情况需要考虑。计算p时,可能会出现被零除的情况。只有在最近的N-F间隔内没有收到新路由器的消息时,才会发生这种情况。一般来说,置信度估计c(N)到那时将接近于1,但是在病理情况下,例如大量具有可靠通信的路由器和数量少得多的具有非常差通信的路由器,当p的分母消失时,置信度估计可能仍然小于Ct。实施可以继续,如果尚未进行上一段中给出的最小传输次数,则应继续实施。如果听到新路由器的消息,p(N)将再次是非单数的。
Of course no limited retransmission scheme can fully address the possibility of long-term problems, such as a partitioned network. The network manager is expected to be aware of such conditions when they exist.
当然,任何有限的重传方案都不能完全解决长期问题的可能性,例如分区网络。当这些情况存在时,网络管理器应该知道这些情况。
As a final means to detect routers which become reachable after missing renumbering commands during an extended network split, a management station MAY adopt the following strategy. When performing each new operation, increment the SequenceNumber by more than one.
作为检测在扩展网络拆分期间丢失重新编号命令后可到达的路由器的最终手段,管理站可采用以下策略。执行每个新操作时,将SequenceNumber增加一个以上。
After the operation is believed complete, periodically send some "no-op" RR Command with the R (Result Requested) flag set and a SequenceNumber one less than the highest used. Any responses to such a command can only come from router that missed the last operation. An example of a suitable "no-op" command would be an ADD operation with MatchLen = 0, MinLen = 0, MaxLen = 128, and no Use-Prefix Parts.
在操作被认为完成后,定期发送一些“no op”RR命令,设置R(请求的结果)标志,并且SequenceNumber 1小于使用的最高值。对此类命令的任何响应只能来自错过上次操作的路由器。合适的“no op”命令的一个示例是带有MatchLen=0、MinLen=0、MaxLen=128和无使用前缀部分的ADD操作。
If old authentication keys are saved by the management station, even the reappearance of routers which missed a Sequence Number Reset can be detected by the transmission of no-op commands with the invalid key and a SequenceNumber higher than any used before the key was invalidated. Since there is no other way for a management station to distinguish a router's failure to receive an entire sequence of repeated SNR messages from the loss of that router's single SNR Result Message, this is the RECOMMENDED way to test for universal reception of a SNR Command.
如果管理站保存了旧的身份验证密钥,则即使丢失了序列号重置的路由器再次出现,也可以通过传输带有无效密钥和序列号高于密钥失效前使用的任何序列号的no op命令来检测。由于管理站没有其他方法来区分路由器未能接收整个序列的重复SNR消息与丢失该路由器的单个SNR结果消息,因此建议采用这种方法来测试SNR命令的普遍接收情况。
This section sketches some sample applications of Router Renumbering. Extension headers, including required IPsec headers, between the IPv6 header and the ICMPv6 header are not shown in the examples.
本节概述了路由器重新编号的一些示例应用程序。示例中未显示IPv6标头和ICMPv6标头之间的扩展标头,包括所需的IPsec标头。
A simple use of the Router Renumbering mechanism, and one which is expected to to be common, is the maintenance of a set of global prefixes with a subnet structure that matches that of the site's site-local address assignments. In the steady state this would serve to keep the Preferred and Valid lifetimes set to their desired values. During a renumbering transition, similar Command messages can add new prefixes and/or delete old ones. An outline of a suitable Command message follows. Fields not listed are presumed set to suitable values. This Command assumes all router interfaces to be maintained already have site-local [AARCH] addresses.
