Network Working Group F. Cuervo Request for Comments: 2885 N. Greene Category: Standards Track Nortel Networks C. Huitema Microsoft Corporation A. Rayhan Nortel Networks B. Rosen Marconi J. Segers Lucent Technologies August 2000
Network Working Group F. Cuervo Request for Comments: 2885 N. Greene Category: Standards Track Nortel Networks C. Huitema Microsoft Corporation A. Rayhan Nortel Networks B. Rosen Marconi J. Segers Lucent Technologies August 2000
Megaco Protocol version 0.8
Megaco协议版本0.8
Status of this Memo
本备忘录的状况
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (2000). All Rights Reserved.
版权所有(C)互联网协会(2000年)。版权所有。
Abstract
摘要
This document is common text with Recommendation H.248 as redetermined in Geneva, February 2000. It must be read in conjunction with the Megaco Errata, RFC 2886. A merged document presenting the Megaco protocol with the Errata incorporated will be available shortly.
本文件是建议H.248的共同文本,该建议于2000年2月在日内瓦重新确定。必须结合Megaco勘误表RFC 2886阅读。将很快提供一份合并文件,介绍Megaco协议和勘误表。
The protocol presented in this document meets the requirements for a media gateway control protocol as presented in RFC 2805.
本文件中的协议符合RFC 2805中提出的媒体网关控制协议的要求。
TABLE OF CONTENTS
目录
1. SCOPE..........................................................6 2. REFERENCES.....................................................6 2.1 Normative references..........................................6 2.2 Informative references........................................8 3. DEFINITIONS....................................................9 4. ABBREVIATIONS.................................................10 5. CONVENTIONS...................................................11 6. CONNECTION MODEL..............................................11 6.1 Contexts.....................................................14 6.1.1 Context Attributes and Descriptors....................15 6.1.2 Creating, Deleting and Modifying Contexts.............15 6.2 Terminations.................................................15 6.2.1 Termination Dynamics..................................16 6.2.2 TerminationIDs........................................17 6.2.3 Packages..............................................17 6.2.4 Termination Properties and Descriptors................18 6.2.5 Root Termination......................................20 7. COMMANDS......................................................20 7.1 Descriptors..................................................21 7.1.1 Specifying Parameters.................................21 7.1.2 Modem Descriptor......................................22 7.1.3 Multiplex Descriptor..................................22 7.1.4 Media Descriptor......................................23 7.1.5 Termination State Descriptor..........................23 7.1.6 Stream Descriptor.....................................24 7.1.7 LocalControl Descriptor...............................24 7.1.8 Local and Remote Descriptors..........................25 7.1.9 Events Descriptor.....................................28 7.1.10 EventBuffer Descriptor...............................31 7.1.11 Signals Descriptor...................................31 7.1.12 Audit Descriptor.....................................32 7.1.13 ServiceChange Descriptor.............................33 7.1.14 DigitMap Descriptor..................................33 7.1.15 Statistics Descriptor................................38 7.1.16 Packages Descriptor..................................39 7.1.17 ObservedEvents Descriptor............................39 7.1.18 Topology Descriptor.................................39 7.2 Command Application Programming Interface....................42 7.2.1 Add...................................................43 7.2.2 Modify................................................44 7.2.3 Subtract..............................................45 7.2.4 Move..................................................46 7.2.5 AuditValue............................................47 7.2.6 AuditCapabilities.....................................48 7.2.7 Notify................................................49 7.2.8 ServiceChange.........................................50
1. SCOPE..........................................................6 2. REFERENCES.....................................................6 2.1 Normative references..........................................6 2.2 Informative references........................................8 3. DEFINITIONS....................................................9 4. ABBREVIATIONS.................................................10 5. CONVENTIONS...................................................11 6. CONNECTION MODEL..............................................11 6.1 Contexts.....................................................14 6.1.1 Context Attributes and Descriptors....................15 6.1.2 Creating, Deleting and Modifying Contexts.............15 6.2 Terminations.................................................15 6.2.1 Termination Dynamics..................................16 6.2.2 TerminationIDs........................................17 6.2.3 Packages..............................................17 6.2.4 Termination Properties and Descriptors................18 6.2.5 Root Termination......................................20 7. COMMANDS......................................................20 7.1 Descriptors..................................................21 7.1.1 Specifying Parameters.................................21 7.1.2 Modem Descriptor......................................22 7.1.3 Multiplex Descriptor..................................22 7.1.4 Media Descriptor......................................23 7.1.5 Termination State Descriptor..........................23 7.1.6 Stream Descriptor.....................................24 7.1.7 LocalControl Descriptor...............................24 7.1.8 Local and Remote Descriptors..........................25 7.1.9 Events Descriptor.....................................28 7.1.10 EventBuffer Descriptor...............................31 7.1.11 Signals Descriptor...................................31 7.1.12 Audit Descriptor.....................................32 7.1.13 ServiceChange Descriptor.............................33 7.1.14 DigitMap Descriptor..................................33 7.1.15 Statistics Descriptor................................38 7.1.16 Packages Descriptor..................................39 7.1.17 ObservedEvents Descriptor............................39 7.1.18 Topology Descriptor.................................39 7.2 Command Application Programming Interface....................42 7.2.1 Add...................................................43 7.2.2 Modify................................................44 7.2.3 Subtract..............................................45 7.2.4 Move..................................................46 7.2.5 AuditValue............................................47 7.2.6 AuditCapabilities.....................................48 7.2.7 Notify................................................49 7.2.8 ServiceChange.........................................50
7.2.9 Manipulating and Auditing Context Attributes..........54 7.2.10 Generic Command Syntax...............................54 7.3 Command Error Codes..........................................55 8. TRANSACTIONS..................................................56 8.1 Common Parameters............................................58 8.1.1 Transaction Identifiers...............................58 8.1.2 Context Identifiers...................................58 8.2 Transaction Application Programming Interface................58 8.2.1 TransactionRequest....................................59 8.2.2 TransactionReply......................................59 8.2.3 TransactionPending....................................60 8.3 Messages.....................................................61 9. TRANSPORT.....................................................61 9.1 Ordering of Commands.........................................62 9.2 Protection against Restart Avalanche.........................63 10. SECURITY CONSIDERATIONS......................................64 10.1 Protection of Protocol Connections..........................64 10.2 Interim AH scheme...........................................65 10.3 Protection of Media Connections.............................66 11. MG-MGC CONTROL INTERFACE....................................66 11.1 Multiple Virtual MGs........................................67 11.2 Cold Start..................................................68 11.3 Negotiation of Protocol Version.............................68 11.4 Failure of an MG............................................69 11.5 Failure of an MGC...........................................69 12. PACKAGE DEFINITION...........................................70 12.1 Guidelines for defining packages............................71 12.1.1 Package..............................................71 12.1.2 Properties...........................................72 12.1.3 Events...............................................72 12.1.4 Signals..............................................73 12.1.5 Statistics...........................................73 12.1.6 Procedures...........................................73 12.2 Guidelines to defining Properties, Statistics and Parameters to Events and Signals.......................................73 12.3 Lists.......................................................74 12.4 Identifiers.................................................74 12.5 Package Registration........................................74 13. IANA CONSIDERATIONS.........................................74 13.1 Packages....................................................74 13.2 Error Codes.................................................75 13.3 ServiceChange Reasons.......................................76 ANNEX A: BINARY ENCODING OF THE PROTOCOL (NORMATIVE).............77 A.1 Coding of wildcards..........................................77 A.2 ASN.1 syntax specification...................................78 A.3 Digit maps and path names....................................94 ANNEX B TEXT ENCODING OF THE PROTOCOL (NORMATIVE)................95 B.1 Coding of wildcards..........................................95
7.2.9 Manipulating and Auditing Context Attributes..........54 7.2.10 Generic Command Syntax...............................54 7.3 Command Error Codes..........................................55 8. TRANSACTIONS..................................................56 8.1 Common Parameters............................................58 8.1.1 Transaction Identifiers...............................58 8.1.2 Context Identifiers...................................58 8.2 Transaction Application Programming Interface................58 8.2.1 TransactionRequest....................................59 8.2.2 TransactionReply......................................59 8.2.3 TransactionPending....................................60 8.3 Messages.....................................................61 9. TRANSPORT.....................................................61 9.1 Ordering of Commands.........................................62 9.2 Protection against Restart Avalanche.........................63 10. SECURITY CONSIDERATIONS......................................64 10.1 Protection of Protocol Connections..........................64 10.2 Interim AH scheme...........................................65 10.3 Protection of Media Connections.............................66 11. MG-MGC CONTROL INTERFACE....................................66 11.1 Multiple Virtual MGs........................................67 11.2 Cold Start..................................................68 11.3 Negotiation of Protocol Version.............................68 11.4 Failure of an MG............................................69 11.5 Failure of an MGC...........................................69 12. PACKAGE DEFINITION...........................................70 12.1 Guidelines for defining packages............................71 12.1.1 Package..............................................71 12.1.2 Properties...........................................72 12.1.3 Events...............................................72 12.1.4 Signals..............................................73 12.1.5 Statistics...........................................73 12.1.6 Procedures...........................................73 12.2 Guidelines to defining Properties, Statistics and Parameters to Events and Signals.......................................73 12.3 Lists.......................................................74 12.4 Identifiers.................................................74 12.5 Package Registration........................................74 13. IANA CONSIDERATIONS.........................................74 13.1 Packages....................................................74 13.2 Error Codes.................................................75 13.3 ServiceChange Reasons.......................................76 ANNEX A: BINARY ENCODING OF THE PROTOCOL (NORMATIVE).............77 A.1 Coding of wildcards..........................................77 A.2 ASN.1 syntax specification...................................78 A.3 Digit maps and path names....................................94 ANNEX B TEXT ENCODING OF THE PROTOCOL (NORMATIVE)................95 B.1 Coding of wildcards..........................................95
B.2 ABNF specification...........................................95 ANNEX C TAGS FOR MEDIA STREAM PROPERTIES (NORMATIVE)............107 C.1 General Media Attributes....................................107 C.2 Mux Properties..............................................108 C.3 General bearer properties...................................109 C.4 General ATM properties......................................109 C.5 Frame Relay.................................................112 C.6 IP..........................................................113 C.7 ATM AAL2....................................................113 C.8 ATM AAL1....................................................114 C.9 Bearer Capabilities.........................................116 C.10 AAL5 Properties............................................123 C.11 SDP Equivalents............................................124 C.12 H.245......................................................124 ANNEX D TRANSPORT OVER IP (NORMATIVE)...........................125 D.1 Transport over IP/UDP using Application Level Framing.......125 D.1.1 Providing At-Most-Once Functionality.................125 D.1.2 Transaction identifiers and three-way handshake......126 D.1.2.1 Transaction identifiers....................126 D.1.2.2 Three-way handshake........................126 D.1.3 Computing retransmission timers......................127 D.1.4 Provisional responses................................128 D.1.5 Repeating Requests, Responses and Acknowledgements...128 D.2 using TCP..................................................130 D.2.1 Providing the At-Most-Once functionality..........130 D.2.2 Transaction identifiers and three way handshake...130 D.2.3 Computing retransmission timers...................131 D.2.4 Provisional responses.............................131 D.2.5 Ordering of commands..............................131 ANNEX E BASIC PACKAGES..........................................131 E.1 Generic.....................................................131 E.1.1 Properties...........................................132 E.1.2 Events...............................................132 E.1.3 Signals..............................................133 E.1.4 Statistics...........................................133 E.2 Base Root Package...........................................133 E.2.1 Properties...........................................134 E.2.2 Events...............................................135 E.2.3 Signals..............................................135 E.2.4 Statistics...........................................135 E.2.5 Procedures...........................................135 E.3 Tone Generator Package......................................135 E.3.1 Properties...........................................135 E.3.2 Events...............................................136 E.3.3 Signals..............................................136 E.3.4 Statistics...........................................136 E.3.5 Procedures...........................................136 E.4 Tone Detection Package......................................137
B.2 ABNF specification...........................................95 ANNEX C TAGS FOR MEDIA STREAM PROPERTIES (NORMATIVE)............107 C.1 General Media Attributes....................................107 C.2 Mux Properties..............................................108 C.3 General bearer properties...................................109 C.4 General ATM properties......................................109 C.5 Frame Relay.................................................112 C.6 IP..........................................................113 C.7 ATM AAL2....................................................113 C.8 ATM AAL1....................................................114 C.9 Bearer Capabilities.........................................116 C.10 AAL5 Properties............................................123 C.11 SDP Equivalents............................................124 C.12 H.245......................................................124 ANNEX D TRANSPORT OVER IP (NORMATIVE)...........................125 D.1 Transport over IP/UDP using Application Level Framing.......125 D.1.1 Providing At-Most-Once Functionality.................125 D.1.2 Transaction identifiers and three-way handshake......126 D.1.2.1 Transaction identifiers....................126 D.1.2.2 Three-way handshake........................126 D.1.3 Computing retransmission timers......................127 D.1.4 Provisional responses................................128 D.1.5 Repeating Requests, Responses and Acknowledgements...128 D.2 using TCP..................................................130 D.2.1 Providing the At-Most-Once functionality..........130 D.2.2 Transaction identifiers and three way handshake...130 D.2.3 Computing retransmission timers...................131 D.2.4 Provisional responses.............................131 D.2.5 Ordering of commands..............................131 ANNEX E BASIC PACKAGES..........................................131 E.1 Generic.....................................................131 E.1.1 Properties...........................................132 E.1.2 Events...............................................132 E.1.3 Signals..............................................133 E.1.4 Statistics...........................................133 E.2 Base Root Package...........................................133 E.2.1 Properties...........................................134 E.2.2 Events...............................................135 E.2.3 Signals..............................................135 E.2.4 Statistics...........................................135 E.2.5 Procedures...........................................135 E.3 Tone Generator Package......................................135 E.3.1 Properties...........................................135 E.3.2 Events...............................................136 E.3.3 Signals..............................................136 E.3.4 Statistics...........................................136 E.3.5 Procedures...........................................136 E.4 Tone Detection Package......................................137
E.4.1 Properties...........................................137 E.4.2 Events...............................................137 E.4.3 Signals..............................................139 E.4.4 Statistics...........................................139 E.4.5 Procedures...........................................139 E.5 Basic DTMF Generator Package................................140 E.5.1 Properties...........................................140 E.5.2 Events...............................................140 E.5.3 Signals..............................................140 E.5.4 Statistics...........................................141 E.5.5 Procedures...........................................141 E.6 DTMF detection Package......................................141 E.6.1 Properties...........................................142 E.6.2 Events...............................................142 E.6.3 Signals..............................................143 E.6.4 Statistics...........................................143 E.6.5 Procedures...........................................143 E.7 Call Progress Tones Generator Package.......................143 E.7.1 Properties...........................................144 E.7.2 Events...............................................144 E.7.3 Signals..............................................144 E.7.4 Statistics...........................................145 E.7.5 Procedures...........................................145 E.8 Call Progress Tones Detection Package.......................145 E.8.1 Properties...........................................145 E.8.2 Events...............................................145 E.8.3 Signals..............................................145 E.8.4 Statistics...........................................145 E.8.5 Procedures...........................................146 E.9 Analog Line Supervision Package.............................146 E.9.1 Properties...........................................146 E.9.2 Events...............................................146 E.9.3 Signals..............................................147 E.9.4 Statistics...........................................148 E.9.5 Procedures...........................................148 E.10 Basic Continuity Package...................................148 E.10.1 Properties..........................................148 E.10.2 Events..............................................148 E.10.3 Signals.............................................149 E.10.4 Statistics..........................................150 E.10.5 Procedures..........................................150 E.11 Network Package............................................150 E.11.1 Properties..........................................150 E.11.2 Events..............................................151 E.11.3 Signals.............................................152 E.11.4 Statistics..........................................152 E.11.5 Procedures..........................................153 E.12 RTP Package...............................................153
E.4.1 Properties...........................................137 E.4.2 Events...............................................137 E.4.3 Signals..............................................139 E.4.4 Statistics...........................................139 E.4.5 Procedures...........................................139 E.5 Basic DTMF Generator Package................................140 E.5.1 Properties...........................................140 E.5.2 Events...............................................140 E.5.3 Signals..............................................140 E.5.4 Statistics...........................................141 E.5.5 Procedures...........................................141 E.6 DTMF detection Package......................................141 E.6.1 Properties...........................................142 E.6.2 Events...............................................142 E.6.3 Signals..............................................143 E.6.4 Statistics...........................................143 E.6.5 Procedures...........................................143 E.7 Call Progress Tones Generator Package.......................143 E.7.1 Properties...........................................144 E.7.2 Events...............................................144 E.7.3 Signals..............................................144 E.7.4 Statistics...........................................145 E.7.5 Procedures...........................................145 E.8 Call Progress Tones Detection Package.......................145 E.8.1 Properties...........................................145 E.8.2 Events...............................................145 E.8.3 Signals..............................................145 E.8.4 Statistics...........................................145 E.8.5 Procedures...........................................146 E.9 Analog Line Supervision Package.............................146 E.9.1 Properties...........................................146 E.9.2 Events...............................................146 E.9.3 Signals..............................................147 E.9.4 Statistics...........................................148 E.9.5 Procedures...........................................148 E.10 Basic Continuity Package...................................148 E.10.1 Properties..........................................148 E.10.2 Events..............................................148 E.10.3 Signals.............................................149 E.10.4 Statistics..........................................150 E.10.5 Procedures..........................................150 E.11 Network Package............................................150 E.11.1 Properties..........................................150 E.11.2 Events..............................................151 E.11.3 Signals.............................................152 E.11.4 Statistics..........................................152 E.11.5 Procedures..........................................153 E.12 RTP Package...............................................153
E.12.1 Properties..........................................153 E.12.2 Events..............................................153 E.12.3 Signals.............................................153 E.12.4 Statistics..........................................153 E.12.5 Procedures..........................................154 E.13 TDM Circuit Package........................................154 E.13.1 Properties..........................................155 E.13.2 Events..............................................155 E.13.3 Signals.............................................155 E.13.4 Statistics..........................................156 E.13.5 Procedures..........................................156 APPENDIX A EXAMPLE CALL FLOWS (INFORMATIVE).....................157 A.1 Residential Gateway to Residential Gateway Call.............157 A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior..............................................157 A.1.2 Collecting Originator Digits and Initiating Termination ...........................................................159 Authors' Addresses..............................................168 Full Copyright Statement........................................170
E.12.1 Properties..........................................153 E.12.2 Events..............................................153 E.12.3 Signals.............................................153 E.12.4 Statistics..........................................153 E.12.5 Procedures..........................................154 E.13 TDM Circuit Package........................................154 E.13.1 Properties..........................................155 E.13.2 Events..............................................155 E.13.3 Signals.............................................155 E.13.4 Statistics..........................................156 E.13.5 Procedures..........................................156 APPENDIX A EXAMPLE CALL FLOWS (INFORMATIVE).....................157 A.1 Residential Gateway to Residential Gateway Call.............157 A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior..............................................157 A.1.2 Collecting Originator Digits and Initiating Termination ...........................................................159 Authors' Addresses..............................................168 Full Copyright Statement........................................170
This document defines the protocol used between elements of a physically decomposed multimedia gateway. There are no functional differences from a system view between a decomposed gateway, with distributed sub-components potentially on more than one physical device, and a monolithic gateway such as described in H.246. This recommendation does not define how gateways, multipoint control units or integrated voice response units (IVRs) work. Instead it creates a general framework that is suitable for these applications. Packet network interfaces may include IP, ATM or possibly others. The interfaces will support a variety of SCN signalling systems, including tone signalling, ISDN, ISUP, QSIG, and GSM. National variants of these signalling systems will be supported where applicable.
本文档定义了物理分解多媒体网关元素之间使用的协议。分解网关(可能在多个物理设备上具有分布式子组件)和单片网关(如H.246所述)之间的系统视图没有功能差异。本建议未定义网关、多点控制单元或集成语音响应单元(IVR)的工作方式。相反,它创建了一个适合这些应用程序的通用框架。分组网络接口可包括IP、ATM或可能的其他接口。这些接口将支持各种SCN信号系统,包括音频信号、ISDN、ISUP、QSIG和GSM。在适用的情况下,将支持这些信号系统的国家变体。
The protocol definition in this document is common text with ITU-T Recommendation H.248. It meets the requirements documented in RFC 2805.
本文件中的协议定义为ITU-T建议H.248的通用文本。它符合RFC 2805中记录的要求。
ITU-T Recommendation H.225.0 (1998): "Call Signalling Protocols and Media Stream Packetization for Packet Based Multimedia Communications Systems".
ITU-T建议H.225.0(1998):“基于分组的多媒体通信系统的呼叫信令协议和媒体流分组”。
ITU-T Recommendation H.235 (02/98): "Security and encryption for H-Series (H.323 and other H.245-based) multimedia terminals".
ITU-T建议H.235(02/98):“H系列(H.323和其他基于H.245的)多媒体终端的安全和加密”。
ITU-T Recommendation H.245 (1998): "Control Protocol for Multimedia Communication".
ITU-T建议H.245(1998):“多媒体通信控制协议”。
ITU-T Recommendation H.323 (1998): "Packet Based Multimedia Communication Systems".
ITU-T建议H.323(1998):“基于分组的多媒体通信系统”。
ITU-T Recommendation I.363.1 (08/96), "B-ISDN ATM Adaptation Layer specification: Type 1 AAL".
ITU-T建议I.363.1(08/96),“B-ISDN ATM适配层规范:1型AAL”。
ITU-T Recommendation I.363.2 (09/97), "B-ISDN ATM Adaptation Layer specification: Type 2 AAL".
ITU-T建议I.363.2(09/97),“B-ISDN ATM适配层规范:2类AAL”。
ITU-T Recommendation I.363.5 (08/96), "B-ISDN ATM Adaptation Layer specification: Type 5 AAL".
ITU-T建议I.363.5(08/96),“B-ISDN ATM适配层规范:5型AAL”。
ITU-T Recommendation I.366.1 (06/98), "Segmentation and Reassembly Service Specific Convergence Sublayer for the AAL type 2".
ITU-T建议I.366.1(06/98),“AAL类型2的特定于服务的聚合子层的分段和重新组装”。
ITU-T Recommendation I.366.2 (02/99), "AAL type 2 service specific convergence sublayer for trunking".
ITU-T建议I.366.2(02/99),“用于中继的AAL 2类特定于服务的汇聚子层”。
ITU-T Recommendation I.371 (08/96), "Traffic control and congestion control in B-ISDN".
ITU-T建议I.371(08/96),“B-ISDN中的流量控制和拥塞控制”。
ITU-T Recommendation Q.763 (09/97), "Signalling System No. 7 - ISDN user part formats and codes".
ITU-T建议Q.763(09/97),“第7号信令系统——ISDN用户部分格式和代码”。
ITU-T Recommendation Q.765, "Signalling System No. 7 - Application transport mechanism".
ITU-T建议Q.765,“第7号信令系统-应用传输机制”。
ITU-T Recommendation Q.931 (05/98): "Digital Subscriber Signalling System No. 1 (DSS 1) - ISDN User-Network Interface Layer 3 Specification for Basic Call Control".
ITU-T建议Q.931(05/98):“数字用户信号发送系统第1号(DSS1)——基本呼叫控制的ISDN用户网络接口第3层规范”。
ITU-T Recommendation Q.2630.1 (1999), "AAL Type 2 Signalling Protocol (Capability Set 1)".
ITU-T建议Q.2630.1(1999),“AAL 2型信令协议(能力集1)”。
ITU-T Recommendation Q.2931 (10/95), "Broadband Integrated Services Digital Network (B-ISDN) - Digital Subscriber Signalling System No. 2 (DSS 2) - User-Network Interface (UNI) - Layer 3 specification for basic call/connection control".
ITU-T建议Q.2931(10/95),“宽带综合业务数字网(B-ISDN)-第2号数字用户信令系统(DSS2)-用户网络接口(UNI)-基本呼叫/连接控制的第3层规范”。
ITU-T Recommendation Q.2941.1 (09/97), "Digital Subscriber Signalling System No. 2 - Generic Identifier Transport".
ITU-T建议Q.2941.1(09/97),“第2号数字用户信令系统-通用标识符传输”。
ITU-T Recommendation Q.2961 (10/95), "Broadband integrated services digital network (B-ISDN) - Digital subscriber signalling system no.2 (DSS 2) - additional traffic parameters".
ITU-T建议Q.2961(10/95),“宽带综合业务数字网(B-ISDN)-第2号数字用户信令系统(DSS 2)-附加业务参数”。
ITU-T Recommendation Q.2961.2 (06/97), "Digital subscriber signalling system No. 2 - Additional traffic parameters: Support of ATM transfer capability in the broadband bearer capability information element."
ITU-T建议Q.2961.2(06/97),“第2号数字用户信令系统-附加业务参数:在宽带承载能力信息元素中支持ATM传输能力。”
ITU-T Recommendation X.213 (11/1995), "Information technology - Open System Interconnection - Network service definition plus Amendment 1 (08/1997), Addition of the Internet protocol address format identifier".