路由器重新编号机制的一个简单用途是维护一组全局前缀,其子网结构与站点本地地址分配的子网结构相匹配。在稳定状态下,这将有助于将首选和有效寿命设置为其期望值。在重新编号转换期间,类似的命令消息可以添加新前缀和/或删除旧前缀。下面是合适的命令消息的概要。未列出的字段假定设置为合适的值。此命令假定要维护的所有路由器接口都已具有站点本地[AARCH]地址。
IPv6 Header Next Header = 58 (ICMPv6) Source Address = (Management Station) Destination Address = FF05::2 (All Routers, site-local scope)
IPv6 Header Next Header = 58 (ICMPv6) Source Address = (Management Station) Destination Address = FF05::2 (All Routers, site-local scope)
ICMPv6/RR Header Type = 138 (Router Renumbering), Code = 0 (Command) Flags = 60 hex (R, A)
ICMPv6/RR头类型=138(路由器重新编号),代码=0(命令)标志=60十六进制(R,A)
First (and only) PCO:
第一(也是唯一)PCO:
Match-Prefix Part OpCode = 3 (SET-GLOBAL) OpLength = 4 N + 3 (assuming N global prefixes) Ordinal = 0 (arbitrary) MatchLen = 10 MatchPrefix = FEC0::0
Match-Prefix Part OpCode = 3 (SET-GLOBAL) OpLength = 4 N + 3 (assuming N global prefixes) Ordinal = 0 (arbitrary) MatchLen = 10 MatchPrefix = FEC0::0
First Use-Prefix Part UseLen = 48 (Length of TLA ID + RES + NLA ID [AARCH]) KeepLen = 16 (Length of SLA (subnet) ID [AARCH]) FlagMask, RAFlags, Lifetimes, V & P flags -- as desired UsePrefix = First global /48 prefix
First Use-Prefix Part UseLen = 48 (Length of TLA ID + RES + NLA ID [AARCH]) KeepLen = 16 (Length of SLA (subnet) ID [AARCH]) FlagMask, RAFlags, Lifetimes, V & P flags -- as desired UsePrefix = First global /48 prefix
. . .
. . .
Nth Use-Prefix Part UseLen = 48 KeepLen = 16 FlagMask, RAFlags, Lifetimes, V & P flags -- as desired UsePrefix = Last global /48 prefix
n使用前缀部分UseLen=48 KeepLen=16标志掩码、RAFlags、寿命、V&P标志——根据需要UsePrefix=Last global/48前缀
This will cause N global prefixes to be set (or updated) on each applicable interface. On each interface, the SLA ID (subnet) field of each global prefix will be copied from the existing site-local prefix.
这将导致在每个适用接口上设置(或更新)N个全局前缀。在每个接口上,将从现有站点本地前缀复制每个全局前缀的SLA ID(子网)字段。
A subnet can be gracefully renumbered by setting the valid and preferred timers on the old prefix to a short value and having them run down, while concurrently adding adding the new prefix. Later, the expired prefix is deleted. The first step is described by the following RR Command.
通过将旧前缀上的有效和首选计时器设置为一个短值并使其运行,同时添加新前缀,子网可以优雅地重新编号。之后,将删除过期的前缀。第一步由以下RR命令描述。
IPv6 Header Next Header = 58 (ICMPv6) Source Address = (Management Station) Destination Address = FF05::2 (All Routers, site-local scope)
IPv6 Header Next Header = 58 (ICMPv6) Source Address = (Management Station) Destination Address = FF05::2 (All Routers, site-local scope)
ICMPv6/RR Header Type = 138 (Router Renumbering), Code = 0 (Command) Flags = 60 hex (R, A)
ICMPv6/RR头类型=138(路由器重新编号),代码=0(命令)标志=60十六进制(R,A)
First (and only) PCO:
第一(也是唯一)PCO:
Match-Prefix Part OpCode = 2 (CHANGE) OpLength = 11 (reflects 2 Use-Prefix Parts) Ordinal = 0 (arbitrary) MatchLen = 64 MatchPrefix = Old /64 prefix
匹配前缀部分操作码=2(更改)OpLength=11(反映2个使用前缀部分)序号=0(任意)MatchLen=64 MatchPrefix=Old/64 Prefix
First Use-Prefix Part UseLen = 0 KeepLen = 64 (this retains the old prefix value intact) FlagMask = 0, RAFlags = 0 Valid Lifetime = 28800 seconds (8 hours) Preferred Lifetime = 7200 seconds (2 hours) V flag = 1, P flag = 1 UsePrefix = 0::0