ITU-T建议X.213(1995年11月),“信息技术-开放系统互连-网络服务定义和修正案1(1997年8月),添加互联网协议地址格式标识符”。
ITU-T Recommendation V.76 (08/96), "Generic multiplexer using V.42 LAPM-based procedures".
ITU-T建议V.76(08/96),“使用基于V.42 LAPM程序的通用多路复用器”。
ITU-T Recommendation X.680 (1997): "Information technology-Abstract Syntax Notation One (ASN.1): Specification of basic notation".
ITU-T建议X.680(1997):“信息技术抽象语法符号1(ASN.1):基本符号规范”。
ITU-T Recommendation H.246 (1998), "Interworking of H-series multimedia terminals with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN".
ITU-T建议H.246(1998),“H系列多媒体终端与H系列多媒体终端以及GSTN和ISDN上的语音/声带终端的互通”。
Rose, M. and D. Cass, "ISO Transport Service on top of the TCP, Version 3", RFC 1006, May 1987.
Rose,M.和D.Cass,“TCP之上的ISO传输服务,版本3”,RFC1006,1987年5月。
Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC 2234, November 1997.
Crocker,D.和P.Overell,“语法规范的扩充BNF:ABNF”,RFC 2234,1997年11月。
Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998.
Handley,M.和V.Jacobson,“SDP:会话描述协议”,RFC 2327,1998年4月。
Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.
Kent,S.和R.Atkinson,“IP认证头”,RFC 2402,1998年11月。
Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
Kent,S.和R.Atkinson,“IP封装安全有效载荷(ESP)”,RFC 2406,1998年11月。
ITU-T Recommendation E.180/Q.35 (1998): "Technical characteristics of tones for the telephone service".
ITU-T建议E.180/Q.35(1998):“电话业务音调的技术特征”。
CCITT Recommendation G.711 (1988), "Pulse Code Modulation (PCM) of voice frequencies".
CCITT建议G.711(1988),“语音频率的脉冲编码调制(PCM)”。
ITU-T Recommendation H.221 (05/99),"Frame structure for a 64 to 1920 kbit/s channel in audiovisual teleservices".
ITU-T建议H.221(05/99),“视听电信业务中64至1920 kbit/s信道的帧结构”。
ITU-T Recommendation H.223 (1996), "Multiplexing protocol for low bit rate multimedia communication".
ITU-T建议H.223(1996),“低比特率多媒体通信的多路复用协议”。
ITU-T Recommendation Q.724 (1988): "Signalling procedures".
ITU-T建议Q.724(1988):“信号程序”。
Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980.
Postel,J.,“用户数据报协议”,STD 6,RFC 768,1980年8月。
Postel, J., "Internet protocol", STD 5, RFC 791, September 1981.
Postel,J.,“互联网协议”,STD 5,RFC 7911981年9月。
Postel, J., "TRANSMISSION CONTROL PROTOCOL", STD 7, RFC 793, September 1981.
《传输控制协议》,标准7,RFC 793,1981年9月。
Simpson, W., "The Point-to-Point Protocol", STD 51, RFC 1661, July 1994.
辛普森,W.,“点对点协议”,STD 51,RFC 1661994年7月。
Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", RFC 1889, January 1996.
Schulzrinne,H.,Casner,S.,Frederick,R.和V.Jacobson,“RTP:实时应用的传输协议”,RFC 1889,1996年1月。
Schulzrinne, H., "RTP Profile for Audio and Video Conferences with Minimal Control", RFC 1890, January 1996.
Schulzrinne,H.,“具有最小控制的音频和视频会议的RTP配置文件”,RFC 1890,1996年1月。
Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.
Kent,S.和R.Atkinson,“互联网协议的安全架构”,RFC 2401,1998年11月。
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,RFC 2460,1998年12月。
Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg, "SIP: Session Initiation Protocol", RFC 2543, March 1999.
Handley,M.,Schulzrinne,H.,Schooler,E.和J.Rosenberg,“SIP:会话启动协议”,RFC 25431999年3月。
Greene, N., Ramalho, M. and B. Rosen, "Media Gateway control protocol architecture and requirements", RFC 2805, April 1999.
Greene,N.,Ramalho,M.和B.Rosen,“媒体网关控制协议体系结构和要求”,RFC 2805,1999年4月。
Access Gateway: A type of gateway that provides a User to Network Interface (UNI) such as ISDN.
接入网关:一种提供用户到网络接口(UNI)的网关,如ISDN。
Descriptor: A syntactic element of the protocol that groups related properties. For instance, the properties of a media flow on the MG can be set by the MGC by including the appropriate descriptor in a command.
描述符:协议的语法元素,用于对相关属性进行分组。例如,MGC可以通过在命令中包含适当的描述符来设置MG上媒体流的属性。
Media Gateway (MG): The media gateway converts media provided in one type of network to the format required in another type of network. For example, a MG could terminate bearer channels from a switched circuit network (e.g., DS0s) and media streams from a packet network
媒体网关(MG):媒体网关将一种网络中提供的媒体转换为另一种网络中所需的格式。例如,MG可以终止来自交换电路网络(例如,ds0)的承载信道和来自分组网络的媒体流
(e.g., RTP streams in an IP network). This gateway may be capable of processing audio, video and T.120 alone or in any combination, and will be capable of full duplex media translations. The MG may also play audio/video messages and performs other IVR functions, or may perform media conferencing.
(例如,IP网络中的RTP流)。该网关可单独或以任何组合处理音频、视频和T.120,并可进行全双工媒体翻译。MG还可以播放音频/视频消息并执行其他IVR功能,或者可以执行媒体会议。
Media Gateway Controller (MGC): Controls the parts of the call state that pertain to connection control for media channels in a MG.
媒体网关控制器(MGC):控制与MG中媒体通道连接控制相关的呼叫状态部分。
Multipoint Control Unit (MCU): An entity that controls the setup and coordination of a multi-user conference that typically includes processing of audio, video and data.
多点控制单元(MCU):控制多用户会议的设置和协调的实体,通常包括音频、视频和数据的处理。
Residential Gateway: A gateway that interworks an analogue line to a packet network. A residential gateway typically contains one or two analogue lines and is located at the customer premises.
住宅网关:将模拟线路与分组网络互连的网关。住宅网关通常包含一条或两条模拟线路,位于客户场所。
SCN FAS Signalling Gateway: This function contains the SCN Signalling Interface that terminates SS7, ISDN or other signalling links where the call control channel and bearer channels are collocated in the same physical span.
SCN FAS信令网关:此功能包含SCN信令接口,用于终止SS7、ISDN或其他信令链路,其中呼叫控制信道和承载信道位于同一物理范围内。
SCN NFAS Signalling Gateway: This function contains the SCN Signalling Interface that terminates SS7 or other signalling links where the call control channels are separated from bearer channels.
SCN NFAS信令网关:此功能包含SCN信令接口,用于终止SS7或其他信令链路,其中呼叫控制信道与承载信道分离。
Stream: Bidirectional media or control flow received/sent by a media gateway as part of a call or conference.
流:作为呼叫或会议的一部分,由媒体网关接收/发送的双向媒体或控制流。
Trunk: A communication channel between two switching systems such as a DS0 on a T1 or E1 line.
中继线:两个交换系统(如T1或E1线路上的DS0)之间的通信信道。
Trunking Gateway: A gateway between SCN network and packet network that typically terminates a large number of digital circuits.
中继网关:SCN网络和分组网络之间的网关,通常终止大量数字电路。
This recommendation defines the following terms.
本建议定义了以下术语。
ATM Asynchronous Transfer Mode BRI Basic Rate Interface CAS Channel Associated Signalling DTMF Dual Tone Multi-Frequency FAS Facility Associated Signalling GW GateWay IANA Internet Assigned Numbers Authority IP Internet Protocol ISUP ISDN User Part
ATM异步传输模式BRI基本速率接口CAS信道相关信令DTMF双音多频FAS设备相关信令GW网关IANA Internet分配号码管理局IP Internet协议ISUP ISDN用户部分
MG Media Gateway MGC Media Gateway Controller NFAS Non-Facility Associated Signalling PRI Primary Rate Interface PSTN Public Switched Telephone Network QoS Quality of Service RTP Real-time Transport Protocol SCN Switched Circuit Network SG Signalling Gateway SS7 Signalling System No. 7
MG媒体网关MGC媒体网关控制器NFAS非设施相关信令PRI主速率接口PSTN公共交换电话网络QoS服务质量RTP实时传输协议SCN交换电路网络SG信令网关SS7信令系统第7号
In this recommendation, "shall" refers to a mandatory requirement, while "should" refers to a suggested but optional feature or procedure. The term "may" refers to an optional course of action without expressing a preference.
在本建议中,“应”是指强制性要求,“应”是指建议但可选的特征或程序。“可”一词是指不表示偏好的可选行动方案。
The connection model for the protocol describes the logical entities, or objects, within the Media Gateway that can be controlled by the Media Gateway Controller. The main abstractions used in the connection model are Terminations and Contexts.
协议的连接模型描述了媒体网关中可由媒体网关控制器控制的逻辑实体或对象。连接模型中使用的主要抽象是终止和上下文。
A Termination sources and/or sinks one or more streams. In a multimedia conference, a Termination can be multimedia and sources or sinks multiple media streams. The media stream parameters, as well as modem, and bearer parameters are encapsulated within the Termination.
终端源和/或汇一个或多个流。在多媒体会议中,终端可以是多媒体,也可以是多个媒体流的源或汇。媒体流参数以及调制解调器和承载参数封装在终端中。
A Context is an association between a collection of Terminations. There is a special type of Context, the null Context, which contains all Terminations that are not associated to any other Termination.
上下文是终止集合之间的关联。有一种特殊类型的上下文,null上下文,它包含与任何其他终止都不关联的所有终止。
For instance, in a decomposed access gateway, all idle lines are represented by Terminations in the null Context.
例如,在分解的访问网关中,所有空闲线路都由空上下文中的终端表示。
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context +-------------+ | | | | | Termination | | | | | |-------------| | | | | +-------------+ +->| SCN Bearer |<---+-> | | | Termination | +-----+ | | Channel | | | | | |-------------| | |---+ +-------------+ | | <-+--->| RTP Stream |---| * | | | | | | | | |---+ +-------------+ | | | | +-------------+ +-----+ | | Termination | | | | | | |-------------| | | | | +->| SCN Bearer |<---+-> | | | Channel | | | | | +-------------+ | | | +-------------------------------------------------+ | | | | | | +------------------------------+ | | |Context | | | +-------------+ | +-------------+ | | | | Termination | | +-----+ | Termination | | | | |-------------| | | | |-------------| | | <-+->| SCN Bearer | | | * |------| SCN Bearer |<---+-> | | Channel | | | | | Channel | | | | +-------------+ | +-----+ +-------------+ | | | +------------------------------+ | | | | | | +-------------------------------------------------+ | | |Context | | | | +-------------+ +-------------+ | | | | | Termination | +-----+ | Termination | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | ___________________________________________________ | +------------------------------------------------------+
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context +-------------+ | | | | | Termination | | | | | |-------------| | | | | +-------------+ +->| SCN Bearer |<---+-> | | | Termination | +-----+ | | Channel | | | | | |-------------| | |---+ +-------------+ | | <-+--->| RTP Stream |---| * | | | | | | | | |---+ +-------------+ | | | | +-------------+ +-----+ | | Termination | | | | | | |-------------| | | | | +->| SCN Bearer |<---+-> | | | Channel | | | | | +-------------+ | | | +-------------------------------------------------+ | | | | | | +------------------------------+ | | |Context | | | +-------------+ | +-------------+ | | | | Termination | | +-----+ | Termination | | | | |-------------| | | | |-------------| | | <-+->| SCN Bearer | | | * |------| SCN Bearer |<---+-> | | Channel | | | | | Channel | | | | +-------------+ | +-----+ +-------------+ | | | +------------------------------+ | | | | | | +-------------------------------------------------+ | | |Context | | | | +-------------+ +-------------+ | | | | | Termination | +-----+ | Termination | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | ___________________________________________________ | +------------------------------------------------------+
Figure 1: Example of H.248 Connection Model
图1:H.248连接模型示例
Figure 1 is a graphical depiction of these concepts. The diagram of Figure 1 gives several examples and is not meant to be an all-inclusive illustration. The asterisk box in each of the Contexts represents the logical association of Terminations implied by the Context.
图1是这些概念的图形描述。图1的图表给出了几个示例,并不意味着是一个包罗万象的说明。每个上下文中的星号框表示上下文所暗示的终止的逻辑关联。
The example below shows an example of one way to accomplish a call-waiting scenario in a decomposed access gateway, illustrating the relocation of a Termination between Contexts. Terminations T1 and T2 belong to Context C1 in a two-way audio call. A second audio call is waiting for T1 from Termination T3. T3 is alone in Context C2. T1 accepts the call from T3, placing T2 on hold. This action results in T1 moving into Context C2, as shown below.
下面的示例显示了在分解的接入网关中实现呼叫等待场景的一种方法的示例,说明了在上下文之间重新定位终端。终端T1和T2属于双向音频呼叫中的上下文C1。第二个音频呼叫正在等待来自终端T3的T1。T3在上下文C2中是单独的。T1接受T3的呼叫,将T2置于等待状态。此操作导致T1移动到上下文C2中,如下所示。
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ +-------------+ | | | | | Term. T2 | +-----+ | Term. T1 | | | | | |-------------| | | |-------------| | | <-+--->| RTP Stream |---| * |------| SCN Bearer |<---+-> | | | | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ | | | | +-----+ | Term. T3 | | | | | | | |-------------| | | | | | * |------| SCN Bearer |<---+-> | | | | | Channel | | | | | +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ +-------------+ | | | | | Term. T2 | +-----+ | Term. T1 | | | | | |-------------| | | |-------------| | | <-+--->| RTP Stream |---| * |------| SCN Bearer |<---+-> | | | | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ | | | | +-----+ | Term. T3 | | | | | | | |-------------| | | | | | * |------| SCN Bearer |<---+-> | | | | | Channel | | | | | +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
Figure 2: Example Call Waiting Scenario / Alerting Applied to T1
图2:应用于T1的呼叫等待场景/警报示例
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ | | | | | Term. T2 | +-----+ | | | | |-------------| | | | | <-+--->| RTP Stream |---| * | | | | | | | | | | | | | +-------------+ +-----+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ +-------------+ | | | | | Term. T1 | +-----+ | Term. T3 | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
+------------------------------------------------------+ |Media Gateway | | +-------------------------------------------------+ | | |Context C1 | | | | +-------------+ | | | | | Term. T2 | +-----+ | | | | |-------------| | | | | <-+--->| RTP Stream |---| * | | | | | | | | | | | | | +-------------+ +-----+ | | | +-------------------------------------------------+ | | | | +-------------------------------------------------+ | | |Context C2 | | | | +-------------+ +-------------+ | | | | | Term. T1 | +-----+ | Term. T3 | | | | | |-------------| | | |-------------| | | <-+--->| SCN Bearer |---| * |------| SCN Bearer |<---+-> | | | Channel | | | | Channel | | | | | +-------------+ +-----+ +-------------+ | | | +-------------------------------------------------+ | +------------------------------------------------------+
Figure 3. Example Call Waiting Scenario / Answer by T1
图3。T1呼叫等待场景/应答示例
A Context is an association between a number of Terminations. The Context describes the topology (who hears/sees whom) and the media mixing and/or switching parameters if more than two Terminations are involved in the association.
上下文是多个终止之间的关联。上下文描述了拓扑(谁听到/看到谁)以及媒体混合和/或切换参数(如果关联中涉及两个以上的终端)。
There is a special Context called the null Context. It contains Terminations that are not associated to any other Termination. Terminations in the null Context can have their parameters examined or modified, and may have events detected on them.
有一个称为空上下文的特殊上下文。它包含与任何其他终端不关联的终端。空上下文中的终止可以检查或修改其参数,并且可以在其上检测到事件。
In general, an Add command is used to add Terminations to Contexts. If the MGC does not specify an existing Context to which the Termination is to be added, the MG creates a new Context. A Termination may be removed from a Context with a Subtract command, and a Termination may be moved from one Context to another with a Move command. A Termination SHALL exist in only one Context at a time.
通常,Add命令用于向上下文添加终止。如果MGC没有指定要添加终止的现有上下文,MG将创建一个新上下文。可以使用减法命令从上下文中删除终止,并且可以使用移动命令将终止从一个上下文移动到另一个上下文。一次只能在一个上下文中存在终止。
The maximum number of Terminations in a Context is a MG property. Media gateways that offer only point-to-point connectivity might allow at most two Terminations per Context. Media gateways that support multipoint conferences might allow three or more terminations per Context.
上下文中的最大终止数是MG属性。仅提供点对点连接的媒体网关可能允许每个上下文最多两个终止。支持多点会议的媒体网关可能允许每个上下文有三个或更多终端。
The attributes of Contexts are:
上下文的属性包括:
. ContextID.
. 上下文ID。
. The topology (who hears/sees whom). The topology of a Context describes the flow of media between the Terminations within a Context. In contrast, the mode of a Termination (send/receive/_) describes the flow of the media at the ingress/egress of the media gateway.
. 拓扑结构(谁听到/看到谁)。上下文的拓扑描述了上下文中终端之间的媒体流。相反,终止模式(发送/接收/)描述了媒体网关入口/出口处的媒体流。
. The priority is used for a context in order to provide the MG with information about a certain precedence handling for a context. The MGC can also use the priority to control autonomously the traffic precedence in the MG in a smooth way in certain situations (e.g. restart), when a lot of contexts must be handled simultaneously.
. 优先级用于上下文,以便向MG提供有关上下文的特定优先级处理的信息。MGC还可以使用优先级在某些情况下(例如重新启动)以平滑的方式自主控制MG中的流量优先级,此时必须同时处理大量上下文。
. An indicator for an emergency call is also provided to allow a preference handling in the MG.
. 还提供了紧急呼叫指示器,以允许MG中的优先处理。
The protocol can be used to (implicitly) create Contexts and modify the parameter values of existing Contexts. The protocol has commands to add Terminations to Contexts, subtract them from Contexts, and to move Terminations between Contexts. Contexts are deleted implicitly when the last remaining Termination is subtracted or moved out.
该协议可用于(隐式)创建上下文和修改现有上下文的参数值。该协议具有向上下文添加终止、从上下文中减去终止以及在上下文之间移动终止的命令。当减去或移出最后一个剩余终止时,上下文将被隐式删除。
A Termination is a logical entity on a MG that sources and/or sinks media and/or control streams. A Termination is described by a number of characterizing Properties, which are grouped in a set of Descriptors that are included in commands. Terminations have unique identities (TerminationIDs), assigned by the MG at the time of their creation.
终端是MG上的一个逻辑实体,用于发送和/或接收媒体和/或控制流。终端由许多特征属性描述,这些属性分组在命令中包含的一组描述符中。终止具有唯一标识(TerminationID),由MG在创建时分配。
Terminations representing physical entities have a semi-permanent existence. For example, a Termination representing a TDM channel might exist for as long as it is provisioned in the gateway.
表示物理实体的终止具有半永久性存在。例如,表示TDM信道的终端只要在网关中设置就可能存在。
Terminations representing ephemeral information flows, such as RTP flows, would usually exist only for the duration of their use.
表示短暂信息流(如RTP流)的终止通常仅在其使用期间存在。
Ephemeral Terminations are created by means of an Add command. They are destroyed by means of a Subtract command. In contrast, when a physical Termination is Added to or Subtracted from a Context, it is taken from or to the null Context, respectively.
临时终止是通过Add命令创建的。它们通过减法命令被销毁。相反,当向上下文中添加或减去物理终止时,它分别从空上下文中获取或从空上下文中获取。
Terminations may have signals applied to them. Signals are MG generated media streams such as tones and announcements as well as line signals such as hookswitch. Terminations may be programmed to detect Events, the occurrence of which can trigger notification messages to the MGC, or action by the MG. Statistics may be accumulated on a Termination. Statistics are reported to the MGC upon request (by means of the AuditValue command, see section 7.2.5) and when the Termination is taken out of the call it is in.
终端可能有应用于它们的信号。信号是MG生成的媒体流,如铃声和公告,以及线路信号,如挂钩开关。可以对终止进行编程以检测事件,事件的发生可以触发向MGC的通知消息或MG的动作。可在终止时累积统计数据。根据要求(通过AuditValue命令,见第7.2.5节)以及在呼叫终止时,向MGC报告统计数据。
Multimedia gateways may process multiplexed media streams. For example, Recommendation H.221 describes a frame structure for multiple media streams multiplexed on a number of digital 64 kbit/s channels. Such a case is handled in the connection model in the following way. For every bearer channel that carries part of the multiplexed streams, there is a Termination. The Terminations that source/sink the digital channels are connected to a separate Termination called the multiplexing Termination. This Termination describes the multiplex used (e.g. how the H.221 frames are carried over the digital channels used). The MuxDescriptor is used to this end. If multiple media are carried, this Termination contains multiple StreamDescriptors. The media streams can be associated with streams sourced/sunk by other Terminations in the Context.
多媒体网关可以处理多路复用的媒体流。例如,建议H.221描述了在多个数字64kbit/s信道上多路复用的多个媒体流的帧结构。这种情况在连接模型中按以下方式处理。对于每个承载部分多路复用流的承载信道,都有一个终端。发送/接收数字信道的终端连接到称为多路复用终端的单独终端。该终端描述了所使用的多路复用(例如,H.221帧如何在所使用的数字信道上传输)。MuxDescriptor用于此目的。如果携带多个介质,则此终端包含多个StreamDescriptor。媒体流可以与由上下文中的其他终端来源/接收的流相关联。
Terminations may be created which represent multiplexed bearers, such as an ATM AAL2. When a new multiplexed bearer is to be created, an ephemeral termination is created in a context established for this purpose. When the termination is subtracted, the multiplexed bearer is destroyed.
可以创建表示多路复用承载的终端,例如ATM AAL2。当要创建新的多路复用承载时,在为此目的建立的上下文中创建临时终止。当终端被减去时,多路复用承载被破坏。
The protocol can be used to create new Terminations and to modify property values of existing Terminations. These modifications include the possibility of adding or removing events and/or signals. The Termination properties, and events and signals are described in the ensuing sections. An MGC can only release/modify terminations and the resources that the termination represents which it has previously seized via, e.g., the Add command.
该协议可用于创建新终端和修改现有终端的属性值。这些修改包括添加或删除事件和/或信号的可能性。终端属性、事件和信号将在后面的章节中描述。MGC只能释放/修改终端以及终端所代表的资源,这些资源是MGC之前通过Add命令获取的。
Terminations are referenced by a TerminationID, which is an arbitrary schema chosen by the MG.
终止由TerminationID引用,TerminationID是MG选择的任意模式。
TerminationIDs of physical Terminations are provisioned in the Media Gateway. The TerminationIDs may be chosen to have structure. For instance, a TerminationID may consist of trunk group and a trunk within the group.
物理终端的TerminationID在媒体网关中设置。可以选择TerminationID具有结构。例如,TerminationID可能由中继组和组内的中继组成。
A wildcarding mechanism using two types of wildcards can be used with TerminationIDs. The two wildcards are ALL and CHOOSE. The former is used to address multiple Terminations at once, while the latter is used to indicate to a media gateway that it must select a Termination satisfying the partially specified TerminationID. This allows, for instance, that a MGC instructs a MG to choose a circuit within a trunk group.
使用两种通配符的通配符机制可以与TerminationID一起使用。这两个通配符是“全部”并选择。前者用于一次寻址多个终端,而后者用于向媒体网关指示它必须选择满足部分指定的TerminationID的终端。例如,这允许MGC指示MG选择中继组内的线路。
When ALL is used in the TerminationID of a command, the effect is identical to repeating the command with each of the matching TerminationIDs. Since each of these commands may generate a response, the size of the entire response may be large. If individual responses are not required, a wildcard response may be requested. In such a case, a single response is generated, which contains the UNION of all of the individual responses which otherwise would have been generated, with duplicate values suppressed. Wildcard response may be particularly useful in the Audit commands.
在命令的TerminationID中使用ALL时,效果与使用每个匹配的TerminationID重复命令相同。由于这些命令中的每一个都可能生成响应,因此整个响应的大小可能很大。如果不需要单独的响应,可以请求通配符响应。在这种情况下,将生成一个响应,其中包含所有单独响应的并集,否则将生成这些响应,并抑制重复值。通配符响应在审计命令中可能特别有用。
The encoding of the wildcarding mechanism is detailed in Annexes A and B.
通配符机制的编码详见附件A和B。
Different types of gateways may implement Terminations that have widely differing characteristics. Variations in Terminations are accommodated in the protocol by allowing Terminations to have optional Properties, Events, Signals and Statistics implemented by MGs.
不同类型的网关可以实现具有不同特性的终端。通过允许终端具有MGs实现的可选属性、事件、信号和统计信息,协议中适应了终端的变化。
In order to achieve MG/MGC interoperability, such options are grouped into Packages, and a Termination realizes a set of such Packages. More information on definition of packages can be found in section 12. An MGC can audit a Termination to determine which Packages it realizes.
为了实现MG/MGC互操作性,这些选项被分组到包中,终端实现一组这样的包。有关包定义的更多信息,请参见第12节。MGC可以审核终止以确定它实现了哪些包。
Properties, Events, Signals and Statistics defined in Packages, as well as parameters to them, are referenced by identifiers (Ids). Identifiers are scoped. For each package, PropertyIds, EventIds,
在包中定义的属性、事件、信号和统计信息以及它们的参数由标识符(ID)引用。标识符的作用域是有限的。对于每个包、PropertyID、EventID、,
SignalIds, StatisticsIds and ParameterIds have unique name spaces and the same identifier may be used in each of them. Two PropertyIds in different packages may also have the same identifier, etc.
SignalId、StatisticId和ParameterId具有唯一的名称空间,并且它们中的每一个都可以使用相同的标识符。不同包中的两个PropertyID也可能具有相同的标识符,等等。
Terminations have properties. The properties have unique PropertyIDs. Most properties have default values. When a Termination is created, properties get their default values, unless the controller specifically sets a different value. The default value of a property of a physical Termination can be changed by setting it to a different value when the Termination is in the null Context. Every time such a Termination returns to the null Context, the values of its properties are reset to this default value.
终止具有属性。属性具有唯一的属性ID。大多数属性都有默认值。创建终止时,属性将获取其默认值,除非控制器专门设置了不同的值。当终端在空上下文中时,可以通过将其设置为不同的值来更改物理终端属性的默认值。每次这样的终止返回到空上下文时,其属性的值都会重置为此默认值。
There are a number of common properties for Terminations and properties specific to media streams. The common properties are also called the termination state properties. For each media stream, there are local properties and properties of the received and transmitted flows.
终端有许多通用属性和特定于媒体流的属性。公共属性也称为终止状态属性。对于每个媒体流,都有本地属性以及接收和传输流的属性。
Properties not included in the base protocol are defined in Packages. These properties are referred to by a name consisting of the PackageName and a PropertyId. Most properties have default values described in the Package description. Properties may be read- only or read/write. The possible values of a property may be audited, as can their current values. For properties that are read/write, the MGC can set their values. A property may be declared as "Global" which has a single value shared by all terminations realizing the package. Related properties are grouped into descriptors for convenience.
基本协议中未包含的属性在包中定义。这些属性由PackageName和PropertyId组成的名称引用。大多数属性都有包说明中描述的默认值。属性可以是只读的或读/写的。可以审核属性的可能值及其当前值。对于读/写属性,MGC可以设置其值。一个属性可以声明为“全局”,它有一个由实现包的所有终端共享的值。为方便起见,相关属性被分组到描述符中。
When a Termination is Added to a Context, the value of its read/write properties can be set by including the appropriate descriptors as parameters to the Add command. Properties not mentioned in the command retain their prior values. Similarly, a property of a Termination in a Context may have its value changed by the Modify command. Properties not mentioned in the Modify command retain their prior values. Properties may also have their values changed when a Termination is moved from one Context to another as a result of a Move command. In some cases, descriptors are returned as output from a command.
将终止添加到上下文时,可以通过将适当的描述符作为参数添加到Add命令来设置其读/写属性的值。命令中未提及的属性将保留其先前的值。类似地,上下文中终止的属性的值可能会被Modify命令更改。“修改”命令中未提及的特性将保留其先前的值。当终端由于Move命令从一个上下文移动到另一个上下文时,属性的值也可能会发生更改。在某些情况下,描述符作为命令的输出返回。
The following table lists all of the possible Descriptors and their use. Not all descriptors are legal as input or output parameters to every command.
下表列出了所有可能的描述符及其用法。并非所有描述符都可以作为每个命令的输入或输出参数。
Descriptor Name Description
描述符名称描述
Modem Identifies modem type and properties when applicable. Mux Describes multiplex type for multimedia terminations (e.g. H.221, H.223, H.225.0) and Terminations forming the input mux. Media A list of media stream specifications (see 7.1.4). TerminationState Properties of a Termination (which can be defined in Packages) that are not stream specific. Stream A list of remote/local/localControl descriptors for a single stream. Local Contains properties that specify the media flows that the MG receives from the remote entity. Remote Contains properties that specify the media flows that the MG sends to the remote entity. LocalControl Contains properties (which can be defined in packages) that are of interest between the MG and the MGC. Events Describes events to be detected by the MG and what to do when an event is detected. EventBuffer Describes events to be detected by the MG when Event Buffering is active. Signals Describes signals and/or actions to be applied (e.g. Busy Tone) to the Terminations. Audit In Audit commands, identifies which information is desired. Packages In AuditValue, returns a list of Packages realized by Termination. DigitMap Instructions for handling DTMF tones at the MG. ServiceChange In ServiceChange, what, why service change occurred, etc. ObservedEvents In Notify or AuditValue, report of events observed. Statistics In Subtract and Audit, Report of Statistics kept on a Termination.
调制解调器在适用时标识调制解调器类型和属性。Mux描述多媒体终端(例如H.221、H.223、H.225.0)和构成输入Mux的终端的多路复用类型。媒体流规范列表(见7.1.4)。TerminationState非特定于流的终止(可在包中定义)的属性。流单个流的远程/本地/本地控制描述符列表。Local包含指定MG从远程实体接收的媒体流的属性。Remote包含指定MG发送到远程实体的媒体流的属性。LocalControl包含MG和MGC之间感兴趣的属性(可以在包中定义)。事件描述MG检测到的事件以及检测到事件时要执行的操作。EventBuffer描述当事件缓冲处于活动状态时MG检测到的事件。信号描述应用于终端的信号和/或动作(例如,忙音)。Audit在Audit命令中,标识所需的信息。AuditValue中的包,返回通过终止实现的包的列表。在MG上处理DTMF音调的DigitMap说明。ServiceChange中的ServiceChange、发生什么、为什么发生服务更改等。Notify或AuditValue中观察到的事件,观察到的事件报告。在减法和审计中的统计,终止时保存的统计报告。
Occasionally, a command must refer to the entire gateway, rather than a termination within it. A special TerminationID, "Root" is reserved for this purpose. Packages may be defined on Root. Root thus may have properties and events (signals are not appropriate for root). Accordingly, the root TerminationID may appear in:
有时,命令必须引用整个网关,而不是其中的终端。为此保留了一个特殊的TerminationID“Root”。包可以在根目录上定义。因此,Root可能具有属性和事件(信号不适用于Root)。因此,根TerminationID可能出现在:
. a Modify command - to change a property or set an event . a Notify command - to report an event . an AuditValue return - to examine the values of properties implemented on root . an AuditCapability - to determine what properties of root are implemented . a ServiceChange - to declare the gateway in or out of service.
. 修改命令-更改属性或设置事件。通知命令-用于报告事件。AuditValue返回-检查在根目录上实现的属性的值。AuditCapability—确定实现了根目录的哪些属性。ServiceChange—声明网关投入或退出服务。
Any other use of the root TerminationID is an error.
根TerminationID的任何其他用法都是错误的。
The protocol provides commands for manipulating the logical entities of the protocol connection model, Contexts and Terminations. Commands provide control at the finest level of granularity supported by the protocol. For example, Commands exist to add Terminations to a Context, modify Terminations, subtract Terminations from a Context, and audit properties of Contexts or Terminations. Commands provide for complete control of the properties of Contexts and Terminations. This includes specifying which events a Termination is to report, which signals/actions are to be applied to a Termination and specifying the topology of a Context (who hears/sees whom).
协议提供用于操作协议连接模型、上下文和终止的逻辑实体的命令。命令以协议支持的最佳粒度级别提供控制。例如,存在向上下文添加终止、修改终止、从上下文中减去终止以及审核上下文或终止的属性的命令。命令用于完全控制上下文和终止的属性。这包括指定要报告的终止事件、要应用于终止的信号/操作以及指定上下文的拓扑(谁听到/看到谁)。
Most commands are for the specific use of the Media Gateway Controller as command initiator in controlling Media Gateways as command responders. The exceptions are the Notify and ServiceChange commands: Notify is sent from Media Gateway to Media Gateway Controller, and ServiceChange may be sent by either entity. Below is an overview of the commands; they are explained in more detail in section 7.2.
大多数命令都是用于将媒体网关控制器作为命令发起者来控制作为命令响应者的媒体网关的特定用途。例外情况是Notify和ServiceChange命令:Notify从媒体网关发送到媒体网关控制器,ServiceChange可以由任一实体发送。下面是命令的概述;第7.2节对其进行了更详细的解释。
1. Add. The Add command adds a termination to a context. The Add command on the first Termination in a Context is used to create a Context.
1. 添加Add命令将终止添加到上下文中。上下文中第一个终端上的Add命令用于创建上下文。
2. Modify. The Modify command modifies the properties, events and signals of a termination.
2. 修改Modify命令修改终止的属性、事件和信号。
3. Subtract. The Subtract command disconnects a Termination from its Context and returns statistics on the Termination's participation in the Context. The Subtract command on the last Termination in a Context deletes the Context.
3. 减Subtract命令将终端与其上下文断开连接,并返回终端参与上下文的统计信息。上下文中最后一个终止时的减法命令删除上下文。
4. Move. The Move command atomically moves a Termination to another context.
4. 移动Move命令以原子方式将终止移动到另一个上下文。
5. AuditValue. The AuditValue command returns the current state of properties, events, signals and statistics of Terminations.
5. 审计价值。AuditValue命令返回终止的属性、事件、信号和统计信息的当前状态。
6. AuditCapabilities. The AuditCapabilities command returns all the possible values for Termination properties, events and signals allowed by the Media Gateway.
6. 审计能力。AuditCapabilities命令返回媒体网关允许的终止属性、事件和信号的所有可能值。
7. Notify. The Notify command allows the Media Gateway to inform the Media Gateway Controller of the occurrence of events in the Media Gateway.
7. 通知Notify命令允许媒体网关将媒体网关中发生的事件通知媒体网关控制器。
8. ServiceChange. The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. ServiceChange is also used by the MG to announce its availability to an MGC (registration), and to notify the MGC of impending or completed restart of the MG. The MGC may announce a handover to the MG by sending it a ServiceChange command. The MGC may also use ServiceChange to instruct the MG to take a Termination or group of Terminations in or out of service.
8. 服务改变。ServiceChange命令允许媒体网关通知媒体网关控制器一个或一组终端即将停止服务或刚刚恢复服务。MG还使用ServiceChange向MGC(注册)宣布其可用性,并通知MGC即将或完成MG重启。MGC可以通过向MG发送ServiceChange命令来宣布向MG的移交。MGC还可以使用ServiceChange来指示MG将一个或一组终端接入或退出服务。
These commands are detailed in sections 7.2.1 through 7.2.8
第7.2.1节至第7.2.8节详细介绍了这些命令
The parameters to a command are termed Descriptors. A Descriptor consists of a name and a list of items. Some items may have values. Many Commands share common Descriptors. This subsection enumerates these Descriptors. Descriptors may be returned as output from a command. Parameters and parameter usage specific to a given Command type are described in the subsection that describes the Command.
命令的参数称为描述符。描述符由名称和项目列表组成。有些项目可能有值。许多命令共享公共描述符。本小节列举了这些描述符。描述符可以作为命令的输出返回。特定于给定命令类型的参数和参数用法在描述该命令的小节中进行了描述。
Command parameters are structured into a number of descriptors. In general, the text format of descriptors is DescriptorName=<someID>{parm=value, parm=value_.}.
命令参数被构造成许多描述符。通常,描述符的文本格式是DescriptorName=<someID>{parm=value,parm=value.}。
Parameters may be fully specified, over-specified or under-specified:
参数可以是完全指定的、超过指定的或低于指定的:
1. Fully specified parameters have a single, unambiguous value that the command initiator is instructing the command responder to use for the specified parameter.
1. 完全指定的参数有一个单一的、明确的值,命令发起者正在指示命令响应者对指定参数使用该值。
2. Under-specified parameters, using the CHOOSE value, allow the command responder to choose any value it can support.
2. 在“指定参数”下,使用“选择”值,允许命令响应程序选择它可以支持的任何值。
3. Over-specified parameters have a list of potential values. The list order specifies the command initiator's order of preference of selection. The command responder chooses one value from the offered list and returns that value to the command initiator.
3. 超过指定的参数有一个潜在值列表。列表顺序指定命令启动器的选择优先顺序。命令响应程序从提供的列表中选择一个值,并将该值返回给命令启动器。
Unspecified mandatory parameters (i.e. mandatory parameters not specified in a descriptor) result in the command responder retaining the previous value for that parameter. Unspecified optional parameters result in the command responder using the default value of the parameter. Whenever a parameter is underspecified or overspecified, the descriptor containing the value chosen by the responder is included as output from the command.
未指定的强制参数(即描述符中未指定的强制参数)会导致命令响应程序保留该参数的先前值。未指定的可选参数会导致命令响应程序使用参数的默认值。当参数未指定或指定过度时,包含响应程序选择的值的描述符将作为命令的输出包含在内。
Each command specifies the TerminationId the command operates on. This TerminationId may be "wildcarded". When the TerminationId of a command is wildcarded, the effect shall be as if the command was repeated with each of the TerminationIds matched.
每个命令都指定命令操作的TerminationId。此TerminationId可以是“通配符”。当命令的TerminationId为通配符时,其效果应如同在每个TerminationId匹配的情况下重复命令一样。
The Modem descriptor specifies the modem type and parameters, if any, required for use in e.g. H.324 and text conversation. The descriptor includes the following modem types: V.18, V.22, V.22bis, V.32, V.32bis, V.34, V.90, V.91, Synchronous ISDN, and allows for extensions. By default, no modem descriptor is present in a Termination.
调制解调器描述符指定了在H.324和文本对话中使用所需的调制解调器类型和参数(如有)。描述符包括以下调制解调器类型:V.18、V.22、V.22bis、V.32、V.32bis、V.34、V.90、V.91、同步ISDN,并允许扩展。默认情况下,终端中不存在调制解调器描述符。
In multimedia calls, a number of media streams are carried on a (possibly different) number of bearers. The multiplex descriptor associates the media and the bearers. The descriptor includes the multiplex type:
在多媒体呼叫中,在(可能不同)数量的承载器上承载多个媒体流。多路复用描述符将媒体和承载相关联。描述符包括多路复用类型:
. H.221 . H.223, . H.226, . V.76, . Possible Extensions
. H.221。H.223。H.226。第76节。可能的扩展
and a set of TerminationIDs representing the multiplexed inputs, in order. For example:
以及一组表示多路复用输入的TerminationID,按顺序排列。例如:
Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}
Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}
The Media Descriptor specifies the parameters for all the media streams. These parameters are structured into two descriptors, a Termination State Descriptor, which specifies the properties of a termination that are not stream dependent, and one or more Stream Descriptors each of which describes a single media stream.
媒体描述符指定所有媒体流的参数。这些参数被构造成两个描述符,一个是终止状态描述符,用于指定不依赖于流的终止属性,另一个是一个或多个流描述符,每个流描述符描述单个媒体流。
A stream is identified by a StreamID. The StreamID is used to link the streams in a Context that belong together. Multiple streams exiting a termination shall be synchronized with each other. Within the Stream Descriptor, there are up to three subsidiary descriptors, LocalControl, Local, and Remote. The relationship between these descriptors is thus:
流由StreamID标识。StreamID用于链接上下文中属于一起的流。退出终端的多个流应相互同步。在流描述符中,最多有三个辅助描述符:LocalControl、Local和Remote。因此,这些描述符之间的关系如下:
Media Descriptor TerminationStateDescriptor Stream Descriptor LocalControl Descriptor Local Descriptor Remote Descriptor
媒体描述符终止状态描述符流描述符本地控制描述符本地描述符远程描述符
As a convenience a LocalControl, Local, or Remote descriptor may be included in the Media Descriptor without an enclosing Stream descriptor. In this case, the StreamID is assumed to be 1.
为了方便起见,可以在媒体描述符中包括LocalControl、Local或Remote描述符,而不包括封闭的流描述符。在这种情况下,假定StreamID为1。
The Termination State Descriptor contains the ServiceStates property, the EventBufferControl property and properties of a termination (defined in Packages) that are not stream specific.
终止状态描述符包含ServiceStates属性、EventBufferControl属性和非特定于流的终止(在包中定义)属性。
The ServiceStates property describes the overall state of the termination (not stream-specific). A Termination can be in one of the following states: "test", "out of service", or "in service". The "test" state indicates that the termination is being tested. The state "out of service" indicates that the termination cannot be used for traffic. The state "in service" indicates that a termination can be used or is being used for normal traffic. "in service" is the default state.
ServiceStates属性描述终止的整体状态(非特定于流)。终端可以处于以下状态之一:“测试”、“停止使用”或“正在使用”。“测试”状态表示正在测试终端。“停止服务”状态表示终端不能用于通信。“服务中”状态表示终端可用于或正在用于正常通信。“正在使用”是默认状态。
Values assigned to Properties may be simple values (integer/string/enumeration) or may be underspecified, where more than one value is supplied and the MG may make a choice: . Alternative Values: multiple values in a list, one of which must be selected . Ranges: minimum and maximum values, any value between min and max must be selected, boundary values included . Greater Than/Less Than: value must be greater/less than specified value . CHOOSE Wildcard: the MG chooses from the allowed values for the property
分配给属性的值可以是简单值(整数/字符串/枚举),也可以是未指定的值,其中提供了多个值,MG可以选择:。备选值:列表中的多个值,必须选择其中一个。范围:最小值和最大值,必须选择最小值和最大值之间的任何值,包括边界值。大于/小于:值必须大于/小于指定值。选择通配符:MG从属性的允许值中进行选择
The EventBufferControl property specifies whether events are buffered following detection of an event in the Events Descriptor, or processed immediately. See section 7.1.9 for details.
EventBufferControl属性指定是在事件描述符中检测到事件后缓冲事件,还是立即处理事件。详见第7.1.9节。
A Stream descriptor specifies the parameters of a single bi-directional stream. These parameters are structured into three descriptors: one that contains termination properties specific to a stream and one each for local and remote flows. The Stream Descriptor includes a StreamID which identifies the stream. Streams are created by specifying a new StreamID on one of the terminations in a Context. A stream is deleted by setting empty Local and Remote descriptors for the stream with ReserveGroup and ReserveValue in LocalControl set to "false" on all terminations in the context that previously supported that stream.
流描述符指定单个双向流的参数。这些参数分为三个描述符:一个包含特定于流的终止属性,另一个分别用于本地和远程流。流描述符包括识别流的StreamID。流是通过在上下文中的一个终止上指定新的StreamID来创建的。通过将流的空本地和远程描述符设置为空,并将LocalControl中的ReserveGroup和ReserveValue在先前支持该流的上下文中的所有终止上设置为“false”,可以删除该流。
StreamIDs are of local significance between MGC and MG and they are assigned by the MGC. Within a context, StreamID is a means by which to indicate which media flows are interconnected: streams with the same StreamID are connected.
流线在MGC和MG之间具有局部意义,由MGC指定。在上下文中,StreamID是一种指示哪些媒体流相互连接的方法:连接具有相同StreamID的流。
If a termination is moved from one context to another, the effect on the context to which the termination is moved is the same as in the case that a new termination were added with the same StreamIDs as the moved termination.
如果将终止从一个上下文移动到另一个上下文,则对将终止移动到的上下文的影响与使用与移动的终止相同的StreamID添加新终止的情况相同。
The LocalControl Descriptor contains the Mode property, the ReserveGroup and ReserveValue properties and properties of a termination (defined in Packages) that are stream specific, and are of interest between the MG and the MGC. Values of properties may be underspecified as in section 7.1.1.
LocalControl描述符包含特定于流的模式属性、ReserveGroup和ReserveValue属性以及终止(在包中定义)的属性,这些属性在MG和MGC之间很重要。如第7.1.1节所述,可能未对特性值进行规定。
The allowed values for the mode property are send-only, receive-only, send/receive, inactive and loop-back. "Send" and "receive" are with respect to the exterior of the context, so that, for example, a stream set to mode=sendonly does not pass received media into the context. Signals and Events are not affected by mode.
mode属性允许的值为仅发送、仅接收、发送/接收、非活动和环回。“发送”和“接收”与上下文外部有关,因此,例如,设置为mode=sendonly的流不会将接收到的媒体传递到上下文中。信号和事件不受模式的影响。
The boolean-valued Reserve properties, ReserveValue and ReserveGroup, of a Termination indicate what the MG is expected to do when it receives a local and/or remote descriptor.
终止的布尔值保留属性ReserveValue和ReserveGroup指示MG在接收本地和/或远程描述符时应执行的操作。
If the value of a Reserve property is True, the MG SHALL reserve resources for all alternatives specified in the local and/or remote descriptors for which it currently has resources available. It SHALL respond with the alternatives for which it reserves resources. If it cannot not support any of the alternatives, it SHALL respond with a reply to the MGC that contains empty local and/or remote descriptors.
如果保留财产的价值为真,MG应为其当前拥有可用资源的本地和/或远程描述符中规定的所有备选方案保留资源。其应以其保留资源的备选方案作出回应。如果不能支持任何备选方案,则应回复MGC,其中包含空的本地和/或远程描述符。
If the value of a Reserve property is False, the MG SHALL choose one of the alternatives specified in the local descriptor (if present) and one of the alternatives specified in the remote descriptor (if present). If the MG has not yet reserved resources to support the selected alternative, it SHALL reserve the resources. If, on the other hand, it already reserved resources for the Termination addressed (because of a prior exchange with ReserveValue and/or ReserveGroup equal to True), it SHALL release any excess resources it reserved previously. Finally, the MG shall send a reply to the MGC containing the alternatives for the local and/or remote descriptor that it selected. If the MG does not have sufficient resources to support any of the alternatives specified, is SHALL respond with error 510 (insufficient resources).
如果保留属性的值为假,MG应选择本地描述符(如果存在)中指定的备选方案之一和远程描述符(如果存在)中指定的备选方案之一。如果MG尚未保留资源以支持所选备选方案,则应保留资源。另一方面,如果它已经为地址终止保留了资源(因为之前的交换ReserveValue和/或ReserveGroup等于True),它应该释放它先前保留的任何多余资源。最后,MG应向MGC发送回复,其中包含其选择的本地和/或远程描述符的备选方案。如果MG没有足够的资源支持指定的任何备选方案,is应以错误510(资源不足)作出响应。
The default value of ReserveValue and ReserveGroup is False.
ReserveValue和ReserveGroup的默认值为False。
A new setting of the LocalControl Descriptor completely replaces the previous setting of that descriptor in the MG. Thus to retain information from the previous setting the MGC must include that information in the new setting. If the MGC wishes to delete some information from the existing descriptor, it merely resends the descriptor (in a Modify command) with the unwanted information stripped out.
LocalControl描述符的新设置完全替换MG中该描述符的先前设置。因此,为了保留以前设置中的信息,MGC必须在新设置中包含该信息。如果MGC希望从现有描述符中删除一些信息,它只需重新发送描述符(在Modify命令中),去掉不需要的信息。
The MGC uses Local and Remote descriptors to reserve and commit MG resources for media decoding and encoding for the given Stream(s) and Termination to which they apply. The MG includes these descriptors in its response to indicate what it is actually prepared to support. The MG SHALL include additional properties and their values in its
MGC使用本地和远程描述符来保留和提交MG资源,用于给定流的媒体解码和编码以及它们应用的终止。MG在其响应中包含这些描述符,以表明其实际准备支持的内容。MG应包括附加属性及其值
response if these properties are mandatory yet not present in the requests made by the MGC (e.g., by specifying detailed video encoding parameters where the MGC only specified the payload type).
如果这些属性是强制性的,但在MGC发出的请求中不存在,则响应(例如,通过指定详细的视频编码参数,其中MGC仅指定有效负载类型)。
Local refers to the media received by the MG and Remote refers to the media sent by the MG.
本地指MG接收的媒体,远程指MG发送的媒体。
When text encoding the protocol, the descriptors consist of session descriptions as defined in SDP (RFC2327). In session descriptions sent from the MGC to the MG, the following exceptions to the syntax of RFC 2327 are allowed:
当对协议进行文本编码时,描述符由SDP(RFC2327)中定义的会话描述组成。在从MGC发送到MG的会话描述中,RFC 2327的语法允许以下例外情况:
. the "s=", "t=" and "o=" lines are optional, . the use of CHOOSE is allowed in place of a single parameter value, and . the use of alternatives is allowed in place of a single parameter value.
. “s=”、“t=”和“o=”行是可选的。允许使用CHOOSE代替单个参数值,以及。允许使用备选方案代替单个参数值。
When multiple session descriptions are provided in one descriptor, the "v=" lines are required as delimiters; otherwise they are optional in session descriptions sent to the MG. Implementations shall accept session descriptions that are fully conformant to RFC2327. When binary encoding the protocol the descriptor consists of groups of properties (tag-value pairs) as specified in Annex C. Each such group may contain the parameters of a session description.