First Use-Prefix Part UseLen = 0 KeepLen = 64 (this retains the old prefix value intact) FlagMask = 0, RAFlags = 0 Valid Lifetime = 28800 seconds (8 hours) Preferred Lifetime = 7200 seconds (2 hours) V flag = 1, P flag = 1 UsePrefix = 0::0
Second Use-Prefix Part UseLen = 64 KeepLen = 0 FlagMask = 0, RAFlags = 0 Lifetimes, V & P flags -- as desired UsePrefix = New /64 prefix
第二个使用前缀部分UseLen=64 KeepLen=0 FlagMask=0,RAFlags=0生存期,V&P标志——根据需要UsePrefix=New/64前缀
The second step, deletion of the old prefix, can be done by an RR Command with the same Match-Prefix Part (except for an OpLength reduced from 11 to 3) and no Use-Prefix Parts. Any temptation to set KeepLen = 64 in the second Use-Prefix Part above should be resisted, as it would instruct the router to sidestep address configuration.
第二步,删除旧前缀,可以使用具有相同匹配前缀部分(OpLength从11减少到3除外)且不使用前缀部分的RR命令来完成。应该抵制在上面的第二个使用前缀部分中设置KeepLen=64的任何诱惑,因为它会指示路由器避开地址配置。
This protocol was designed by Matt Crawford based on an idea of Robert Hinden and Geert Jan de Groot. Many members of the IPNG Working Group contributed useful comments, in particular members of the DIGITAL UNIX IPv6 team. Bill Sommerfeld provided helpful IPsec expertise. Relentless browbeating by various IESG members may have improved the final quality of this specification.
该协议由Matt Crawford根据Robert Hinden和Geert Jan de Groot的想法设计。IPNG工作组的许多成员,特别是DIGITAL UNIX IPv6团队的成员提供了有用的意见。Bill Sommerfeld提供了有用的IPsec专业知识。IESG各成员的无情恐吓可能提高了本规范的最终质量。
[AARCH] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 2373, July 1998.
[AARCH]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 23731998年7月。
[AH] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.
[AH]Kent,S.和R.Atkinson,“IP认证头”,RFC 2402,1998年11月。
[ANM] Isaacson, E. and H. B. Keller, "Analysis of Numerical Methods", John Wiley & Sons, New York, 1966.
[ANM]Isaacson,E.和H.B.Keller,“数值方法分析”,约翰·威利父子公司,纽约,1966年。
[ESP] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[ESP]Kent,S.和R.Atkinson,“IP封装安全有效负载(ESP)”,RFC 2406,1998年11月。
[IANACON] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
[IANACON]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 2434,1998年10月。
[ICMPV6] Conta, A. and S. Deering, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)", RFC 2463, December 1998.
[ICMPV6]Conta,A.和S.Deering,“互联网协议版本6(IPv6)的互联网控制消息协议(ICMPV6)”,RFC 24632998年12月。
[IPSEC] Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
[IPSEC]Kent,S.和R.Atkinson,“互联网协议的安全架构”,RFC 2401,1998年11月。
[IPV6] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[IPV6]Deering,S.和R.Hinden,“互联网协议,第6版(IPV6)规范”,RFC 2460,1998年12月。
[IPV6MIB] Haskin, D. and S. Onishi, "Management Information Base for IP Version 6: Textual Conventions and General Group", RFC 2466, December 1998.
[IPV6MIB]Haskin,D.和S.Onishi,“IP版本6的管理信息库:文本约定和一般组”,RFC 2466,1998年12月。
[KWORD] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[KWORD]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。
[ND] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998.