当在一个描述符中提供多个会话描述时,需要使用“v=”行作为分隔符;否则,它们在发送给MG的会话描述中是可选的。实施应接受完全符合RFC2327的会话描述。当对协议进行二进制编码时,描述符由附录C中规定的属性组(标签-值对)组成。每个属性组可包含会话描述的参数。
Below, the semantics of the local and remote descriptors are specified in detail. The specification consists of two parts. The first part specifies the interpretation of the contents of the descriptor. The second part specifies the actions the MG must take upon receiving the local and remote descriptors. The actions to be taken by the MG depend on the values of the ReserveValue and ReserveGroup properties of the LocalControl descriptor.
下面详细说明了本地和远程描述符的语义。本规范由两部分组成。第一部分指定描述符内容的解释。第二部分指定MG在接收本地和远程描述符时必须采取的操作。MG要执行的操作取决于LocalControl描述符的ReserveValue和ReserveGroup属性的值。
Either the local or the remote descriptor or both may be
可以使用本地或远程描述符,也可以同时使用两者
. unspecified (i.e., absent), . empty, . underspecified through use of CHOOSE in a property value, . fully specified, or . overspecified through presentation of multiple groups of properties and possibly multiple property values in one or more of these groups.
. 未指明(即缺席)。空的通过在属性值中使用“选择”未指定。完全指定,或。通过显示多组属性以及其中一个或多个组中的多个属性值而过度指定。
Where the descriptors have been passed from the MGC to the MG, they are interpreted according to the rules given in section 7.1.1, with the following additional comments for clarification:
如果描述符已从MGC传递给MG,则应根据第7.1.1节中给出的规则对其进行解释,并附上以下附加注释进行澄清:
(a) An unspecified Local or Remote descriptor is considered to be a missing mandatory parameter. It requires the MG to use whatever was last specified for that descriptor. It is possible that there was no previously-specified value, in which case the descriptor concerned is ignored in further processing of the command.
(a) 未指定的本地或远程描述符被视为缺少必需参数。它要求MG使用上次为该描述符指定的内容。可能之前没有指定值,在这种情况下,在命令的进一步处理中忽略相关描述符。
(b) An empty Local (Remote) descriptor in a message from the MGC signifies a request to release any resources reserved for the media flow received (sent).
(b) 来自MGC的消息中的空本地(远程)描述符表示请求释放为接收(发送)的媒体流保留的任何资源。
(c) If multiple groups of properties are present in a Local or Remote descriptor or multiple values within a group, the order of preference is descending.
(c) 如果本地或远程描述符中存在多组属性,或者一个组中存在多个值,则首选顺序为降序。
(d) Underspecified or overspecified properties within a group of properties sent by the MGC are requests for the MG to choose one or more values which it can support for each of those properties. In case of an overspecified property, the list of values is in descending order of preference.
(d) MGC发送的一组属性中的指定不足或指定过度的属性是请求MG为每个属性选择一个或多个可支持的值。如果是过度指定的属性,则值列表按首选项的降序排列。
Subject to the above rules, subsequent action depends on the values of the ReserveValue and ReserveGroup properties in LocalControl.
根据上述规则,后续操作取决于LocalControl中ReserveValue和ReserveGroup属性的值。
If ReserveGroup is true, the MG reserves the resources required to support any of the requested property group alternatives that it can currently support. If ReserveValue is true, the MG reserves the resources required to support any of the requested property value alternatives that it can currently support.
如果ReserveGroup为true,MG将保留支持其当前可以支持的任何请求的财产组备选方案所需的资源。如果ReserveValue为true,MG将保留支持其当前可以支持的任何请求的财产价值备选方案所需的资源。
NOTE - If a Local or Remote descriptor contains multiple groups of properties, and ReserveGroup is true, then the MG is requested to reserve resources so that it can decode or encode the media stream according to any of the alternatives. For instance, if the Local descriptor contains two groups of properties, one specifying packetized G.711 A-law audio and the other G.723.1 audio, the MG reserves resources so that it can decode one audio stream encoded in either G.711 A-law format or G.723.1 format. The MG does not have to reserve resources to decode two audio streams simultaneously, one encoded in G.711 A-law and one in G.723.1. The intention for the use of ReserveValue is analogous.
注意-如果本地或远程描述符包含多组属性,并且ReserveGroup为true,则请求MG保留资源,以便它可以根据任何备选方案对媒体流进行解码或编码。例如,如果本地描述符包含两组属性,一组指定打包的G.711 A-law音频,另一组指定G.723.1音频,MG将保留资源,以便能够解码以G.711 A-law格式或G.723.1格式编码的一个音频流。MG不必保留资源来同时解码两个音频流,一个在G.711 A-law中编码,另一个在G.723.1中编码。使用ReserveValue的意图类似。
If ReserveGroup is true or ReserveValue is true, then the following rules apply.
如果ReserveGroup为true或ReserveValue为true,则以下规则适用。
. If the MG has insufficient resources to support all alternatives requested by the MGC and the MGC requested resources in both Local and Remote, the MG should reserve resources to support at least one alternative each within Local and Remote.
. 如果MG没有足够的资源来支持MGC请求的所有备选方案以及MGC请求的本地和远程资源,MG应保留资源,以支持本地和远程范围内的至少一个备选方案。
. If the MG has insufficient resources to support at least one alternative within a Local (Remote) descriptor received from the MGC, it shall return an empty Local (Remote) in response.
. 如果MG没有足够的资源来支持从MGC接收的本地(远程)描述符中的至少一个备选方案,则MG应返回一个空的本地(远程)描述符作为响应。
. In its response to the MGC, when the MGC included Local and Remote descriptors, the MG SHALL include Local and Remote descriptors for all groups of properties and property values it reserved resources for. If the MG is incapable of supporting at least one of the alternatives within the Local (Remote) descriptor received from the MGC, it SHALL return an empty Local (Remote) descriptor.
. 在对MGC的回应中,当MGC包括本地和远程描述符时,MG应包括其保留资源的所有财产组和财产价值的本地和远程描述符。如果MG无法支持从MGC接收的本地(远程)描述符中的至少一个备选方案,则应返回空的本地(远程)描述符。
. If the Mode property of the LocalControl descriptor is RecvOnly or SendRecv, the MG must be prepared to receive media encoded according to any of the alternatives included in its response to the MGC.
. 如果LocalControl描述符的Mode属性为RecVoOnly或SendRecv,则MG必须准备好接收根据其对MGC的响应中包含的任何备选方案编码的媒体。
. If ReserveGroup is False and ReserveValue is false, then the MG SHOULD apply the following rules to resolve Local and Remote to a single alternative each:
. 如果ReserveGroup为False且ReserveValue为False,则MG应应用以下规则将本地和远程解析为单个备选方案:
. The MG chooses the first alternative in Local for which it is able to support at least one alternative in Remote.
. MG在本地选择第一个备选方案,并且能够在远程支持至少一个备选方案。
. If the MG is unable to support at least one Local and one Remote alternative, it returns Error 510 (Insufficient Resources).
. 如果MG无法支持至少一个本地和一个远程备选方案,则返回错误510(资源不足)。
. The MG returns its selected alternative in each of Local and Remote.
. MG在本地和远程中返回其选择的备选方案。
A new setting of a Local or Remote Descriptor completely replaces the previous setting of that descriptor in the MG. Thus to retain information from the previous setting the MGC must include that information in the new setting. If the MGC wishes to delete some information from the existing descriptor, it merely resends the descriptor (in a Modify command) with the unwanted information stripped out.
本地或远程描述符的新设置完全替换MG中该描述符的先前设置。因此,为了保留以前设置中的信息,MGC必须在新设置中包含该信息。如果MGC希望从现有描述符中删除一些信息,它只需重新发送描述符(在Modify命令中),去掉不需要的信息。
The EventsDescriptor parameter contains a RequestIdentifier and a list of events that the Media Gateway is requested to detect and report. The RequestIdentifier is used to correlate the request with the notifications that it may trigger. Requested events include, for example, fax tones, continuity test results, and on-hook and off-hook transitions.
EventsDescriptor参数包含RequestIdentifier和请求媒体网关检测和报告的事件列表。RequestIdentifier用于将请求与其可能触发的通知关联起来。请求的事件包括,例如,传真音、连续性测试结果以及挂机和摘机转换。
Each event in the descriptor contains the Event name, an optional streamID, an optional KeepActive flag, and optional parameters. The Event name consists of a Package Name (where the event is defined) and an EventID. The ALL wildcard may be used for the EventID, indicating that all events from the specified package have to be detected. The default streamID is 0, indicating that the event to be detected is not related to a particular media stream. Events can have parameters. This allows a single event description to have some variation in meaning without creating large numbers of individual events. Further event parameters are defined in the package.
描述符中的每个事件都包含事件名称、可选streamID、可选KeepActiv标志和可选参数。事件名称由包名称(定义事件的位置)和事件ID组成。所有通配符可用于EventID,表示必须检测指定包中的所有事件。默认streamID为0,表示要检测的事件与特定媒体流无关。事件可以有参数。这允许单个事件描述在意义上有一些变化,而不会创建大量的单个事件。进一步的事件参数在包中定义。
The default action of the MG, when it detects an event in the Events Descriptor, is to send a Notify command to the MG. Any other action is for further study.
MG在事件描述符中检测到事件时的默认操作是向MG发送Notify命令。其他行动有待进一步研究。
If the value of the EventBufferControl property equals LockStep, following detection of such an event, normal handling of events is suspended. Any event which is subsequently detected and occurs in the EventBuffer Descriptor is added to the end of the EventBuffer (a FIFO queue), along with the time that it was detected. The MG SHALL wait for a new EventsDescriptor to be loaded. A new EventsDescriptor can be loaded either as the result of receiving a command with a new EventsDescriptor, or by activating an embedded EventsDescriptor.
如果EventBufferControl属性的值等于LockStep,则在检测到此类事件后,将暂停事件的正常处理。随后在EventBuffer描述符中检测到并发生的任何事件都将与检测到的时间一起添加到EventBuffer(FIFO队列)的末尾。MG应等待加载新的事件描述符。可以通过接收带有新EventsDescriptor的命令或激活嵌入式EventsDescriptor来加载新EventsDescriptor。
If EventBufferControl equals Off, the MG continues processing based on the active EventsDescriptor.
如果EventBufferControl等于Off,MG将根据活动的EventsDescriptor继续处理。
In the case that an embedded EventsDescriptor being activated, the MG continues event processing based on the newly activated EventsDescriptor (Note - for purposes of EventBuffer handling, activation of an embedded EventsDescriptor is equivalent to receipt of a new EventsDescriptor).
在激活嵌入式EventsDescriptor的情况下,MG将基于新激活的EventsDescriptor继续进行事件处理(注意:出于EventBuffer处理的目的,激活嵌入式EventsDescriptor相当于接收新的EventsDescriptor)。
When the MG receives a command with a new EventsDescriptor, one or more events may have been buffered in the EventBuffer in the MG. The value of EventBufferControl then determines how the MG treats such buffered events.
当MG接收到带有新EventsDescriptor的命令时,MG中的EventBuffer中可能已缓冲了一个或多个事件。然后,EventBufferControl的值确定MG如何处理此类缓冲事件。
Case 1
案例1
If EventBufferControl = LockStep and the MG receives a new EventsDescriptor it will check the FIFO EventBuffer and take the following actions:
如果EventBufferControl=LockStep且MG收到新的EventsDescriptor,它将检查FIFO EventBuffer并采取以下措施:
1. If the EventBuffer is empty, the MG waits for detection of events based on the new EventsDescriptor.
1. 如果EventBuffer为空,MG将等待基于新EventsDescriptor的事件检测。
2. If the EventBuffer is non-empty, the MG processes the FIFO queue starting with the first event:
2. 如果EventBuffer为非空,MG将从第一个事件开始处理FIFO队列:
a) If the event in the queue is in the events listed in the new EventsDescriptor, the default action of the MG is to send a Notify command to the MGC and remove the event from the EventBuffer. Any other action is for further study. The time stamp of the Notify shall be the time the event was actually detected. The MG then waits for a new EventsDescriptor. While waiting for a new EventsDescriptor, any events matching the EventsBufferDescriptor will be placed in the EventBuffer and the event processing will repeat from step 1.
a) 如果队列中的事件在新EventsDescriptor中列出的事件中,MG的默认操作是向MGC发送Notify命令并从EventBuffer中删除该事件。其他行动有待进一步研究。通知的时间戳应为实际检测到事件的时间。MG然后等待新的EventsDescriptor。在等待新的EventsDescriptor时,与EventsBufferDescriptor匹配的任何事件都将放置在EventBuffer中,事件处理将从步骤1开始重复。
b) If the event is not in the new EventsDescriptor, the MG SHALL discard the event and repeat from step 1.
b) 如果该事件不在新的事件描述器中,MG应丢弃该事件并从步骤1开始重复。
Case 2
案例2
If EventBufferControl equals Off and the MG receives a new EventsDescriptor, it processes new events with the new EventsDescriptor.
如果EventBufferControl等于Off且MG接收到新的EventsDescriptor,则它将使用新的EventsDescriptor处理新事件。
If the MG receives a command instructing it to set the value of EventBufferControl to Off, all events in the EventBuffer SHALL be discarded.
如果MG收到命令,指示其将EventBufferControl的值设置为Off,则应丢弃EventBuffer中的所有事件。
The MG may report several events in a single Transaction as long as this does not unnecessarily delay the reporting of individual events.
MG可以在单个交易中报告多个事件,只要这不会不必要地延迟单个事件的报告。
For procedures regarding transmitting the Notify command, refer to the appropriate annex for specific transport considerations.
有关发送Notify命令的程序,请参阅相应的附件以了解具体的运输注意事项。
The default value of EventBufferControl is Off.
EventBufferControl的默认值为Off。
Note - Since the EventBufferControl property is in the TerminationStateDescriptor, the MG might receive a command that changes the EventBufferControl property and does not include an EventsDescriptor.
注意-由于EventBufferControl属性位于TerminationStateDescriptor中,MG可能会收到更改EventBufferControl属性的命令,但不包括EventsDescriptor。
Normally, detection of an event shall cause any active signals to stop. When KeepActive is specified in the event, the MG shall not interrupt any signals active on the Termination on which the event is detected.
正常情况下,事件检测应导致任何激活信号停止。当事件中规定了Keepacitive时,MG不得中断检测到事件的终端上的任何激活信号。
An event can include an Embedded Signals descriptor and/or an Embedded Events Descriptor which, if present, replaces the current Signals/Events descriptor when the event is detected. It is possible, for example, to specify that the dial-tone Signal be
事件可以包括嵌入式信号描述符和/或嵌入式事件描述符,如果存在,则在检测到事件时替换当前信号/事件描述符。例如,可以指定拨号音信号为
generated when an off-hook Event is detected, or that the dial-tone Signal be stopped when a digit is detected. A media gateway controller shall not send EventsDescriptors with an event both marked KeepActive and containing an embedded SignalsDescriptor.
检测到摘机事件时生成,或检测到数字时停止拨号音信号。媒体网关控制器不得发送带有标记为KeepActive且包含嵌入式信号脚本的事件脚本。
Only one level of embedding is permitted. An embedded EventsDescriptor SHALL NOT contain another embedded EventsDescriptor; an embedded EventsDescriptor may contain an embedded SignalsDescriptor.
只允许一级嵌入。嵌入式EventsDescriptor不得包含其他嵌入式EventsDescriptor;嵌入式EventsDescriptor可能包含嵌入式SignalsDescriptor。
An EventsDescriptor received by a media gateway replaces any previous Events Descriptor. Event notification in process shall complete, and events detected after the command containing the new EventsDescriptor executes, shall be processed according to the new EventsDescriptor.
媒体网关接收的事件描述符将替换以前的任何事件描述符。过程中的事件通知应完成,并且在包含新EventsDescriptor的命令执行后检测到的事件应根据新EventsDescriptor进行处理。
The EventBuffer Descriptor contains a list of events, with their parameters if any, that the MG is requested to detect and buffer when EventBufferControl equals LockStep (see 7.1.9).
EventBuffer描述符包含事件列表及其参数(如果有),当EventBufferControl等于LockStep时,MG被请求检测并缓冲这些事件(参见7.1.9)。
A SignalsDescriptor is a parameter that contains the set of signals that the Media Gateway is asked to apply to a Termination. A SignalsDescriptor contains a number of signals and/or sequential signal lists. A SignalsDescriptor may contain zero signals and sequential signal lists. Support of sequential signal lists is optional.
SignalsDescriptor是一个参数,包含要求媒体网关应用于终端的一组信号。信号描述符包含许多信号和/或顺序信号列表。信号描述符可以包含零信号和顺序信号列表。支持顺序信号列表是可选的。
Signals are defined in packages. Signals shall be named with a Package name (in which the signal is defined) and a SignalID. No wildcard shall be used in the SignalID. Signals that occur in a SignalsDescriptor have an optional StreamID parameter (default is 0, to indicate that the signal is not related to a particular media stream), an optional signal type (see below), an optional duration and possibly parameters defined in the package that defines the signal. This allows a single signal to have some variation in meaning, obviating the need to create large numbers of individual signals. Finally, the optional parameter "notifyCompletion" allows a MGC to indicate that it wishes to be notified when the signal finishes playout. When the MGC enables the signal completion event (see section E.1.2) in an Events Descriptor, that event is detected whenever a signal terminates and "notifyCompletion" for that signal is set to TRUE. The signal completion event of section E.1.2 has a parameter that indicates how the signal terminated: it played to
信号在包中定义。信号应使用包名(其中定义了信号)和信号ID进行命名。SignalID中不得使用通配符。信号描述符中出现的信号具有可选的StreamID参数(默认值为0,表示该信号与特定媒体流无关)、可选的信号类型(见下文)、可选的持续时间以及定义该信号的包中可能定义的参数。这允许单个信号在含义上有一些变化,从而避免了创建大量单个信号的需要。最后,可选参数“notifyCompletion”允许MGC指示它希望在信号完成播放时收到通知。当MGC在事件描述符中启用信号完成事件(见第E.1.2节)时,只要信号终止,就会检测到该事件,并且该信号的“notifyCompletion”设置为TRUE。第E.1.2节的信号完成事件具有一个参数,该参数指示信号如何终止:它向
completion, it was interrupted by an event, it was halted because a new SignalsDescriptor arrived, or the signal did not complete for some other reason.
完成时,它被事件中断,由于新的信号描述符到达或由于其他原因信号未完成而停止。
The duration is an integer value that is expressed in hundredths of a second.
持续时间是以百分之一秒表示的整数值。
There are three types of signals:
有三种类型的信号:
. on/off - the signal lasts until it is turned off, . timeout - the signal lasts until it is turned off or a specific period of time elapses, . brief - the signal duration is so short that it will stop on its own unless a new signal is applied that causes it to stop; no timeout value is needed.
. 开/关-信号持续到关闭。超时-信号持续到关闭或经过特定时间段。简短-信号持续时间很短,除非应用新信号使其停止,否则信号将自行停止;不需要超时值。
If the signal type is specified in a SignalsDescriptor, it overrides the default signal type (see Section 12.1.4). If duration is specified for an on/off signal, it SHALL be ignored.
如果信号描述符中指定了信号类型,则会覆盖默认信号类型(见第12.1.4节)。如果规定了接通/断开信号的持续时间,则应忽略该持续时间。
A sequential signal list consists of a signal list identifier, a sequence of signals to be played sequentially, and a signal type.
顺序信号列表由信号列表标识符、要顺序播放的信号序列和信号类型组成。
Only the trailing element of the sequence of signals in a sequential signal list may be an on/off signal. If the trailing element of the sequence is an on/off signal, the signal type of the sequential signal list shall be on/off as well. If the sequence of signals in a sequential signal list contains signals of type timeout and the trailing element is not of type on/off, the type of the sequential signal list SHALL be set to timeout. The duration of a sequential signal list with type timeout is the sum of the durations of the signals it contains. If the sequence of signals in a sequential signal list contains only signals of type brief, the type of the sequential signal list SHALL be set to brief. A signal list is treated as a single signal of the specified type when played out.
只有顺序信号列表中信号序列的尾随元素可以是开/关信号。如果序列的尾随元素为开/关信号,则序列信号列表的信号类型也应为开/关。如果顺序信号列表中的信号序列包含超时类型的信号,且后续元件不是开/关类型,则顺序信号列表的类型应设置为超时。类型为timeout的顺序信号列表的持续时间是其包含的信号持续时间的总和。如果顺序信号列表中的信号序列仅包含简短类型的信号,则应将顺序信号列表的类型设置为简短。信号列表在播放时被视为指定类型的单个信号。
Multiple signals and sequential signal lists in the same SignalsDescriptor shall be played simultaneously.
应同时播放同一信号编剧中的多个信号和顺序信号列表。
Signals are defined as proceeding from the termination towards the exterior of the Context unless otherwise specified in a package. When the same Signal is applied to multiple Terminations within one Transaction, the MG should consider using the same resource to generate these Signals.
除非包装中另有规定,信号定义为从终端向上下文外部发出。当相同的信号被应用到一个事务中的多个终端时,MG应该考虑使用相同的资源来产生这些信号。
Production of a Signal on a Termination is stopped by application of a new SignalsDescriptor, or detection of an Event on the Termination (see section 7.1.9).
通过应用新的信号描述符或检测终端上的事件,终止信号的产生(见第7.1.9节)。
A new SignalsDescriptor replaces any existing SignalsDescriptor. Any signals applied to the Termination not in the replacement descriptor shall be stopped, and new signals are applied, except as follows. Signals present in the replacement descriptor and containing the KeepActive flagshall be continued if they are currently playing and have not already completed. If a replacement signal descriptor contains a signal that is not currently playing and contains the KeepActive flag, that signal SHALL be ignored. If the replacement descriptor contains a sequential signal list with the same identifier as the existing descriptor, then
新的SignalsDescriptor将替换任何现有的SignalsDescriptor。应停止应用于替代描述符中未包含的终端的任何信号,并应用新信号,以下情况除外。如果替换描述符中存在且包含KeepActive Flag的信号当前正在播放且尚未完成,则应继续播放该信号。如果替换信号描述符包含当前未播放的信号且包含KeepActive标志,则应忽略该信号。如果替换描述符包含与现有描述符具有相同标识符的顺序信号列表,则
. the signal type and sequence of signals in the sequential signal list in the replacement descriptor shall be ignored, and
. 替换描述符中顺序信号列表中的信号类型和信号顺序应忽略,并且
. the playing of the signals in the sequential signal list in the existing descriptor shall not be interrupted.
. 现有描述符中顺序信号列表中的信号播放不得中断。
The Audit Descriptor specifies what information is to be audited. The Audit Descriptor specifies the list of descriptors to be returned. Audit may be used in any command to force the return of a descriptor even if the descriptor in the command was not present, or had no underspecified parameters. Possible items in the Audit Descriptor are:
审核描述符指定要审核的信息。审核描述符指定要返回的描述符列表。在任何命令中都可以使用Audit强制返回描述符,即使命令中的描述符不存在,或者没有未指定的参数。审核描述符中可能的项目包括:
Modem Mux Events Media Signals ObservedEvents DigitMap Statistics Packages EventBuffer
调制解调器多路复用事件观察到的媒体信号事件DigitMap统计数据包事件缓冲区
Audit may be empty, in which case, no descriptors are returned. This is useful in Subtract, to inhibit return of statistics, especially when using wildcard.
审核可能为空,在这种情况下,不会返回任何描述符。这在减法中很有用,可以禁止返回统计信息,尤其是在使用通配符时。
The ServiceChangeDescriptor contains the following parameters:
ServiceChangeDescriptor包含以下参数:
. ServiceChangeMethod . ServiceChangeReason . ServiceChangeAddress
. ServiceChangeMethod。服务改变原因。服务变更地址
. ServiceChangeDelay . ServiceChangeProfile . ServiceChangeVersion . ServiceChangeMGCId . TimeStamp
. 服务更改延迟。ServiceChangeProfile。ServiceChangeVersion。ServiceChangeMGCId。时间戳
See section 7.2.8.
见第7.2.8节。
A DigitMap is a dialing plan resident in the Media Gateway used for detecting and reporting digit events received on a Termination. The DigitMap Descriptor contains a DigitMap name and the DigitMap to be assigned. A digit map may be preloaded into the MG by management action and referenced by name in an EventsDescriptor, may be defined dynamically and subsequently referenced by name, or the actual digitmap itself may be specified in the EventsDescriptor. It is permissible for a digit map completion event within an Events Descriptor to refer by name to a DigitMap which is defined by a DigitMap Descriptor within the same command, regardless of the transmitted order of the respective descriptors.
DigitMap是驻留在媒体网关中的拨号计划,用于检测和报告终端上接收到的数字事件。DigitMap描述符包含DigitMap名称和要分配的DigitMap。数字映射可以通过管理操作预加载到MG中,并在EventsDescriptor中通过名称引用,可以动态定义并随后通过名称引用,或者可以在EventsDescriptor中指定实际的数字映射本身。允许事件描述符中的数字映射完成事件通过名称引用由同一命令中的数字映射描述符定义的数字映射,而不管相应描述符的传输顺序如何。
DigitMaps defined in a DigitMapDescriptor can occur in any of the standard Termination manipulation Commands of the protocol. A DigitMap, once defined, can be used on all Terminations specified by the (possibly wildcarded) TerminationID in such a command. DigitMaps defined on the root Termination are global and can be used on every Termination in the MG, provided that a DigitMap with the same name has not been defined on the given Termination. When a DigitMap is defined dynamically in a DigitMap Descriptor:
在DigitMapDescriptor中定义的DigitMaps可以出现在协议的任何标准终止操作命令中。一旦定义了DigitMap,就可以在这样一个命令中由TerminationID(可能是通配符)指定的所有终端上使用。根终端上定义的DigitMaps是全局的,可以在MG中的每个终端上使用,前提是给定终端上未定义具有相同名称的DigitMap。在DigitMap描述符中动态定义DigitMap时:
. A new DigitMap is created by specifying a name that is not yet defined. The value shall be present.
. 通过指定尚未定义的名称来创建新的DigitMap。该值应为当前值。
. A DigitMap value is updated by supplying a new value for a name that is already defined. Terminations presently using the digitmap shall continue to use the old definition; subsequent EventsDescriptors specifying the name, including any EventsDescriptor in the command containing the DigitMap descriptor, shall use the new one.
. 通过为已定义的名称提供新值来更新DigitMap值。目前使用digitmap的终端应继续使用旧定义;指定名称的后续事件脚本(包括包含DigitMap描述符的命令中的任何事件脚本)应使用新的事件脚本。
. A DigitMap is deleted by supplying an empty value for a name that is already defined. Terminations presently using the digitmap shall continue to use the old definition.
. 通过为已定义的名称提供空值,可以删除DigitMap。目前使用digitmap的终端应继续使用旧定义。
The collection of digits according to a DigitMap may be protected by three timers, viz. a start timer (T), short timer (S), and long timer (L).
根据DigitMap收集的数字可由三个定时器保护,即:。启动计时器(T)、短计时器(S)和长计时器(L)。
1. The start timer (T) is used prior to any digits having been dialed.
1. 在拨出任何数字之前使用启动计时器(T)。
2. If the Media Gateway can determine that at least one more digit is needed for a digit string to match any of the allowed patterns in the digit map, then the interdigit timer value should be set to a long (L) duration (e.g. 16 seconds).
2. 如果媒体网关可以确定一个数字字符串需要至少一个以上的数字来匹配数字映射中的任何允许模式,则叉指计时器值应设置为长(L)持续时间(例如16秒)。
3. If the digit string has matched one of the patterns in a digit map, but it is possible that more digits could be received which would cause a match with a different pattern, then instead of reporting the match immediately, the MG must apply the short timer (S) and wait for more digits.
3. 如果数字字符串已匹配数字映射中的一个模式,但可能会收到更多的数字,从而导致与不同模式的匹配,则MG必须应用较短的计时器并等待更多的数字,而不是立即报告匹配。
The timers are configurable parameters to a DigitMap. The Start timer is started at the beginning of every digit map use, but can be overridden.
定时器是数字地图的可配置参数。启动计时器在每次数字地图使用开始时启动,但可以覆盖。
The formal syntax of the digit map is described by the DigitMap rule in the formal syntax description of the protocol (see Annex A and Annex B). A DigitMap, according to this syntax, is defined either by a string or by a list of strings. Each string in the list is an alternative event sequence, specified either as a sequence of digit map symbols or as a regular expression of digit map symbols. These digit map symbols, the digits "0" through "9" and letters "A" through a maximum value depending on the signalling system concerned, but never exceeding "K", correspond to specified events within a package which has been designated in the Events Descriptor on the termination to which the digit map is being applied. (The mapping between events and digit map symbols is defined in the documentation for packages associated with channel-associated signalling systems such as DTMF, MF, or R2. Digits "0" through "9" MUST be mapped to the corresponding digit events within the signalling system concerned. Letters should be allocated in logical fashion, facilitating the use of range notation for alternative events.)
数字映射的形式语法由协议形式语法描述中的数字映射规则描述(见附录A和附录B)。根据这种语法,DigitMap由字符串或字符串列表定义。列表中的每个字符串都是可选的事件序列,指定为数字映射符号序列或数字映射符号的正则表达式。这些数字映射符号,数字“0”到“9”以及字母“A”到最大值(取决于相关的信号系统),但决不超过“K”,对应于在应用数字映射的终端上的事件描述符中指定的包内的指定事件。(事件和数字映射符号之间的映射在与信道相关信号系统(如DTMF、MF或R2)相关的包的文档中定义。数字“0”到“9”必须映射到相关信号系统内的相应数字事件。字母应以逻辑方式分配,以便于对替代事件使用范围符号。)
The letter "x" is used as a wildcard, designating any event corresponding to symbols in the range "0"-"9". The string may also contain explicit ranges and, more generally, explicit sets of symbols, designating alternative events any one of which satisfies that position of the digit map. Finally, the dot symbol "." stands for zero or more repetitions of the event selector (event, range of events, set of alternative events, or wildcard) that precedes it. As a consequence of the third timing rule above, inter-event timing while matching the dot symbol uses the short timer by default.
字母“x”用作通配符,表示与“0”-“9”范围内的符号相对应的任何事件。该字符串还可以包含显式范围,更一般地,还可以包含显式符号集,指定替代事件,其中任何一个满足数字映射的位置。最后,点符号“.”表示前面的事件选择器(事件、事件范围、备选事件集或通配符)的零次或多次重复。作为上述第三个定时规则的结果,在匹配点符号时,事件间定时默认使用短定时器。
In addition to these event symbols, the string may contain "S" and "L" inter-event timing specifiers and the "Z" duration modifier. "S"
除这些事件符号外,字符串还可能包含“S”和“L”事件间计时说明符以及“Z”持续时间修饰符。“S”
and "L" respectively indicate that the MG should use the short (S) timer or the long (L) timer for subsequent events, over-riding the timing rules described above. A timer specifier following a dot specifies inter-event timing for all events matching the dot as well as for subsequent events. If an explicit timing specifier is in effect in one alternative event sequence, but none is given in any other candidate alternative, the timer value set by the explicit timing specifier must be used. If all sequences with explicit timing controls are dropped from the candidate set, timing reverts to the default rules given above. Finally, if conflicting timing specifiers are in effect in different alternative sequences, the results are undefined.
和“L”分别表示MG应使用短(S)定时器或长(L)定时器来处理后续事件,而不是使用上述定时规则。点后面的计时器说明符指定与点匹配的所有事件以及后续事件的事件间计时。如果显式计时说明符在一个备选事件序列中有效,但在任何其他备选事件序列中均未给出,则必须使用显式计时说明符设置的计时器值。如果从候选集中删除所有具有显式计时控件的序列,则计时将恢复为上面给出的默认规则。最后,如果冲突的定时说明符在不同的替代序列中有效,则结果是未定义的。
A "Z" designates a long duration event: placed in front of the symbol(s) designating the event(s) which satisfy a given digit position, it indicates that that position is satisfied only if the duration of the event exceeds the long-duration threshold. The value of this threshold is assumed to be provisioned in the MG.
“Z”表示长持续时间事件:放在指定满足给定数字位置的事件的符号前面,表示仅当事件持续时间超过长持续时间阈值时才满足该位置。假设在MG中提供该阈值的值。
A digit map is active while the events descriptor which invoked it is active and it has not completed. A digit map completes when:
数字映射处于活动状态,而调用它的事件描述符处于活动状态且尚未完成。数字地图在以下情况下完成:
. a timer has expired, or
. 计时器已过期,或
. an alternative event sequence has been matched and no other alternative event sequence in the digit map could be matched through detection of an additional event (unambiguous match), or
. 已匹配替代事件序列,且数字映射中的其他替代事件序列无法通过检测附加事件(明确匹配)进行匹配,或
. an event has been detected such that a match to a complete alternative event sequence of the digit map will be impossible no matter what additional events are received.
. 已检测到事件,因此无论接收到什么其他事件,都不可能匹配到数字映射的完整替代事件序列。
Upon completion, a digit map completion event as defined in the package providing the events being mapped into the digit map shall be generated. At that point the digit map is deactivated. Subsequent events in the package are processed as per the currently active event processing mechanisms.
完成后,应生成包中定义的数字映射完成事件,提供映射到数字映射的事件。此时,数字地图被停用。包中的后续事件按照当前活动的事件处理机制进行处理。
Pending completion, successive events shall be processed according to the following rules:
在完成之前,应根据以下规则处理连续事件:
1. The "current dial string", an internal variable, is initially empty. The set of candidate alternative event sequences includes all of the alternatives specified in the digit map.
1. “当前拨号字符串”是一个内部变量,最初为空。候选备选事件序列集包括数字映射中指定的所有备选事件。
2. At each step, a timer is set to wait for the next event, based either on the default timing rules given above or on explicit timing specified in one or more alternative event sequences. If
2. 在每个步骤中,根据上述默认计时规则或一个或多个备选事件序列中指定的显式计时,将计时器设置为等待下一个事件。如果
the timer expires and a member of the candidate set of alternatives is fully satisfied, a timeout completion with full match is reported. If the timer expires and part or none of any candidate alternative is satisfied, a timeout completion with partial match is reported.
计时器过期,备选方案候选集的一个成员完全满足,报告完全匹配的超时完成。如果计时器过期,并且任何备选方案中的一部分或任何一个都未得到满足,则会报告超时完成和部分匹配。
3. If an event is detected before the timer expires, it is mapped to a digit string symbol and provisionally added to the end of the current dial string. The duration of the event (long or not long) is noted if and only if this is relevant in the current symbol position (because at least one of the candidate alternative event sequences includes the "Z" modifier at this position in the sequence).
3. 如果在计时器过期之前检测到事件,则会将其映射到数字字符串符号,并临时添加到当前拨号字符串的末尾。当且仅当事件持续时间与当前符号位置相关时(因为至少一个候选替代事件序列在序列中的该位置包括“Z”修饰符),才记录事件持续时间(长或不长)。
4. The current dial string is compared to the candidate alternative event sequences. If and only if a sequence expecting a long-duration event at this position is matched (i.e. the event had long duration and met the specification for this position), then any alternative event sequences not specifying a long duration event at this position are discarded, and the current dial string is modified by inserting a "Z" in front of the symbol representing the latest event. Any sequence expecting a long-duration event at this position but not matching the observed event is discarded from the candidate set. If alternative event sequences not specifying a long duration event in the given position remain in the candidate set after application of the above rules, the observed event duration is treated as irrelevant in assessing matches to them.
4. 将当前拨号字符串与候选备选事件序列进行比较。如果且仅当在该位置预期长持续时间事件的序列匹配(即,该事件具有长持续时间且符合该位置的规范),则丢弃在该位置未指定长持续时间事件的任何替代事件序列,并通过插入“Z”修改当前拨号字符串在代表最新事件的符号前面。任何在此位置期待长持续时间事件但与观察到的事件不匹配的序列都将从候选集中丢弃。如果在应用上述规则后,未在给定位置指定长持续时间事件的备选事件序列仍保留在候选集中,则观察到的事件持续时间在评估与它们的匹配时被视为无关。
5. If exactly one candidate remains, a completion event is generated indicating an unambiguous match. If no candidates remain, the latest event is removed from the current dial string and a completion event is generated indicating full match if one of the candidates from the previous step was fully satisfied before the latest event was detected, or partial match otherwise. The event removed from the current dial string will then be reported as per the currently active event processing mechanisms.
5. 如果只剩下一个候选者,将生成一个完成事件,指示明确的匹配。如果没有候选项,则从当前拨号字符串中删除最新事件,并生成一个完成事件,如果在检测到最新事件之前,上一步骤中的一个候选项已完全满足,则表示完全匹配,否则表示部分匹配。然后,将根据当前活动的事件处理机制报告从当前拨号字符串中删除的事件。
6. If no completion event is reported out of step 5 (because the candidate set still contains more than one alternative event sequence), processing returns to step 2.
6. 如果在步骤5中没有报告完成事件(因为候选集仍然包含多个备选事件序列),则处理返回到步骤2。
A digit map is activated whenever a new event descriptor is applied to the termination or embedded event descriptor is activated, and that event descriptor contains a digit map completion event which itself contains a digit map parameter. Each new activation of a digit map begins at step 1 of the above procedure, with a clear current dial string. Any previous contents of the current dial
每当新事件描述符应用于终止或嵌入式事件描述符被激活时,就会激活一个数字映射,并且该事件描述符包含一个数字映射完成事件,该事件本身包含一个数字映射参数。数字映射的每次新激活都从上述步骤的第1步开始,并带有一个清除的当前拨号字符串。当前拨号盘以前的任何内容
string from an earlier activation are lost. While the digit map is activated, detection is enabled for all events defined in the package containing the specified digit map completion event. Normal event behaviour (e.g. stopping of signals unless the digit completion event has the KeepActive flag enabled) continues to apply for each such event detected, except that the events in the package containing the specified digit map completion event other than the completion event itself are not individually notified.
先前激活的字符串丢失。激活数字映射时,对包含指定数字映射完成事件的包中定义的所有事件启用检测。正常事件行为(如停止信号,除非数字完成事件启用了KeepActive标志)继续适用于检测到的每个此类事件,但包中包含指定数字映射完成事件的事件(完成事件本身除外)未单独通知。
Note that if a package contains a digit map completion event, then an event specification consisting of the package name with a wildcarded ItemID (Property Name) will activate a digit map if the event includes a digit map parameter. Regardless of whether a digit map is activated, this form of event specification will cause the individual events to be reported to the MGC as they are detected.
请注意,如果包包含数字映射完成事件,则如果事件包含数字映射参数,则由包名称和通配符ItemID(属性名称)组成的事件规范将激活数字映射。无论是否激活了数字映射,这种形式的事件规范都会导致在检测到单个事件时将其报告给MGC。
As an example, consider the following dial plan:
作为一个例子,考虑以下拨号计划:
0 Local operator 00 Long distance operator xxxx Local extension number (starts with 1-7) 8xxxxxxx Local number #xxxxxxx Off-site extension *xx Star services 91xxxxxxxxxx Long distance number 9011 + up to 15 digits International number
0本地运营商00长途运营商xxxx本地分机号码(以1-7开头)8xxxxxx本地号码#xxxxxxx场外分机*xx星服务91xxxxxxxxx长途号码9011+最多15位国际号码
If the DTMF detection package described in Annex E (section E.6) is used to collect the dialled digits, then the dialling plan shown above results in the following digit map:
如果附件E(第E.6节)中所述的DTMF检测包用于收集拨号数字,则上述拨号计划会产生以下数字映射:
(0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)
(0 | 00 |[1-7]xxx | 8xxxxxx | fxxxxxx | Exx | 91xxxxxxxxx | 9011x)
The Statistics parameter provides information describing the status and usage of a Termination during its existence within a specific Context. There is a set of standard statistics kept for each termination where appropriate (number of octets sent and received for example). The particular statistical properties that are reported for a given Termination are determined by the Packages realized by the Termination. By default, statistics are reported when the Termination is Subtracted from the Context. This behavior can be overridden by including an empty AuditDescriptor in the Subtract command. Statistics may also be returned from the AuditValue command, or any Add/Move/Modify command using the Audit descriptor.
Statistics参数提供了描述终止在特定上下文中存在期间的状态和使用情况的信息。在适当的情况下,为每个终端保留一组标准统计数据(例如发送和接收的八位字节数)。给定终端报告的特定统计特性由终端实现的包决定。默认情况下,从上下文中减去终止时会报告统计信息。可以通过在Subtract命令中包含空的AuditDescriptor来覆盖此行为。还可以从AuditValue命令或使用审核描述符的任何添加/移动/修改命令返回统计信息。
Statistics are cumulative; reporting Statistics does not reset them. Statistics are reset when a Termination is Subtracted from a Context.
统计是累积的;报告统计信息不会重置它们。当从上下文中减去终止时,将重置统计信息。
Used only with the AuditValue command, the PackageDescriptor returns a list of Packages realized by the Termination.
PackageDescriptor仅与AuditValue命令一起使用,返回由终止实现的包的列表。
ObservedEvents is supplied with the Notify command to inform the MGC of which event(s) were detected. Used with the AuditValue command, the ObservedEventsDescriptor returns events in the event buffer which have not been Notified. ObservedEvents contains the RequestIdentifier of the EventsDescriptor that triggered the notification, the event(s) detected and the detection time(s). Detection times are reported with a precision of hundredths of a second. Time is expressed in UTC.
ObservedEvents随Notify命令一起提供,用于通知MGC检测到哪些事件。ObservedEventsDescriptor与AuditValue命令一起使用,返回事件缓冲区中未通知的事件。ObservedEvents包含触发通知的事件描述符的RequestIdentifier、检测到的事件和检测时间。检测时间的报告精度为百分之一秒。时间以UTC表示。
A topology descriptor is used to specify flow directions between terminations in a Context. Contrary to the descriptors in previous sections, the topology descriptor applies to a Context instead of a Termination. The default topology of a Context is that each termination's transmission is received by all other terminations. The Topology Descriptor is optional to implement.
拓扑描述符用于指定上下文中端点之间的流向。与前几节中的描述符相反,拓扑描述符应用于上下文而不是终止。上下文的默认拓扑是每个终端的传输由所有其他终端接收。拓扑描述符是可选的。
The Topology Descriptor occurs before the commands in an action. It is possible to have an action containing only a Topology Descriptor, provided that the context to which the action applies already exists.
拓扑描述符出现在操作中的命令之前。如果操作应用的上下文已经存在,则可以使操作只包含拓扑描述符。
A topology descriptor consists of a sequence of triples of the form (T1, T2, association). T1 and T2 specify Terminations within the Context, possibly using the ALL or CHOOSE wildcard. The association specifies how media flows between these two Terminations as follows.
拓扑描述符由以下形式的三元组序列组成(T1、T2、关联)。T1和T2在上下文中指定终止,可能使用ALL或CHOOSE通配符。该关联指定媒体如何在这两个终端之间流动,如下所示。
. (T1, T2, isolate) means that the Terminations matching T2 do not receive media from the Terminations matching T1, nor vice versa.
. (T1,T2,隔离)表示匹配T2的终端不从匹配T1的终端接收介质,反之亦然。
. (T1, T2, oneway) means that the Terminations that match T2 receive media from the Terminations matching T1, but not vice versa. In this case use of the ALL wildcard such that there are Terminations that match both T1 and T2 is not allowed.
. (T1,T2,单向)表示匹配T2的终端从匹配T1的终端接收介质,但反之亦然。在这种情况下,不允许使用所有通配符,以便存在同时匹配T1和T2的终止符。
. (T1, T2, bothway) means that the Terminations matching T2 receive media from the Terminations matching T1, and vice versa. In this case it is allowed to use wildcards such that there are
. (T1,T2,双向)表示匹配T2的终端从匹配T1的终端接收介质,反之亦然。在这种情况下,允许使用通配符,以便
Terminations that match both T1 and T2. However, if there is a Termination that matches both, no loopback is introduced; loopbacks are created by setting the TerminationMode. CHOOSE wildcards may be used in T1 and T2 as well, under the following restrictions:
同时匹配T1和T2的终端。但是,如果存在与这两个匹配的终止,则不会引入环回;通过设置TerminationMode创建环回。CHOOSE通配符也可以在T1和T2中使用,但有以下限制:
. the action (see section 8) of which the topology descriptor is part contains an Add command in which a CHOOSE wildcard is used;
. 拓扑描述符所属的操作(参见第8节)包含一个Add命令,其中使用了CHOOSE通配符;
. if a CHOOSE wildcard occurs in T1 or T2, then a partial name SHALL NOT be specified.
. 如果选择通配符出现在T1或T2中,则不应指定部分名称。
The CHOOSE wildcard in a topology descriptor matches the TerminationID that the MG assigns in the first Add command that uses a CHOOSE wildcard in the same action. An existing Termination that matches T1 or T2 in the Context to which a Termination is added, is connected to the newly added Termination as specified by the topology descriptor. The default association when a termination is not mentioned in the Topology descriptor is bothway (if T3 is added to a context with T1 and T2 with topology (T3,T1,oneway) it will be connected bothway to T2).
拓扑描述符中的CHOOSE通配符与MG在同一操作中使用CHOOSE通配符的第一个Add命令中分配的TerminationID相匹配。根据拓扑描述符的指定,在添加终端的上下文中匹配T1或T2的现有终端连接到新添加的终端。拓扑描述符中未提及终止时的默认关联为双向关联(如果T3添加到具有T1和T2拓扑(T3,T1,单向)的上下文中,它将双向连接到T2)。
The figure below and the table following it show some examples of the effect of including topology descriptors in actions. In these examples it is assumed that the topology descriptors are applied in sequence.
下图和下表显示了在操作中包含拓扑描述符的一些效果示例。在这些示例中,假设拓扑描述符按顺序应用。
Context 1 Context 2 Context 3 +------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | ^ ^ | | ^ | | ^ | | | | | | | | | | | | +--+ +--+ | | +---+ | | +--+ | | | | | | | | | | | | v v | | v | | | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 1. No Topology Desc. 2. T1, T2 Isolate 3. T3, T2 oneway
Context 1 Context 2 Context 3 +------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | ^ ^ | | ^ | | ^ | | | | | | | | | | | | +--+ +--+ | | +---+ | | +--+ | | | | | | | | | | | | v v | | v | | | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 1. No Topology Desc. 2. T1, T2 Isolate 3. T3, T2 oneway
Context 1 Context 2 Context 3 +------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | | | | ^ | | ^ ^ | | | | | | | | | | | | +--+ | | +---+ | | +--+ +--+ | | | | | | | | | | | | v | | v | | v v | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 4. T2, T3 oneway 5. T2, T3 bothway 6. T1, T2 bothway
Context 1 Context 2 Context 3 +------------------+ +------------------+ +------------------+ | +----+ | | +----+ | | +----+ | | | T2 | | | | T2 | | | | T2 | | | +----+ | | +----+ | | +----+ | | | | | ^ | | ^ ^ | | | | | | | | | | | | +--+ | | +---+ | | +--+ +--+ | | | | | | | | | | | | v | | v | | v v | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | | T1 |<-->| T3 | | | +----+ +----+ | | +----+ +----+ | | +----+ +----+ | +------------------+ +------------------+ +------------------+ 4. T2, T3 oneway 5. T2, T3 bothway 6. T1, T2 bothway
Figure 4: A Sequence Of Example Topologies
图4:一系列示例拓扑
Topology Description
拓扑描述
1 No topology descriptors When no topology descriptors are included, all terminations have a both way connection to all other terminations.
1无拓扑描述符当不包括拓扑描述符时,所有终端都具有与所有其他终端的双向连接。
2 T1, T2, Isolate Removes the connection between T1 and T2. T3 has a both way connection with both T1 and T2. T1 and T2 have bothway connection to T3.
2 T1,T2,隔离删除T1和T2之间的连接。T3与T1和T2都有双向连接。T1和T2双向连接至T3。
3 T3, T2, oneway A oneway connection from T3 to T2 (i.e. T2 receives media flow from T3). A bothway connection between T1 and T3.
3 T3,T2,单向从T3到T2的单向连接(即T2接收来自T3的介质流)。T1和T3之间的双向连接。
4 T2, T3, oneway A oneway connection between T2 to T3. T1 and T3 remain bothway connected
4 T2,T3,单向T2到T3之间的单向连接。T1和T3保持双向连接
5 T2, T3 bothway T2 is bothway connected to T3. This results in the same as 2.
5 T2、T3双向T2与T3双向连接。这将产生与2相同的结果。
6 T1, T2 bothway (T2, T3 bothway and T1,T3 bothway may be implied or explicit). All terminations have a bothway connection to all other terminations.
6 T1、T2双向(T2、T3双向和T1、T3双向可以是隐含的或明确的)。所有终端与所有其他终端都有双向连接。
A oneway connection must implemented in such a way that the other Terminations in the Context are not aware of the change in topology.
单向连接的实现方式必须确保上下文中的其他终端不知道拓扑中的更改。
Following is an Application Programming Interface (API) describing the Commands of the protocol. This API is shown to illustrate the Commands and their parameters and is not intended to specify implementation (e.g. via use of blocking function calls). It describes the input parameters in parentheses after the command name and the return values in front of the Command. This is only for descriptive purposes; the actual Command syntax and encoding are specified in later subsections. All parameters enclosed by square brackets ([. . . ]) are considered optional.
以下是描述协议命令的应用程序编程接口(API)。显示此API是为了说明命令及其参数,而不是为了指定实现(例如,通过使用阻塞函数调用)。它描述了命令名后面的括号中的输入参数和命令前面的返回值。这仅用于描述目的;实际的命令语法和编码将在后面的小节中指定。方括号([…])内的所有参数均视为可选参数。
The Add Command adds a Termination to a Context.
Add命令将终止添加到上下文中。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Add( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Add( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
The TerminationID specifies the termination to be added to the Context. The Termination is either created, or taken from the null Context. For an existing Termination, the TerminationID would be specific. For a Termination that does not yet exist, the TerminationID is specified as CHOOSE in the command. The new TerminationID will be returned. Wildcards may be used in an Add, but such usage would be unusual. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified.