[ND]Narten,T.,Nordmark,E.和W.Simpson,“IP版本6(IPv6)的邻居发现”,RFC24611998年12月。
[OSPFMIB] Baker, F. and R. Coltun, "OSPF Version 2 Management Information Base", RFC 1850, November 1995.
[OSPFMIB]Baker,F.和R.Coltun,“OSPF版本2管理信息库”,RFC1850,1995年11月。
Matt Crawford Fermilab MS 368 PO Box 500 Batavia, IL 60510 USA
Matt Crawford Fermilab MS 368美国伊利诺伊州巴达维亚500号邮政信箱60510
Phone: +1 630 840 3461 EMail: crawdad@fnal.gov
Phone: +1 630 840 3461 EMail: crawdad@fnal.gov
Appendix -- Derivation of Reliability Estimates
附录——可靠性估计的推导
If a population S of size k is repeatedly sampled with an efficiency p, the expected number of members of S first discovered on the nth sampling is
如果大小为k的总体S以效率p重复采样,则在第n次采样时首次发现的S的预期成员数为
m = [1 - (1-p)^n] * k
m = [1 - (1-p)^n] * k
The expected total number of members of S found in samples, including duplicates, is
在样本(包括重复样本)中找到的成员的预期总数为
r = n * p * k
r = n * p * k
Taking the ratio of m to r cancels the unknown factor k and yields an equation
取m与r的比值,可抵消未知因子k,并得出一个方程式
[1 - (1-p)^n] / p = nm/r
[1 - (1-p)^n] / p = nm/r
which may be solved for p, which is then an estimator of the sampling efficiency. (The statistical properties of the estimator will not be examined here.) Under the substitution p = 1-q, this becomes the first equation of Section 8.2.
这可以用p来解,p是抽样效率的估计量。(此处不检查估计器的统计特性。)在替换p=1-q下,这成为第8.2节的第一个方程。
With the estimator p in hand, and a count m of members of S discovered after n samplings, we can compute the a posteriori probability that the true size of S is m+j, for j >= 0. Let Hj denote the hypothesis that the true size of S is m+j, and let R denote the result that m members have been found in n samplings. Then
有了估计量p和n次抽样后发现的S成员数m,我们可以计算S的真实大小为m+j的后验概率,j>=0。设Hj表示S的真实大小为m+j的假设,R表示在n个样本中发现m个成员的结果。然后
P{R | Hj} = [(m+j)!/m!j!] * [1-(1-p)^n]^m * [(1-p)^n]^j
P{R | Hj} = [(m+j)!/m!j!] * [1-(1-p)^n]^m * [(1-p)^n]^j
We are interested in P{H0 | R}, but to find it we need to assign a priori values to P{Hj}. Let the size of S be exponentially distributed
我们对P{H0 | R}感兴趣,但要找到它,我们需要给P{Hj}赋值。让S的大小呈指数分布
P{Hj} / P{H0} = h^(-j)
P{Hj} / P{H0} = h^(-j)
for arbitrary h in (0, 1). The value of h will be eliminated from the result.
对于(0,1)中的任意h。h值将从结果中消除。
The Bayesian method yields
贝叶斯方法产生
P{Hj | R} / P{H0 | R} = [(m+j)!/m!j!] * [h*(1-p)^n]^j
P{Hj | R} / P{H0 | R} = [(m+j)!/m!j!] * [h*(1-p)^n]^j
The reciprocal of the sum over j >= 0 of these ratios is
这些比率之和j>=0的倒数为
P{H0 | R} = [1-h*(1-p)^n] ^ (m+1)
P{H0 | R} = [1-h*(1-p)^n] ^ (m+1)
and the confidence estimate of Section 8.2 is the h -> 1 limit of this expression.
第8.2节的置信度估计是这个表达式的h->1极限。
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (2000). All Rights Reserved.
版权所有(C)互联网协会(2000年)。版权所有。
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.
本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。
The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.
上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。