TerminationID指定要添加到上下文的终止。终止要么创建,要么从空上下文中获取。对于现有终止,TerminationID是特定的。对于尚不存在的终止,在命令中将TerminationID指定为CHOOSE。将返回新的TerminationID。可以在Add中使用通配符,但这种用法并不常见。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。
The optional MediaDescriptor describes all media streams.
可选的MediaDescriptor描述所有媒体流。
The optional ModemDescriptor and MuxDescriptor specify a modem and multiplexer if applicable. For convenience, if a Multiplex Descriptor is present in an Add command and lists any Terminations that are not currently in the Context, such Terminations are added to the context as if individual Add commands listing the Terminations were invoked. If an error occurs on such an implied Add, error 471 - Implied Add for Multiplex failure shall be returned and further processing of the command shall cease.
可选调制解调器描述符和MuxDescriptor指定调制解调器和多路复用器(如果适用)。为方便起见,如果Add命令中存在多路复用描述符,并且列出了当前不在上下文中的任何终止,则此类终止将添加到上下文中,就像调用了列出终止的各个Add命令一样。如果此类隐含Add出现错误,则应返回错误471-多路传输故障的隐含Add,并停止对命令的进一步处理。
The EventsDescriptor parameter is optional. If present, it provides the list of events that should be detected on the Termination.
EventsDescriptor参数是可选的。如果存在,则提供应在终端上检测到的事件列表。
The SignalsDescriptor parameter is optional. If present, it provides the list of signals that should be applied to the Termination.
SignalsDescriptor参数是可选的。如果存在,则提供应应用于终端的信号列表。
The DigitMapDescriptor parameter is optional. If present, defines a DigitMap definition that may be used in an EventsDescriptor.
DigitMapDescriptor参数是可选的。如果存在,则定义可在EventsDescriptor中使用的DigitMap定义。
The AuditDescriptor is optional. If present, the command will return descriptors as specified in the AuditDescriptor.
AuditDescriptor是可选的。如果存在,该命令将返回AuditDescriptor中指定的描述符。
All descriptors that can be modified could be returned by MG if a parameter was underspecified or overspecified. ObservedEvents, Statistics, and Packages, and the EventBuffer Descriptors are returned only if requested in the AuditDescriptor. Add SHALL NOT be used on a Termination with a serviceState of "OutofService".
如果参数未指定或指定过度,MG可以返回所有可以修改的描述符。只有在AuditDescriptor中请求时,才会返回ObservedEvents、Statistics和Packages以及EventBuffer描述符。Add不得用于serviceState为“OutofService”的终端。
The Modify Command modifies the properties of a Termination.
“修改”命令修改终端的属性。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Modify( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Modify( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
The TerminationID may be specific if a single Termination in the Context is to be modified. Use of wildcards in the TerminationID may be appropriate for some operations. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple
如果要修改上下文中的单个终止,则TerminationID可能是特定的。在TerminationID中使用通配符可能适用于某些操作。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。多次尝试时的尝试顺序
TerminationIDs match is not specified. The CHOOSE option is an error, as the Modify command may only be used on existing Terminations.
未指定TerminationID匹配。“选择”选项是一个错误,因为“修改”命令只能用于现有终端。
The remaining parameters to Modify are the same as those to Add. Possible return values are the same as those to Add.
要修改的其余参数与要添加的参数相同。可能的返回值与要添加的返回值相同。
The Subtract Command disconnects a Termination from its Context and returns statistics on the Termination's participation in the Context.
Subtract命令将终端与其上下文断开连接,并返回终端参与上下文的统计信息。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Subtract(TerminationID [, AuditDescriptor] )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Subtract(TerminationID [, AuditDescriptor] )
TerminationID in the input parameters represents the Termination that is being subtracted. The TerminationID may be specific or may be a wildcard value indicating that all (or a set of related) Terminations in the Context of the Subtract Command are to be subtracted. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. The CHOOSE option is an error, as the Subtract command may only be used on existing Terminations. ALL may be used as the ContextID as well as the TerminationId in a Subtract, which would have the effect of deleting all contexts, deleting all ephemeral terminations, and returning all physical terminations to Null context.
输入参数中的TerminationID表示要减去的终止。TerminationID可以是特定的,也可以是通配符值,指示要减去减法命令上下文中的所有(或一组相关)终止。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。选择选项是错误的,因为减法命令只能用于现有终端。ALL可以用作减法中的ContextID和TerminationId,其效果是删除所有上下文,删除所有临时终止,并将所有物理终止返回到空上下文。
By default, the Statistics parameter is returned to report information collected on the Termination or Terminations specified in the Command. The information reported applies to the Termination's or Terminations' existence in the Context from which it or they are being subtracted.
默认情况下,返回Statistics参数以报告在命令中指定的一个或多个终止上收集的信息。报告的信息适用于该终止在其被减去的上下文中的存在。
The AuditDescriptor is optional. If present, the command will return descriptors as specified in the AuditDescriptor. Possible return values are the same as those to Add.
AuditDescriptor是可选的。如果存在,该命令将返回AuditDescriptor中指定的描述符。可能的返回值与要添加的返回值相同。
When a provisioned Termination is Subtracted from a context, its property values shall revert to:
当从上下文中减去规定终止时,其属性值应恢复为:
. the default value, if specified for the property and not overridden by provisioning, . otherwise, the provisioned value.
. 默认值,如果为属性指定且未被设置覆盖。否则,设置的值。
The Move Command moves a Termination to another Context from its current Context in one atomic operation. The Move command is the only command that refers to a Termination in a Context different from that to which the command is applied. The Move command shall not be used to move Terminations to or from the null Context.
Move命令在一个原子操作中将终端从其当前上下文移动到另一个上下文。“移动”命令是在与应用该命令的上下文不同的上下文中引用终止的唯一命令。Move命令不得用于在null上下文之间移动终端。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Move( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] Move( TerminationID [, MediaDescriptor] [, ModemDescriptor] [, MuxDescriptor] [, EventsDescriptor] [, SignalsDescriptor] [, DigitMapDescriptor] [, AuditDescriptor] )
The TerminationID specifies the Termination to be moved. It may be wildcarded. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. By convention, the Termination is subtracted from its previous Context. The Context to which the Termination is moved is indicated by the target ContextId in the Action. If the last remaining Termination is moved out of a Context, the Context is deleted.
TerminationID指定要移动的终端。它可能是通配符。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。按照惯例,终止是从以前的上下文中减去的。将终止移动到的上下文由操作中的目标ContextId指示。如果将最后剩余的终止移出上下文,则该上下文将被删除。
The remaining descriptors are processed as in the Modify Command. The AuditDescriptor with the Statistics option, for example, would return statistics on the Termination just prior to the Move. Possible descriptors returned from Move are the same as for Add. Move SHALL NOT be used on a Termination with a serviceState of "OutofService".
其余描述符的处理方式与Modify命令相同。例如,带有Statistics选项的AuditDescriptor将在移动之前返回终止时的统计信息。从Move返回的可能描述符与Add相同。不得在serviceState为“OutofService”的终端上使用Move。
The AuditValue Command returns the current values of properties, events, signals and statistics associated with Terminations.
AuditValue命令返回与终止相关的属性、事件、信号和统计信息的当前值。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] AuditValue(TerminationID, AuditDescriptor )
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,DigitMapDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor] [,StatisticsDescriptor] [,PackagesDescriptor] AuditValue(TerminationID, AuditDescriptor )
TerminationID may be specific or wildcarded. If the wildcard matches more than one TerminationID, all possible matches are attempted, with results reported for each one. The order of attempts when multiple TerminationIDs match is not specified. If a wildcarded response is requested, only one command return is generated, with the contents containing the union of the values of all Terminations matching the wildcard. This convention may reduce the volume of data required to audit a group of Terminations. Use of CHOOSE is an error.
TerminationID可以是特定的,也可以是通配符。如果通配符匹配多个TerminationID,则尝试所有可能的匹配,并报告每个匹配的结果。未指定多个TerminationID匹配时的尝试顺序。如果请求通配符响应,则只生成一个命令返回,返回内容包含与通配符匹配的所有终止值的并集。此约定可以减少审核一组终止所需的数据量。使用CHOOSE是一个错误。
The appropriate descriptors, with the current values for the Termination, are returned from AuditValue. Values appearing in multiple instances of a descriptor are defined to be alternate values supported, with each parameter in a descriptor considered independent.
AuditValue返回相应的描述符以及终止的当前值。一个描述符的多个实例中出现的值被定义为支持的备用值,描述符中的每个参数都被视为独立的。
ObservedEvents returns a list of events in the EventBuffer, PackagesDescriptor returns a list of packages realized by the Termination. DigitMapDescriptor returns the name or value of the current DigitMap for the Termination. DigitMap requested in an AuditValue command with TerminationID ALL returns all DigitMaps in the gateway. Statistics returns the current values of all statistics
ObservedEvents返回EventBuffer中的事件列表,PackageDescriptor返回由终止实现的包列表。DigitMapDescriptor返回终止当前DigitMap的名称或值。在带有TerminationID ALL的AuditValue命令中请求的DigitMap返回网关中的所有DigitMap。统计信息返回所有统计信息的当前值
being kept on the Termination. Specifying an empty Audit Descriptor results in only the TerminationID being returned. This may be useful to get a list of TerminationIDs when used with wildcard.
在终止时被保留。指定空的审核描述符只会导致返回TerminationID。当与通配符一起使用时,这对于获取TerminationID列表可能很有用。
AuditValue results depend on the Context, viz. specific, null, or wildcarded. The TerminationID may be specific, or wildcarded. The following illustrates other information that can be obtained with the Audit Command:
AuditValue结果取决于上下文,即。特定、空或通配符。TerminationID可以是特定的,也可以是通配符。以下说明了使用Audit命令可以获得的其他信息:
ContextID TerminationID Information Obtained
已获取ContextID TerminationID信息
Specific wildcard Audit of matching Terminations in a Context
上下文中匹配终止的特定通配符审核
Specific specific Audit of a single Termination in a Context
上下文中单个终止的具体审计
Null Root Audit of Media Gateway state and events
媒体网关状态和事件的空根审核
Null wildcard Audit of all matching Terminations in the Null Context
空上下文中所有匹配终止的空通配符审核
Null specific Audit of a single Termination outside of any Context
在任何上下文之外对单个终止进行特定于Null的审核
All wildcard Audit of all matching Terminations and the Context to which they are associated
所有匹配终止及其关联上下文的所有通配符审核
All Root List of all ContextIds
所有ContextID的所有根列表
The AuditCapabilities Command returns the possible values of properties, events, signals and statistics associated with Terminations.
AuditCapabilities命令返回与终止相关的属性、事件、信号和统计信息的可能值。
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor]
TerminationID [,MediaDescriptor] [,ModemDescriptor] [,MuxDescriptor] [,EventsDescriptor] [,SignalsDescriptor] [,ObservedEventsDescriptor] [,EventBufferDescriptor]
[,StatisticsDescriptor] AuditCapabilities(TerminationID, AuditDescriptor )
[,StatisticsDescriptor]审核功能(TerminationID,审核描述符)
The appropriate descriptors, with the possible values for the Termination are returned from AuditCapabilities. Descriptors may be repeated where there are multiple possible values. If a wildcarded response is requested, only one command return is generated, with the contents containing the union of the values of all Terminations matching the wildcard. This convention may reduce the volume of data required to audit a group of Terminations.
从AuditCapabilities返回适当的描述符和可能的终止值。当存在多个可能值时,可以重复描述符。如果请求通配符响应,则只生成一个命令返回,返回内容包含与通配符匹配的所有终止值的并集。此约定可以减少审核一组终止所需的数据量。
Interpretation of what capabilities are requested for various values of ContextID and TerminationID is the same as in AuditValue.
对ContextID和TerminationID的各种值所请求的功能的解释与AuditValue中的相同。
The EventsDescriptor returns the list of possible events on the Termination together with the list of all possible values for the EventsDescriptor Parameters. The SignalsDescriptor returns the list of possible signals that could be applied to the Termination together with the list of all possible values for the Signals Parameters. StatisticsDescriptor returns the names of the statistics being kept on the termination. ObservedEventsDescriptor returns the names of active events on the termination. DigitMap and Packages are not legal in AuditCapability.
EventsDescriptor返回终止时可能发生的事件列表以及EventsDescriptor参数的所有可能值列表。SignalsDescriptor返回可应用于终端的可能信号列表以及信号参数的所有可能值列表。StatisticsDescriptor返回终端上保留的统计信息的名称。ObservedEventsDescriptor返回终止时活动事件的名称。DigitMap和软件包在AuditCapability中不合法。
The Notify Command allows the Media Gateway to notify the Media Gateway Controller of events occurring within the Media Gateway.
Notify命令允许媒体网关将媒体网关内发生的事件通知媒体网关控制器。
Notify(TerminationID, ObservedEventsDescriptor, [ErrorDescriptor] )
通知(TerminationID,ObservedEventsDescriptor,[ErrorDescriptor])
The TerminationID parameter specifies the Termination issuing the Notify Command. The TerminationID shall be a fully qualified name.
TerminationID参数指定发出Notify命令的终止。TerminationID应为完全限定名称。
The ObservedEventsDescriptor contains the RequestID and a list of events that the Media Gateway detected in the order that they were detected. Each event in the list is accompanied by parameters associated with the event and an indication of the time that the event was detected. Procedures for sending Notify commands with RequestID equal to 0 are for further study.
ObservedEventsDescriptor包含RequestID和媒体网关按检测顺序检测到的事件列表。列表中的每个事件都伴随着与事件相关的参数以及检测到事件的时间指示。发送RequestID等于0的Notify命令的过程有待进一步研究。
Notify Commands with RequestID not equal to 0 shall occur only as the result of detection of an event specified by an Events Descriptor which is active on the termination concerned.
RequestID不等于0的Notify命令只能在检测到相关终止时激活的事件描述符指定的事件时出现。
The RequestID returns the RequestID parameter of the EventsDescriptor that triggered the Notify Command. It is used to correlate the notification with the request that triggered it. The events in the list must have been requested via the triggering EventsDescriptor or embedded events descriptor unless the RequestID is 0 (which is for further study).
RequestID返回触发Notify命令的EventsDescriptor的RequestID参数。它用于将通知与触发通知的请求关联起来。列表中的事件必须是通过触发事件描述符或嵌入式事件描述符请求的,除非请求ID为0(用于进一步研究)。
The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. The Media Gateway Controller may indicate that Termination(s) shall be taken out of or returned to service. The Media Gateway may notify the MGC that the capability of a Termination has changed. It also allows a MGC to hand over control of a MG to another MGC.
ServiceChange命令允许媒体网关通知媒体网关控制器一个或一组终端即将停止服务或刚刚恢复服务。媒体网关控制器可指示终端退出或恢复服务。媒体网关可以通知MGC终端的能力已经改变。它还允许MGC将MG的控制权移交给另一个MGC。
TerminationID, [ServiceChangeDescriptor] ServiceChange(TerminationID, ServiceChangeDescriptor )
TerminationID,[ServiceChangeDescriptor]ServiceChange(TerminationID,ServiceChangeDescriptor)
The TerminationID parameter specifies the Termination(s) that are taken out of or returned to service. Wildcarding of Termination names is permitted, with the exception that the CHOOSE mechanism shall not be used. Use of the "Root" TerminationID indicates a ServiceChange affecting the entire Media Gateway.
TerminationID参数指定退出或恢复服务的终端。允许对终端名称进行通配符,但不得使用选择机制。使用“根”TerminationID表示影响整个媒体网关的服务更改。
The ServiceChangeDescriptor contains the following parameters as required:
ServiceChangeDescriptor根据需要包含以下参数:
. ServiceChangeMethod . ServiceChangeReason . ServiceChangeDelay . ServiceChangeAddress . ServiceChangeProfile . ServiceChangeVersion . ServiceChangeMgcId . TimeStamp
. ServiceChangeMethod。服务改变原因。服务更改延迟。ServiceChangeAddress。ServiceChangeProfile。ServiceChangeVersion。ServiceChangeMgcId。时间戳
The ServiceChangeMethod parameter specifies the type of ServiceChange that will or has occurred:
ServiceChangeMethod参数指定将要或已经发生的ServiceChange的类型:
1) Graceful - indicates that the specified Terminations will be taken out of service after the specified ServiceChangeDelay; established connections are not yet affected, but the Media Gateway Controller should refrain from establishing new connections and should attempt to gracefully tear down existing connections. The MG should set termination serviceState at the expiry of ServiceChangeDelay or the removal of the termination from an active context (whichever is first), to "out of service".
1) 优雅-表示指定的终止将在指定的ServiceChangeDelay之后停止服务;已建立的连接尚未受到影响,但媒体网关控制器应避免建立新连接,并尝试正常断开现有连接。MG应将ServiceChangeDelay到期时的termination serviceState或从活动上下文中删除终止(以先到者为准)设置为“停止服务”。
2) Forced - indicates that the specified Terminations were taken abruptly out of service and any established connections associated with them were lost. The MGC is responsible for cleaning up the context (if any) with which the failed termination is associated. At a minimum the termination shall be subtracted from the context. The termination serviceState should be "out of service".
2) 强制-表示指定的终端突然停止使用,并且与之相关的任何已建立的连接丢失。MGC负责清理与失败终止相关联的上下文(如果有)。至少应从上下文中减去终止。终止服务状态应为“停止服务”。
3) Restart - indicates that service will be restored on the specified Terminations after expiration of the ServiceChangeDelay. The serviceState should be set to "inService" upon expiry of ServiceChangeDelay.
3) 重新启动-表示在ServiceChangeDelay过期后,将在指定的终止上恢复服务。serviceState应在ServiceChangeDelay到期时设置为“inService”。
4) Disconnected - always applied with the Root TerminationID, indicates that the MG lost communication with the MGC, but it was subsequently restored. Since MG state may have changed, the MGC may wish to use the Audit command to resynchronize its state with the MG's.
4) 断开连接-始终与根TerminationID一起应用,表示MG与MGC失去通信,但随后已恢复。由于MG状态可能已更改,MGC可能希望使用Audit命令将其状态与MG重新同步。
5) Handoff - sent from the MGC to the MG, this reason indicates that the MGC is going out of service and a new MGC association must be established. Sent from the MG to the MGC, this indicates that the MG is attempting to establish a new association in accordance with a Handoff received from the MGC with which it was previously associated.
5) 切换-从MGC发送到MG,此原因表示MGC正在停止服务,必须建立新的MGC关联。从MG发送到MGC,这表示MG正试图根据从MGC接收到的切换建立新的关联,MGC先前与其关联。
6) Failover - sent from MG to MGC to indicate the primary MG is out of service and a secondary MG is taking over.
6) 故障转移-从MG发送到MGC,以指示主MG已停止服务,而辅助MG正在接管。
7) Another value whose meaning is mutually understood between the MG and the MGC.
7) MG和MGC之间相互理解其含义的另一个值。
The ServiceChangeReason parameter specifies the reason why the ServiceChange has or will occur. It consists of an alphanumeric token (IANA registered) and an explanatory string.
ServiceChangeReason参数指定ServiceChange已发生或将发生的原因。它由字母数字标记(IANA注册)和解释字符串组成。
The optional ServiceChangeAddress parameter specifies the address (e.g., IP port number for IP networks) to be used for subsequent communications. It can be specified in the input parameter descriptor or the returned result descriptor. ServiceChangeAddress
可选ServiceChangeAddress参数指定用于后续通信的地址(例如,IP网络的IP端口号)。它可以在输入参数描述符或返回结果描述符中指定。服务变更地址
and ServiceChangeMgcId parameters must not both be present in the ServiceChangeDescriptor or the ServiceChangeResultDescriptor. The serviceChangeAddress provides an address to be used within the context of the association currently being negotiated, while the ServiceChangeMgcId provides an alternate address where the MG should seek to establish another association.
和ServiceChangeMgcId参数不能同时出现在ServiceChangeDescriptor或ServiceChangeResultDescriptor中。serviceChangeAddress提供在当前协商的关联上下文中使用的地址,而ServiceChangeMgcId提供MG应寻求建立另一关联的备用地址。
The optional ServiceChangeDelay parameter is expressed in seconds. If the delay is absent or set to zero, the delay value should be considered to be null. In the case of a "graceful" ServiceChangeMethod, a null delay indicates that the Media Gateway Controller should wait for the natural removal of existing connections and should not establish new connections. . For "graceful" only, a null delay means the MG must not set serviceState "out of service" until the termination is in the null context.
可选的ServiceChangeDelay参数以秒表示。如果延迟缺失或设置为零,则延迟值应视为零。对于“优雅”ServiceChangeMethod,空延迟表示媒体网关控制器应等待现有连接的自然删除,而不应建立新连接。仅对于“优雅”而言,空延迟意味着MG不得将serviceState设置为“退出服务”,直到终止处于空上下文中。
The optional ServiceChangeProfile parameter specifies the Profile (if any) of the protocol supported. The ServiceChangeProfile includes the version of the profile supported.
可选的ServiceChangeProfile参数指定支持的协议的配置文件(如果有)。ServiceChangeProfile包含支持的配置文件版本。
The optional ServiceChangeVersion parameter contains the protocol version and is used if protocol version negotiation occurs (see section 11.3).
可选的ServiceChangeVersion参数包含协议版本,并在协议版本协商发生时使用(参见第11.3节)。
The optional TimeStamp parameter specifies the actual time as kept by the sender. It can be used by the responder to determine how its notion of time differs from that of its correspondent. TimeStamp is sent with a precision of hundredths of a second, and is expressed in UTC.
可选的TimeStamp参数指定发送方保留的实际时间。响应者可以使用它来确定其时间概念与对应者的时间概念有何不同。时间戳以百分之一秒的精度发送,并以UTC表示。
The optional Extension parameter may contain any value whose meaning is mutually understood by the MG and MGC.
可选扩展参数可以包含MG和MGC相互理解其含义的任何值。
A ServiceChange Command specifying the "Root" for the TerminationID and ServiceChangeMethod equal to Restart is a registration command by which a Media Gateway announces its existence to the Media Gateway Controller. The Media Gateway is expected to be provisioned with the name of one primary and optionally some number of alternate Media Gateway Controllers. Acknowledgement of the ServiceChange Command completes the registration process. The MG may specify the transport ServiceChangeAddress to be used by the MGC for sending messages in the ServiceChangeAddress parameter in the input ServiceChangeDescriptor. The MG may specify an address in the ServiceChangeAddress parameter of the ServiceChange request, and the MGC may also do so in the ServiceChange reply. In either case, the recipient must use the supplied address as the destination for all subsequent transaction requests within the association. At the same time, as indicated in section 9, transaction replies and pending
指定TerminationID和ServiceChangeMethod的“根”等于重新启动的ServiceChange命令是一个注册命令,媒体网关通过该命令向媒体网关控制器宣布其存在。媒体网关应配备一个主媒体网关控制器的名称,并可选地配备若干备用媒体网关控制器。ServiceChange命令的确认完成注册过程。MG可以在输入ServiceChangeDescriptor的ServiceChangeAddress参数中指定MGC用于发送消息的传输ServiceChangeAddress。MG可以在ServiceChange请求的ServiceChangeAddress参数中指定地址,MGC也可以在ServiceChange回复中指定地址。在任何一种情况下,收件人都必须使用提供的地址作为关联中所有后续事务请求的目的地。同时,如第9节所述,交易回复和待定
indications must be sent to the address from which the corresponding requests originated. This must be done even if it implies extra messaging because commands and responses cannot be packed together. The TimeStamp parameter shall be sent with a registration command and its response.
必须将指示发送到相应请求发出的地址。即使这意味着额外的消息传递,也必须这样做,因为命令和响应不能打包在一起。时间戳参数应与注册命令及其响应一起发送。
The Media Gateway Controller may return an ServiceChangeMgcId parameter that describes the Media Gateway Controller that should preferably be contacted for further service by the Media Gateway. In this case the Media Gateway shall reissue the ServiceChange command to the new Media Gateway Controller. The Gateway specified in an ServiceChangeMgcId, if provided, shall be contacted before any further alternate MGCs. On a HandOff message from MGC to MG, the ServiceChangeMgcId is the new MGC that will take over from the current MGC.
媒体网关控制器可返回ServiceChangeMgcId参数,该参数描述媒体网关控制器,媒体网关最好联系该控制器以获得进一步服务。在这种情况下,媒体网关应向新媒体网关控制器重新发出ServiceChange命令。在任何其他备用MGC之前,应联系ServiceChangeMgcId中指定的网关(如果提供)。在从MGC到MG的切换消息中,ServiceChangeMgcId是将从当前MGC接管的新MGC。
The return from ServiceChange is empty except when the Root terminationID is used. In that case it includes the following parameters as required:
ServiceChange返回值为空,除非使用根terminationID。在这种情况下,它根据需要包括以下参数:
. ServiceChangeAddress, if the responding MGC wishes to specify an new destination for messages from the MG for the remainder of the association;
. ServiceChangeAddress,如果响应MGC希望为来自MG的消息为剩余关联指定新的目的地;
. ServiceChangeMgcId, if the responding MGC does not wish to sustain an association with the MG;
. 如果响应MGC不希望与MG保持关联,则为ServiceChangeMgcId;
. ServiceChangeProfile, if the responder wishes to negotiate the profile to be used for the association;
. ServiceChangeProfile,如果响应者希望协商用于关联的配置文件;
. ServiceChangeVersion, if the responder wishes to negotiate the version of the protocol to be used for the association.
. ServiceChangeVersion,如果响应者希望协商用于关联的协议版本。
The following ServiceChangeReasons are defined. This list may be extended by an IANA registration as outlined in section 13.3
定义了以下ServiceChangeReasures。如第13.3节所述,可通过IANA注册扩展该列表
900 Service Restored 901 Cold Boot 902 Warm Boot 903 MGC Directed Change 904 Termination malfunctioning 905 Termination taken out of service 906 Loss of lower layer connectivity (e.g. downstream sync) 907 Transmission Failure 908 MG Impending Failure 909 MGC Impending Failure 910 Media Capability Failure 911 Modem Capability Failure
900服务已恢复901冷启动902热启动903 MGC定向更改904终止故障905终止退出服务906下层连接丢失(如下游同步)907传输故障908 MG即将发生的故障909 MGC即将发生的故障910媒体功能故障911调制解调器功能故障
912 Mux Capability Failure 913 Signal Capability Failure 914 Event Capability Failure 915 State Loss
912多路复用器能力故障913信号能力故障914事件能力故障915状态丢失
The commands of the protocol as discussed in the preceding sections apply to terminations. This section specifies how contexts are manipulated and audited.
前面章节中讨论的协议命令适用于终端。本节指定如何操作和审核上下文。
Commands are grouped into actions (see section 8). An action applies to one context. In addition to commands, an action may contain context manipulation and auditing instructions.
命令被分组为动作(参见第8节)。一个动作适用于一个上下文。除命令外,操作还可能包含上下文操作和审核指令。
An action request sent to a MG may include a request to audit attributes of a context. An action may also include a request to change the attributes of a context.
发送给MG的操作请求可能包括审核上下文属性的请求。操作还可能包括更改上下文属性的请求。
The context properties that may be included in an action reply are used to return information to a MGC. This can be information requested by an audit of context attributes or details of the effect of manipulation of a context.
操作回复中可能包含的上下文属性用于将信息返回给MGC。这可以是上下文属性审核请求的信息,也可以是上下文操作效果的详细信息。
If a MG receives an action which contains both a request to audit context attributes and a request to manipulate those attributes, the response SHALL include the values of the attributes after processing the manipulation request.
如果MG收到一个包含审计上下文属性请求和操纵这些属性请求的操作,则响应应包括处理操纵请求后的属性值。
The protocol can be encoded in a binary format or in a text format. MGCs should support both encoding formats. MGs may support both formats.
协议可以以二进制格式或文本格式进行编码。MGC应支持这两种编码格式。MGs可能支持这两种格式。
The protocol syntax for the binary format of the protocol is defined in Annex A. Annex C specifies the encoding of the Local and Remote descriptors for use with the binary format.
协议二进制格式的协议语法在附录A中定义。附录C规定了用于二进制格式的本地和远程描述符的编码。
A complete ABNF of the text encoding of the protocol per RFC2234 is given in Annex B. SDP is used as the encoding of the Local and Remote Descriptors for use with the text encoding as modified in section 7.1.8.
附录B中给出了RFC2234协议文本编码的完整ABNF。SDP用作本地和远程描述符的编码,用于第7.1.8节中修改的文本编码。
Errors consist of an IANA registered error code and an explanatory string. Sending the explanatory string is optional. Implementations are encouraged to append diagnostic information to the end of the string.
错误由IANA注册的错误代码和解释性字符串组成。发送解释性字符串是可选的。建议实现将诊断信息附加到字符串的末尾。
When a MG reports an error to a MGC, it does so in an error descriptor. An error descriptor consists of an error code and optionally the associated explanatory string.
当MG向MGC报告错误时,它会在错误描述符中报告。错误描述符由错误代码和可选的关联解释字符串组成。
The identified error codes are:
识别的错误代码为:
400 - Bad Request 401 - Protocol Error 402 - Unauthorized 403 - Syntax Error in Transaction 404 - Syntax Error in TransactionReply 405 - Syntax Error in TransactionPending 406 - Version Not Supported 410 - Incorrect identifier 411 - The transaction refers to an unknown ContextId 412 - No ContextIDs available
400-错误请求401-协议错误402-未经授权403-事务404中的语法错误-事务回复405中的语法错误-事务挂起406中的语法错误-版本不受支持410-错误标识符411-事务引用未知ContextId 412-无ContextId可用
421 - Unknown action or illegal combination of actions 422 - Syntax Error in Action 430 - Unknown TerminationID 431 - No TerminationID matched a wildcard 432 - Out of TerminationIDs or No TerminationID available 433 - TerminationID is already in a Context 440 - Unsupported or unknown Package 441 - Missing RemoteDescriptor 442 - Syntax Error in Command 443 - Unsupported or Unknown Command 444 - Unsupported or Unknown Descriptor 445 - Unsupported or Unknown Property 446 - Unsupported or Unknown Parameter 447 - Descriptor not legal in this command 448 - Descriptor appears twice in a command 450 - No such property in this package 451 - No such event in this package 452 - No such signal in this package 453 - No such statistic in this package 454 - No such parameter value in this package 455 - Parameter illegal in this Descriptor 456 - Parameter or Property appears twice in this Descriptor 461 - TransactionIDs in Reply do not match Request
421-未知操作或操作的非法组合422-操作430中的语法错误-未知TerminationID 431-没有与通配符432匹配的TerminationID-TerminationID不足或没有可用的TerminationID 433-TerminationID已在上下文440中-不受支持或未知的包441-缺少RemoteDescriptor 442-中的语法错误命令443-不支持或未知命令444-不支持或未知描述符445-不支持或未知属性446-不支持或未知参数447-描述符在此命令中不合法448-描述符在命令450中出现两次-此包451中没有此类属性-此包452中没有此类事件-中没有此类信号此程序包453-此程序包454中没有此类统计信息-此程序包455中没有此类参数值-此描述符456中的参数非法-此描述符461中的参数或属性出现两次-应答中的TransactionID与请求不匹配
462 - Commands in Transaction Reply do not match commands in request 463 - TerminationID of Transaction Reply does not match request 464 - Missing reply in Transaction Reply 465 - TransactionID in Transaction Pending does not match any open request 466 - Illegal Duplicate Transaction Request 467 - Illegal Duplicate Transaction Reply 471 - Implied Add for Multiplex failure
462-事务应答中的命令与请求463中的命令不匹配-事务应答的终止ID与请求464不匹配-事务应答465中缺少应答-事务挂起中的事务ID与任何打开的请求466不匹配-非法重复事务请求467-非法重复事务应答471-隐含为多路传输故障添加
500 - Internal Gateway Error 501 - Not Implemented 502 - Not ready. 503 - Service Unavailable 504 - Command Received from unauthorized entity 505 - Command Received before Restart Response 510 - Insufficient resources 512 - Media Gateway unequipped to detect requested Event 513 - Media Gateway unequipped to generate requested Signals 514 - Media Gateway cannot send the specified announcement 515 - Unsupported Media Type 517 - Unsupported or invalid mode 518 - Event buffer full 519 - Out of space to store digit map 520 - Media Gateway does not have a digit map 521 - Termination is "ServiceChangeing" 526 - Insufficient bandwidth 529 - Internal hardware failure 530 - Temporary Network failure 531 - Permanent Network failure 581 - Does Not Exist
500-内部网关错误501-未实施502-未准备就绪。503-服务不可用504-从未授权实体505接收的命令-在重新启动响应510之前接收的命令-资源不足512-媒体网关未配备检测请求事件的设备513-媒体网关未配备生成请求信号的设备514-媒体网关无法发送指定的公告515-不支持媒体类型517-不支持或无效模式518-事件缓冲区已满519-存储数字映射520的空间不足-媒体网关没有数字映射521-终止为“服务更改”526-带宽不足529-内部硬件故障530-临时网络故障531-永久网络故障581-不存在
Commands between the Media Gateway Controller and the Media Gateway are grouped into Transactions, each of which is identified by a TransactionID. Transactions consist of one or more Actions. An Action consists of a series of Commands that are limited to operating within a single Context. Consequently each Action typically specifies a ContextID. However, there are two circumstances where a specific ContextID is not provided with an Action. One is the case of modification of a Termination outside of a Context. The other is where the controller requests the gateway to create a new Context. Following is a graphic representation of the Transaction, Action and Command relationships.
媒体网关控制器和媒体网关之间的命令被分组为事务,每个事务由TransactionID标识。事务由一个或多个操作组成。操作由一系列命令组成,这些命令仅限于在单个上下文中操作。因此,每个操作通常指定一个ContextID。但是,有两种情况下,特定的ContextID不提供操作。一种是在上下文之外修改终止的情况。另一个是控制器请求网关创建新上下文的位置。以下是事务、操作和命令关系的图形表示。
+----------------------------------------------------------+ | Transaction x | | +----------------------------------------------------+ | | | Action 1 | | | | +---------+ +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | 4 | | | | | +---------+ +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 2 | | | | +---------+ | | | | | Command | | | | | | 1 | | | | | +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 3 | | | | +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | | | | +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | +----------------------------------------------------------+
+----------------------------------------------------------+ | Transaction x | | +----------------------------------------------------+ | | | Action 1 | | | | +---------+ +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | 4 | | | | | +---------+ +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 2 | | | | +---------+ | | | | | Command | | | | | | 1 | | | | | +---------+ | | | +----------------------------------------------------+ | | | | +----------------------------------------------------+ | | | Action 3 | | | | +---------+ +---------+ +---------+ | | | | | Command | | Command | | Command | | | | | | 1 | | 2 | | 3 | | | | | +---------+ +---------+ +---------+ | | | +----------------------------------------------------+ | +----------------------------------------------------------+
Figure 5 Transactions, Actions and Commands
图5事务、操作和命令
Transactions are presented as TransactionRequests. Corresponding responses to a TransactionRequest are received in a single reply, possibly preceded by a number of TransactionPending messages (see section 8.2.3).
事务以TransactionRequests的形式呈现。对TransactionRequest的相应响应在单个回复中接收,之前可能会有许多TransactionPending消息(见第8.2.3节)。
Transactions guarantee ordered Command processing. That is, Commands within a Transaction are executed sequentially. Ordering of Transactions is NOT guaranteed - transactions may be executed in any order, or simultaneously.
事务保证了命令处理的有序性。也就是说,事务中的命令是按顺序执行的。不保证交易的顺序-交易可以按任何顺序执行,也可以同时执行。
At the first failing Command in a Transaction, processing of the remaining Commands in that Transaction stops. If a command contains a wildcarded TerminationID, the command is attempted with each of the actual TerminationIDs matching the wildcard. A response within the TransactionReply is included for each matching TerminationID, even if one or more instances generated an error. If any TerminationID matching a wildcard results in an error when executed, any commands following the wildcarded command are not attempted. Commands may be marked as "Optional" which can override this behaviour - if a
在事务中的第一个失败命令时,停止处理该事务中的其余命令。如果命令包含通配符TerminationID,则尝试使用与通配符匹配的每个实际TerminationID执行该命令。即使一个或多个实例生成错误,每个匹配的TerminationID都会包含TransactionReply中的响应。如果任何与通配符匹配的TerminationID在执行时导致错误,则不会尝试使用通配符命令后面的任何命令。命令可以标记为“可选”,可以覆盖此行为-如果
command marked as Optional results in an error, subsequent commands in the Transaction will be executed. A TransactionReply includes the results for all of the Commands in the corresponding TransactionRequest. The TransactionReply includes the return values for the Commands that were executed successfully, and the Command and error descriptor for any Command that failed. TransactionPending is used to periodically notify the receiver that a Transaction has not completed yet, but is actively being processed.
标记为可选的命令将导致错误,事务中的后续命令将被执行。TransactionReply包括对应TransactionRequest中所有命令的结果。TransactionReply包括成功执行的命令的返回值,以及任何失败命令的命令和错误描述符。TransactionPending用于定期通知接收方交易尚未完成,但正在积极处理中。
Applications SHOULD implement an application level timer per transaction. Expiration of the timer should cause a retransmission of the request. Receipt of a Reply should cancel the timer. Receipt of Pending should restart the timer.
应用程序应为每个事务实现应用程序级计时器。计时器过期将导致请求重新传输。收到回复将取消计时器。收到挂起的消息应重新启动计时器。
Transactions are identified by a TransactionID, which is assigned by sender and is unique within the scope of the sender.
事务由TransactionID标识,TransactionID由发送方分配,并且在发送方范围内是唯一的。
Contexts are identified by a ContextID, which is assigned by the Media Gateway and is unique within the scope of the Media Gateway. The Media Gateway Controller shall use the ContextID supplied by the Media Gateway in all subsequent Transactions relating to that Context. The protocol makes reference to a distinguished value that may be used by the Media Gateway Controller when referring to a Termination that is currently not associated with a Context, namely the null ContextID.
上下文由ContextID标识,ContextID由媒体网关分配,在媒体网关范围内是唯一的。媒体网关控制器应在与该上下文相关的所有后续事务中使用媒体网关提供的ContextID。该协议引用媒体网关控制器在引用当前未与上下文关联的终端时可使用的可分辨值,即空ContextID。
The CHOOSE wildcard is used to request that the Media Gateway create a new Context. The MGC shall not use partially specified ContextIDs containing the CHOOSE wildcard.
CHOOSE通配符用于请求媒体网关创建新上下文。MGC不得使用包含CHOOSE通配符的部分指定的ContextID。
The MGC may use the ALL wildcard to address all Contexts on the MG.
MGC可以使用ALL通配符来处理MG上的所有上下文。
Following is an Application Programming Interface (API) describing the Transactions of the protocol. This API is shown to illustrate the Transactions and their parameters and is not intended to specify implementation (e.g. via use of blocking function calls). It will describe the input parameters and return values expected to be used by the various Transactions of the protocol from a very high level. Transaction syntax and encodings are specified in later subsections.
下面是描述协议事务的应用程序编程接口(API)。显示此API是为了说明事务及其参数,而不是为了指定实现(例如,通过使用阻塞函数调用)。它将从一个非常高的层次描述协议的各种事务预期使用的输入参数和返回值。事务语法和编码在后面的小节中指定。
The TransactionRequest is invoked by the sender. There is one Transaction per request invocation. A request contains one or more Actions, each of which specifies its target Context and one or more Commands per Context.
TransactionRequest由发送方调用。每个请求调用有一个事务。一个请求包含一个或多个操作,每个操作指定其目标上下文和每个上下文一个或多个命令。
TransactionRequest(TransactionId { ContextID {Command _ Command}, . . . ContextID {Command _ Command } })
TransactionRequest(TransactionId { ContextID {Command _ Command}, . . . ContextID {Command _ Command } })
The TransactionID parameter must specify a value for later correlation with the TransactionReply or TransactionPending response from the receiver.
TransactionID参数必须指定一个值,以便以后与来自接收方的TransactionReply或TransactionPending响应进行关联。
The ContextID parameter must specify a value to pertain to all Commands that follow up to either the next specification of a ContextID parameter or the end of the TransactionRequest, whichever comes first.
ContextID参数必须指定一个值,该值与在下一个ContextID参数规范或TransactionRequest结束后执行的所有命令相关,以先到者为准。
The Command parameter represents one of the Commands mentioned in the "Command Details" subsection titled "Application Programming Interface".
Command参数表示标题为“应用程序编程接口”的“命令详细信息”小节中提到的命令之一。
The TransactionReply is invoked by the receiver. There is one reply invocation per transaction. A reply contains one or more Actions, each of which must specify its target Context and one or more Responses per Context.
TransactionReply由接收方调用。每个事务有一个应答调用。答复包含一个或多个操作,每个操作必须指定其目标上下文和每个上下文一个或多个响应。
TransactionReply(TransactionID { ContextID { Response _ Response }, . . . ContextID { Response _ Response } })
TransactionReply(TransactionID { ContextID { Response _ Response }, . . . ContextID { Response _ Response } })
The TransactionID parameter must be the same as that of the corresponding TransactionRequest.
TransactionID参数必须与相应TransactionRequest的参数相同。
The ContextID parameter must specify a value to pertain to all Responses for the action. The ContextID may be specific or null.
ContextID参数必须指定一个与操作的所有响应相关的值。ContextID可以是特定的或空的。
Each of the Response parameters represents a return value as mentioned in section 7.2, or an error descriptor if the command execution encountered an error. Commands after the point of failure are not processed and, therefore, Responses are not issued for them.
每个响应参数表示第7.2节中提到的返回值,或者如果命令执行遇到错误,则表示错误描述符。故障点后的命令不会被处理,因此不会对其发出响应。
An exception to this occurs if a command has been marked as optional in the Transaction request. If the optional command generates an error, the transaction still continues to execute, so the Reply would, in this case, have Responses after an Error.
如果在事务请求中将命令标记为可选,则会出现例外情况。如果可选命令生成错误,则事务仍将继续执行,因此在本例中,应答将在错误后有响应。
If the receiver encounters an error in processing a ContextID, the requested Action response will consist of the context ID and a single error descriptor, 422 Syntax Error in Action.
如果接收器在处理ContextID时遇到错误,请求的操作响应将由上下文ID和单个错误描述符422语法错误操作组成。
If the receiver encounters an error such that it cannot determine a legal Action, it will return a TransactionReply consisting of the TransactionID and a single error descriptor, 422 Syntax Error in Action. If the end of an action cannot be reliably determined but one or more Actions can be parsed, it will process them and then send 422 Syntax Error in Action as the last action for the transaction. If the receiver encounters an error such that is cannot determine a legal Transaction, it will return a TransactionReply with a null TransactionID and a single error descriptor (403 Syntax Error in Transaction).
如果接收方遇到错误,无法确定法律行动,它将返回由TransactionID和单个错误描述符422语法错误组成的TransactionReply。如果无法可靠地确定操作的结束,但可以解析一个或多个操作,则它将处理这些操作,然后发送422语法错误作为事务的最后一个操作。如果接收方遇到无法确定合法事务的错误,它将返回带有空TransactionID和单个错误描述符的TransactionReply(事务中的403语法错误)。
If the end of a transaction can not be reliably determined and one or more Actions can be parsed, it will process them and then return 403 Syntax Error in Transaction as the last action reply for the transaction. If no Actions can be parsed, it will return 403 Syntax Error in Transaction as the only reply
如果无法可靠地确定事务的结束,并且可以解析一个或多个操作,它将处理这些操作,然后在事务中返回403语法错误,作为事务的最后一个操作回复。如果无法解析任何操作,它将在事务中返回403语法错误作为唯一的回复
If the terminationID cannot be reliably determined it will send 442 Syntax Error in Command as the action reply.
如果无法可靠地确定terminationID,它将在命令中发送442语法错误作为操作回复。
If the end of a command cannot be reliably determined it will return 442 Syntax Error in Transaction as the reply to the last action it can parse.
如果无法可靠地确定命令的结尾,它将在事务中返回442语法错误,作为对它可以分析的最后一个操作的回复。
The receiver invokes the TransactionPending. A TransactionPending indicates that the Transaction is actively being processed, but has not been completed. It is used to prevent the sender from assuming the TransactionRequest was lost where the Transaction will take some time to complete.
接收方调用TransactionPending。TransactionPending表示事务正在处理中,但尚未完成。它用于防止发送方假设TransactionRequest丢失,因为事务需要一些时间才能完成。
TransactionPending(TransactionID { } )
TransactionPending(TransactionID { } )
The TransactionID parameter must be the same as that of the corresponding TransactionRequest. A property of root (normalMGExecutionTime) is settable by the MGC to indicate the interval within which the MGC expects a response to any transaction from the MG. Another property (normalMGCExecutionTime) is settable
TransactionID参数必须与相应TransactionRequest的参数相同。MGC可以设置root属性(normalMGExecutionTime),以指示MGC期望MG对任何事务做出响应的时间间隔。另一个属性(NormalMgceExecutionTime)是可设置的
by the MGC to indicate the interval within which the MG should expects a response to any transaction from the MGC. Senders may receive more than one TransactionPending for a command. If a duplicate request is received when pending, the responder may send a duplicate pending immediately, or continue waiting for its timer to trigger another Transaction Pending.
由MGC指示MG期望MGC对任何交易做出响应的时间间隔。发件人可能会收到一个命令的多个TransactionPending。如果在挂起时收到重复请求,响应者可以立即发送重复的挂起,或者继续等待其计时器触发另一个挂起事务。
Multiple Transactions can be concatenated into a Message. Messages have a header, which includes the identity of the sender. The Message Identifier (MID) of a message is set to a provisioned name (e.g. domain address/domain name/device name) of the entity transmitting the message. Domain name is a suggested default.
多个事务可以连接到一条消息中。邮件有一个标头,其中包含发件人的标识。将消息的消息标识符(MID)设置为发送消息的实体的已设置名称(例如,域地址/域名/设备名)。域名是建议的默认名称。
Every Message contains a Version Number identifying the version of the protocol the message conforms to. Versions consist of one or two digits, beginning with version 1 for the present version of the protocol.
每条消息都包含一个版本号,标识消息所遵循的协议版本。版本由一个或两个数字组成,对于协议的当前版本,从版本1开始。
The transactions in a message are treated independently. There is no order implied, there is no application or protocol acknowledgement of a message.
消息中的事务是独立处理的。没有隐含的命令,也没有消息的应用程序或协议确认。
The transport mechanism for the protocol should allow the reliable transport of transactions between an MGC and MG. The transport shall remain independent of what particular commands are being sent and shall be applicable to all application states. There are several transports defined for the protocol, which are defined in normative Annexes to this document. Additional Transports may be defined as additional annexes in subsequent editions of this document, or in separate documents. For transport of the protocol over IP, MGCs shall implement both TCP and UDP/ALF, an MG shall implement TCP or UDP/ALF or both.
协议的传输机制应允许在MGC和MG之间可靠地传输事务。传输应保持独立于发送的特定命令,并应适用于所有应用状态。本协议定义了几种传输方式,这些传输方式在本文件的规范性附件中进行了定义。附加运输可定义为本文件后续版本或单独文件中的附加附件。对于通过IP传输协议,MGCs应实现TCP和UDP/ALF,MG应实现TCP或UDP/ALF或两者。
The MG is provisioned with a name or address (such as DNS name or IP address) of a primary and zero or more secondary MGCs (see section 7.2.8) that is the address the MG uses to send messages to the MGC. If TCP or UDP is used as the protocol transport and the port to which the initial ServiceChange request is to be sent is not otherwise known, that request should be sent to the default port number for the protocol. This port number is 2944 for text-encoded operation or 2945 for binary-encoded operation, for either UDP or TCP. The MGC receives the message containing the ServiceChange request from the MG and can determine the MG's address from it. As described in section 7.2.8, either the MG or the MGC may supply an address in the
MG配备有主MGC的名称或地址(如DNS名称或IP地址)和零个或多个辅助MGC(见第7.2.8节),这是MG用于向MGC发送消息的地址。如果TCP或UDP用作协议传输,并且初始ServiceChange请求要发送到的端口未知,则该请求应发送到协议的默认端口号。对于UDP或TCP,文本编码操作的端口号为2944,二进制编码操作的端口号为2945。MGC从MG接收包含ServiceChange请求的消息,并可以从中确定MG的地址。如第7.2.8节所述,MG或MGC可在
ServiceChangeAddress parameter to which subsequent transaction requests must be addressed, but responses (including the response to the initial ServiceChange request) must always be sent back to the address which was the source of the corresponding request.
ServiceChangeAddress参数,后续事务请求必须寻址到该参数,但响应(包括对初始ServiceChange请求的响应)必须始终发送回作为相应请求源的地址。
This document does not mandate that the underlying transport protocol guarantees the sequencing of transactions sent to an entity. This property tends to maximize the timeliness of actions, but it has a few drawbacks. For example:
本文件并不要求基础传输协议保证发送给实体的事务的顺序。此属性倾向于最大化操作的及时性,但它有一些缺点。例如:
. Notify commands may be delayed and arrive at the MGC after the transmission of a new command changing the EventsDescriptor
. 在传输更改EventsDescriptor的新命令后,Notify命令可能会延迟并到达MGC
. If a new command is transmitted before a previous one is acknowledged, there is no guarantee that prior command will be executed before the new one.
. 如果在确认前一个命令之前发送新命令,则不能保证在新命令之前执行前一个命令。
Media Gateway Controllers that want to guarantee consistent operation of the Media Gateway may use the following rules. These rules are with respect to commands that are in different transactions. Commands that are in the same transaction are executed in order (see section 8).
要保证媒体网关一致运行的媒体网关控制器可以使用以下规则。这些规则适用于不同事务中的命令。同一事务中的命令按顺序执行(参见第8节)。
1. When a Media Gateway handles several Terminations, commands pertaining to the different Terminations may be sent in parallel, for example following a model where each Termination (or group of Terminations) is controlled by its own process or its own thread.
1. 当媒体网关处理多个终端时,可以并行发送与不同终端相关的命令,例如,遵循一种模型,其中每个终端(或终端组)由其自己的进程或线程控制。
2. On a Termination, there should normally be at most one outstanding command (Add or Modify or Move), unless the outstanding commands are in the same transaction. However, a Subtract command may be issued at any time. In consequence, a Media Gateway may sometimes receive a Modify command that applies to a previously subtracted Termination. Such commands should be ignored, and an error code should be returned.
2. 在终止时,通常最多应有一个未完成的命令(添加、修改或移动),除非未完成的命令在同一事务中。但是,可以随时发出减法命令。因此,媒体网关有时可能会收到适用于先前减去的终止的修改命令。应忽略此类命令,并返回错误代码。
3. On a given Termination, there should normally be at most one outstanding Notify command at any time.
3. 对于给定的终止,通常在任何时候最多应有一个未完成的Notify命令。
4. In some cases, an implicitly or explicitly wildcarded Subtract command that applies to a group of Terminations may step in front of a pending Add command. The Media Gateway Controller should individually delete all Terminations for which an Add command was pending at the time of the global Subtract command. Also, new Add
4. 在某些情况下,应用于一组终止的隐式或显式通配符减法命令可能位于挂起的Add命令之前。媒体网关控制器应单独删除在执行全局减法命令时Add命令挂起的所有终端。另外,新增
commands for Terminations named by the wild-carding (or implied in a Multiplex descriptor) should not be sent until the wild-carded Subtract command is acknowledged.
在确认通配符减去命令之前,不应发送由通配符梳理(或在多路复用描述符中暗示)命名的终止命令。
5. AuditValue and AuditCapability are not subject to any sequencing.
5. AuditValue和AuditCapability不受任何排序的约束。
6. ServiceChange shall always be the first command sent by a MG as defined by the restart procedure. Any other command or response must be delivered after this ServiceChange command.
6. ServiceChange应始终是MG按照重启程序的定义发送的第一个命令。任何其他命令或响应必须在此ServiceChange命令之后传递。
These rules do not affect the command responder, which should always respond to commands.
这些规则不会影响命令响应程序,它应该始终响应命令。
In the event that a large number of Media Gateways are powered on simultaneously and they were to all initiate a ServiceChange transaction, the Media Gateway Controller would very likely be swamped, leading to message losses and network congestion during the critical period of service restoration. In order to prevent such avalanches, the following behavior is suggested:
如果大量媒体网关同时通电,并且它们都要启动ServiceChange事务,则媒体网关控制器很可能会被淹没,从而在服务恢复的关键时期导致消息丢失和网络拥塞。为了防止此类雪崩,建议采取以下措施:
1. When a Media Gateway is powered on, it should initiate a restart timer to a random value, uniformly distributed between 0 and a maximum waiting delay (MWD). Care should be taken to avoid synchronicity of the random number generation between multiple Media Gateways that would use the same algorithm.
1. 当媒体网关通电时,它应启动一个随机值的重启计时器,该值均匀分布在0和最大等待延迟(MWD)之间。应注意避免使用相同算法的多个媒体网关之间随机数生成的同步性。
2. The Media Gateway should then wait for either the end of this timer or the detection of a local user activity, such as for example an off-hook transition on a residential Media Gateway.
2. 然后,媒体网关应等待该计时器结束或检测到本地用户活动,例如住宅媒体网关上的脱钩转换。
3. When the timer elapses, or when an activity is detected, the Media Gateway should initiate the restart procedure.
3. 当计时器超时或检测到活动时,媒体网关应启动重启过程。
The restart procedure simply requires the MG to guarantee that the first message that the Media Gateway Controller sees from this MG is a ServiceChange message informing the Media Gateway Controller about the restart.
重启过程只需要MG保证媒体网关控制器从此MG看到的第一条消息是一条ServiceChange消息,通知媒体网关控制器重启。
Note - The value of MWD is a configuration parameter that depends on the type of the Media Gateway. The following reasoning may be used to determine the value of this delay on residential gateways.
注意-MWD的值是一个配置参数,取决于媒体网关的类型。以下推理可用于确定住宅网关上该延迟的值。
Media Gateway Controllers are typically dimensioned to handle the peak hour traffic load, during which, in average, 10% of the lines will be busy, placing calls whose average duration is typically 3 minutes. The processing of a call typically involves 5 to 6 Media
媒体网关控制器通常用于处理高峰时段的流量负载,在此期间,平均有10%的线路处于繁忙状态,呼叫的平均持续时间通常为3分钟。呼叫处理通常涉及5到6个媒体
Gateway Controller transactions between each Media Gateway and the Media Gateway Controller. This simple calculation shows that the Media Gateway Controller is expected to handle 5 to 6 transactions for each Termination, every 30 minutes on average, or, to put it otherwise, about one transaction per Termination every 5 to 6 minutes on average. This suggests that a reasonable value of MWD for a residential gateway would be 10 to 12 minutes. In the absence of explicit configuration, residential gateways should adopt a value of 600 seconds for MWD.
每个媒体网关和媒体网关控制器之间的网关控制器事务。这个简单的计算表明,媒体网关控制器平均每30分钟为每个终端处理5到6个事务,或者,换句话说,平均每5到6分钟为每个终端处理一个事务。这表明住宅网关的MWD合理值为10至12分钟。在没有明确配置的情况下,住宅网关的MWD值应为600秒。
The same reasoning suggests that the value of MWD should be much shorter for trunking gateways or for business gateways, because they handle a large number of Terminations, and also because the usage rate of these Terminations is much higher than 10% during the peak busy hour, a typical value being 60%. These Terminations, during the peak hour, are this expected to contribute about one transaction per minute to the Media Gateway Controller load. A reasonable algorithm is to make the value of MWD per "trunk" Termination six times shorter than the MWD per residential gateway, and also inversely proportional to the number of Terminations that are being restarted. For example MWD should be set to 2.5 seconds for a gateway that handles a T1 line, or to 60 milliseconds for a gateway that handles a T3 line.
同样的推理表明,对于中继网关或业务网关,MWD的值应该短得多,因为它们处理大量终端,而且在高峰繁忙时间,这些终端的使用率远远高于10%,典型值为60%。在高峰时段,这些终止预计将为媒体网关控制器负载每分钟贡献大约一个事务。一个合理的算法是使每个“中继”终端的MWD值比每个住宅网关的MWD值短六倍,并且与正在重新启动的终端数量成反比。例如,对于处理T1线路的网关,MWD应设置为2.5秒;对于处理T3线路的网关,MWD应设置为60毫秒。
This section covers security when using the protocol in an IP environment.
本节介绍在IP环境中使用协议时的安全性。
A security mechanism is clearly needed to prevent unauthorized entities from using the protocol defined in this document for setting up unauthorized calls or interfering with authorized calls. The security mechanism for the protocol when transported over IP networks is IPsec [RFC2401 to RFC2411].
显然需要一种安全机制来防止未经授权的实体使用本文档中定义的协议来设置未经授权的呼叫或干扰授权的呼叫。通过IP网络传输协议时的安全机制是IPsec[RFC2401到RFC2411]。
The AH header [RFC2402] affords data origin authentication, connectionless integrity and optional anti-replay protection of messages passed between the MG and the MGC. The ESP header [RFC2406] provides confidentiality of messages, if desired. For instance, the ESP encryption service should be requested if the session descriptions are used to carry session keys, as defined in SDP.
AH报头[RFC2402]为MG和MGC之间传递的消息提供数据源身份验证、无连接完整性和可选的防重放保护。如果需要,ESP头[RFC2406]提供消息的机密性。例如,如果会话描述用于携带SDP中定义的会话密钥,则应请求ESP加密服务。
Implementations of the protocol defined in this document employing the ESP header SHALL comply with section 5 of [RFC2406], which defines a minimum set of algorithms for integrity checking and
采用ESP报头的本文件中定义的协议实施应符合[RFC2406]第5节的规定,该节规定了完整性检查和测试的最小算法集
encryption. Similarly, implementations employing the AH header SHALL comply with section 5 of [RFC2402], which defines a minimum set of algorithms for integrity checking using manual keys.
加密。同样,采用AH报头的实现应符合[RFC2402]第5节的要求,该节定义了使用手动键进行完整性检查的最小算法集。
Implementations SHOULD use IKE [RFC2409] to permit more robust keying options. Implementations employing IKE SHOULD support authentication with RSA signatures and RSA public key encryption.
实现应该使用IKE[RFC2409]来允许更健壮的键控选项。采用IKE的实现应该支持使用RSA签名和RSA公钥加密的身份验证。
Implementation of IPsec requires that the AH or ESP header be inserted immediately after the IP header. This cannot be easily done at the application level. Therefore, this presents a deployment problem for the protocol defined in this document where the underlying network implementation does not support IPsec.
IPsec的实现要求AH或ESP头立即插入IP头之后。这在应用程序级别上是不容易做到的。因此,如果底层网络实现不支持IPsec,则本文档中定义的协议存在部署问题。
As an interim solution, an optional AH header is defined within the H.248 protocol header. The header fields are exactly those of the SPI, SEQUENCE NUMBER and DATA fields as defined in [RFC2402]. The semantics of the header fields are the same as the "transport mode" of [RFC2402], except for the calculation of the Integrity Check value (ICV). In IPsec, the ICV is calculated over the entire IP packet including the IP header. This prevents spoofing of the IP addresses. To retain the same functionality, the ICV calculation should be performed across the entire transaction prepended by a synthesized IP header consisting of a 32 bit source IP address, a 32 bit destination address and an 16 bit UDP encoded as 10 hex digits. When the interim AH mechanism is employed when TCP is the transport Layer, the UDP Port above becomes the TCP port, and all other operations are the same.
作为临时解决方案,在H.248协议头中定义了可选AH头。标题字段与[RFC2402]中定义的SPI、序列号和数据字段完全相同。除了完整性检查值(ICV)的计算外,报头字段的语义与[RFC2402]的“传输模式”相同。在IPsec中,ICV是在包括IP报头的整个IP数据包上计算的。这可以防止IP地址被欺骗。为了保持相同的功能,ICV计算应在整个事务中执行,该事务由一个合成IP头(由32位源IP地址、32位目标地址和编码为10个十六进制数字的16位UDP组成)作为前缀。当TCP为传输层时采用临时AH机制时,上面的UDP端口将成为TCP端口,所有其他操作都相同。
Implementations of the H.248 protocol SHALL implement IPsec where the underlying operating system and the transport network supports IPsec. Implementations of the protocol using IPv4 SHALL implement the interim AH scheme. However, this interim scheme SHALL NOT be used when the underlying network layer supports IPsec. IPv6 implementations are assumed to support IPsec and SHALL NOT use the interim AH scheme.
在底层操作系统和传输网络支持IPsec的情况下,H.248协议的实现应实现IPsec。使用IPv4协议的实施应实施临时AH方案。但是,当底层网络层支持IPsec时,不应使用此临时方案。假定IPv6实现支持IPsec,不应使用临时AH方案。
All implementations of the interim AH mechanism SHALL comply with section 5 of [RFC2402] which defines a minimum set of algorithms for integrity checking using manual keys.
临时AH机制的所有实现应符合[RFC2402]第5节的规定,该节规定了使用手动键进行完整性检查的最小算法集。
The interim AH interim scheme does not provide protection against eavesdropping; thus forbidding third parties from monitoring the connections set up by a given termination. Also, it does not provide protection against replay attacks. These procedures do not necessarily protect against denial of service attacks by misbehaving
临时AH临时方案不提供防止窃听的保护;因此,禁止第三方监控由给定终端设置的连接。此外,它不提供针对重播攻击的保护。这些过程不一定能够通过行为不端来防止拒绝服务攻击
MGs or misbehaving MGCs. However, they will provide an identification of these misbehaving entities, which should then be deprived of their authorization through maintenance procedures.
MGs或行为不端的MGC。但是,他们将提供这些行为不端实体的身份证明,然后通过维护程序剥夺这些实体的授权。
The protocol allows the MGC to provide MGs with "session keys" that can be used to encrypt the audio messages, protecting against eavesdropping.
该协议允许MGC向MGs提供可用于加密音频消息的“会话密钥”,以防止窃听。
A specific problem of packet networks is "uncontrolled barge-in". This attack can be performed by directing media packets to the IP address and UDP port used by a connection. If no protection is implemented, the packets must be decompressed and the signals must be played on the "line side".
分组网络的一个具体问题是“不受控制的闯入”。可以通过将媒体数据包定向到连接使用的IP地址和UDP端口来执行此攻击。如果未实施保护,则必须解压缩数据包,并且必须在“线路侧”播放信号。
A basic protection against this attack is to only accept packets from known sources, checking for example that the IP source address and UDP source port match the values announced in the Remote Descriptor. This has two inconveniences: it slows down connection establishment and it can be fooled by source spoofing:
针对此攻击的一个基本保护是仅接受来自已知源的数据包,例如检查IP源地址和UDP源端口是否与远程描述符中宣布的值匹配。这有两个不便之处:它会减慢连接的建立速度,并且可能被源欺骗所愚弄:
. To enable the address-based protection, the MGC must obtain the remote session description of the egress MG and pass it to the ingress MG. This requires at least one network roundtrip, and leaves us with a dilemma: either allow the call to proceed without waiting for the round trip to complete, and risk for example, "clipping" a remote announcement, or wait for the full roundtrip and settle for slower call-set-up procedures.
. 为了启用基于地址的保护,MGC必须获得出口MG的远程会话描述,并将其传递给入口MG。这至少需要一次网络往返,让我们陷入两难境地:要么允许呼叫继续进行而不等待往返完成,并冒着“剪辑”远程公告等风险,要么等待完整的往返并满足于较慢的呼叫设置过程。
. Source spoofing is only effective if the attacker can obtain valid pairs of source destination addresses and ports, for example by listening to a fraction of the traffic. To fight source spoofing, one could try to control all access points to the network. But this is in practice very hard to achieve.
. 源欺骗只有在攻击者能够获得有效的源-目标地址和端口对时才有效,例如,通过监听一小部分流量。为了打击源欺骗,可以尝试控制网络的所有接入点。但这在实践中很难实现。
An alternative to checking the source address is to encrypt and authenticate the packets, using a secret key that is conveyed during the call set-up procedure. This will not slow down the call set-up, and provides strong protection against address spoofing.
检查源地址的另一种方法是使用在呼叫建立过程中传递的密钥对数据包进行加密和身份验证。这不会减慢呼叫设置,并提供强大的地址欺骗保护。
The control association between MG and MGC is initiated at MG cold start, and announced by a ServiceChange message, but can be changed by subsequent events, such as failures or manual service events. While the protocol does not have an explicit mechanism to support
MG和MGC之间的控制关联在MG冷启动时启动,并通过ServiceChange消息宣布,但可以通过后续事件(如故障或手动维修事件)进行更改。而协议没有明确的机制来支持
multiple MGCs controlling a physical MG, it has been designed to support the multiple logical MG (within a single physical MG) that can be associated with different MGCs.
多个MGC控制一个物理MG,它被设计为支持可与不同MGC关联的多个逻辑MG(在单个物理MG内)。
A physical Media Gateway may be partitioned into one or more Virtual MGs. A virtual MG consists of a set of statically partitioned physical Terminations and/or sets of ephemeral Terminations. A physical Termination is controlled by one MGC. The model does not require that other resources be statically allocated, just Terminations. The mechanism for allocating Terminations to virtual MGs is a management method outside the scope of the protocol. Each of the virtual MGs appears to the MGC as a complete MG client.
物理媒体网关可划分为一个或多个虚拟MG。虚拟MG由一组静态分区的物理终端和/或一组临时终端组成。物理终端由一个MGC控制。该模型不需要静态分配其他资源,只需要终止。将终端分配给虚拟MG的机制是协议范围之外的一种管理方法。每个虚拟MG在MGC看来都是一个完整的MG客户端。
A physical MG may have only one network interface, which must be shared across virtual MGs. In such a case, the packet/cell side Termination is shared. It should be noted however, that in use, such interfaces require an ephemeral instance of the Termination to be created per flow, and thus sharing the Termination is straightforward. This mechanism does lead to a complication, namely that the MG must always know which of its controlling MGCs should be notified if an event occurs on the interface.
物理MG可能只有一个网络接口,必须在虚拟MG之间共享。在这种情况下,分组/小区端接是共享的。然而,应该注意的是,在使用中,这样的接口需要为每个流创建一个短暂的终止实例,因此共享终止非常简单。这种机制确实会导致复杂性,即MG必须始终知道,如果接口上发生事件,应通知其控制MGC中的哪一个。
In normal operation, the Virtual MG will be instructed by the MGC to create network flows (if it is the originating side), or to expect flow requests (if it is the terminating side), and no confusion will arise. However, if an unexpected event occurs, the Virtual MG must know what to do with respect to the physical resources it is controlling.
在正常操作中,MGC将指示虚拟MG创建网络流(如果它是发起端)或期望流请求(如果它是终止端),并且不会出现混淆。但是,如果发生意外事件,虚拟MG必须知道如何处理其控制的物理资源。
If recovering from the event requires manipulation of a physical interface's state, only one MGC should do so. These issues are resolved by allowing any of the MGCs to create EventsDescriptors to be notified of such events, but only one MGC can have read/write access to the physical interface properties; all other MGCs have read-only access. The management mechanism is used to designate which MGC has read/write capability, and is designated the Master MGC.
如果从事件中恢复需要操纵物理接口的状态,则只有一个MGC可以这样做。这些问题通过允许任何MGC创建事件脚本来解决,脚本将收到此类事件的通知,但只有一个MGC可以对物理接口属性进行读/写访问;所有其他MGC都具有只读访问权限。管理机制用于指定哪个MGC具有读/写能力,并指定为主MGC。
Each virtual MG has its own Root Termination. In most cases the values for the properties of the Root Termination are independently settable by each MGC. Where there can only be one value, the parameter is read-only to all but the Master MGC.
每个虚拟MG都有自己的根终止。在大多数情况下,根终止的属性值可由每个MGC独立设置。如果只有一个值,则该参数对除主MGC之外的所有人都是只读的。
ServiceChange may only be applied to a Termination or set of Terminations partitioned to the Virtual MG or created (in the case of ephemeral Terminations) by that Virtual MG.
ServiceChange只能应用于分割到虚拟MG或由该虚拟MG创建(在临时终止的情况下)的终止或一组终止。
A MG is pre-provisioned by a management mechanism outside the scope of this protocol with a Primary and (optionally) an ordered list of Secondary MGCs. Upon a cold start of the MG, it will issue a ServiceChange command with a "Restart" method, on the Root Termination to its primary MGC. If the MGC accepts the MG, it will send a Transaction Accept, with the ServiceChangeMgcId set to itself. If the MG receives an ServiceChangeMgcId not equal to the MGC it contacted, it sends a ServiceChange to the MGC specified in the ServiceChangeMgcId. It continues this process until it gets a controlling MGC to accept its registration, or it fails to get a reply. Upon failure to obtain a reply, either from the Primary MGC, or a designated successor, the MG tries its pre-provisioned Secondary MGCs, in order. If the MG is unable to comply and it has established a transport connection to the MGC, it should close that connection. In any event, it should reject all subsequent requests from the MGC with Error 406 Version Not Supported.
MG由本协议范围之外的管理机制预先配置,具有主MGC和(可选)辅助MGC的有序列表。MG冷启动后,它将在根终止时向其主MGC发出带有“重启”方法的ServiceChange命令。如果MGC接受MG,它将发送一个事务接受,并将ServiceChangeMgcId设置为自身。如果MG收到的ServiceChangeMgcId不等于其联系的MGC,则会向ServiceChangeMgcId中指定的MGC发送ServiceChange。它将继续此过程,直到获得控制MGC以接受其注册,或者无法获得回复。在无法从主MGC或指定的继任者处获得回复时,MG会依次尝试其预配置的辅助MGC。如果MG无法遵守,并且已经与MGC建立了传输连接,则应关闭该连接。在任何情况下,它都应该拒绝来自MGC的所有后续请求,错误为406版本不受支持。
It is possible that the reply to a ServiceChange with Restart will be lost, and a command will be received by the MG prior to the receipt of the ServiceChange response. The MG shall issue error 505 - Command Received before Restart Response.
可能会丢失对重新启动的ServiceChange的回复,并且MG会在收到ServiceChange响应之前收到命令。MG应发出错误505-重启响应前收到的命令。
The first ServiceChange command from an MG shall contain the version number of the protocol supported by the MG in the ServiceChangeVersion parameter. Upon receiving such a message, if the MGC supports only a lower version, then the MGC shall send a ServiceChangeReply with the lower version and thereafter all the messages between MG and MGC shall conform to the lower version of the protocol. If the MG is unable to comply and it has established a transport connection to the MGC, it should close that connection. In any event, it should reject all subsequent requests from the MGC with Error 406 Version Not supported.
来自MG的第一个ServiceChange命令应在ServiceChangeVersion参数中包含MG支持的协议的版本号。收到此类消息后,如果MGC仅支持较低版本,则MGC应发送具有较低版本的ServiceChangeReply,此后MG和MGC之间的所有消息应符合协议的较低版本。如果MG无法遵守,并且已经与MGC建立了传输连接,则应关闭该连接。在任何情况下,它都应该拒绝来自MGC的所有后续请求,错误为406版本不受支持。
If the MGC supports a higher version than the MG but is able to support the lower version proposed by the MG, it shall send a ServiceChangeReply with the lower version and thereafter all the messages between MG and MGC shall conform to the lower version of the protocol. If the MGC is unable to comply, it shall reject the association, with Error 406 Version Not Supported.
如果MGC支持高于MG的版本,但能够支持MG提出的较低版本,则MGC应发送具有较低版本的ServiceChangeReply,此后MG和MGC之间的所有消息应符合协议的较低版本。如果MGC无法遵守,则应拒绝关联,错误为406版本不支持。
Protocol version negotiation may also occur at "handoff" and "failover" ServiceChanges.
协议版本协商也可能在“切换”和“故障转移”服务更改时发生。
When extending the protocol with new versions, the following rules should be followed.
使用新版本扩展协议时,应遵循以下规则。
1. Existing protocol elements, i.e., procedures, parameters, descriptor, property, values, should not be changed unless a protocol error needs to be corrected or it becomes necessary to change the operation of the service that is being supported by the protocol.
1. 除非需要更正协议错误或有必要更改协议支持的服务的操作,否则不应更改现有协议元素,即过程、参数、描述符、属性、值。
2. The semantics of a command, a parameter, descriptor, property, value should not be changed.
2. 命令、参数、描述符、属性和值的语义不应更改。
3. Established rules for formatting and encoding messages and parameters should not be modified.
3. 不应修改已建立的消息和参数格式化和编码规则。
4. When information elements are found to be obsolete they can be marked as not used. However, the identifier for that information element will be marked as reserved. In that way it can not be used in future versions.
4. 当发现信息元素过时时,可以将其标记为未使用。但是,该信息元素的标识符将标记为保留。这样,它就不能在将来的版本中使用。
If a MG fails, but is capable of sending a message to the MGC, it sends a ServiceChange with an appropriate method (graceful or forced) and specifies the Root TerminationID. When it returns to service, it sends a ServiceChange with a "Restart" method.
如果MG失败,但能够向MGC发送消息,它将使用适当的方法(优雅或强制)发送ServiceChange,并指定根TerminationID。当它返回服务时,它使用“重启”方法发送ServiceChange。
Allowing the MGC to send duplicate messages to both MGs accommodates pairs of MGs that are capable of redundant failover of one of the MGs. Only the Working MG shall accept or reject transactions. Upon failover, the Primary MG sends a ServiceChange command with a "Failover" method and a "MG Impending Failure" reason. The MGC then uses the primary MG as the active MG. When the error condition is repaired, the Working MG can send a "ServiceChange" with a "Restart" method.
允许MGC向两个MG发送重复消息可容纳能够对其中一个MG进行冗余故障切换的MG对。只有工作MG才能接受或拒绝交易。故障转移后,主MG发送带有“故障转移”方法和“MG即将发生故障”原因的ServiceChange命令。然后,MGC使用主MG作为活动MG。修复错误条件后,工作MG可以使用“重新启动”方法发送“ServiceChange”。
If the MG detects a failure of its controlling MGC, it attempts to contact the next MGC on its pre-provisioned list. It starts its attempts at the beginning (Primary MGC), unless that was the MGC that failed, in which case it starts at its first Secondary MGC. It sends a ServiceChange message with a "Failover" method and a " MGC Impending Failure" reason.
如果MG检测到其控制MGC出现故障,它将尝试联系其预配置列表上的下一个MGC。它在开始时开始尝试(主MGC),除非失败的是MGC,在这种情况下,它从第一个辅助MGC开始。它发送带有“故障转移”方法和“MGC即将发生故障”原因的ServiceChange消息。
In partial failure, or manual maintenance reasons, an MGC may wish to direct its controlled MGs to use a different MGC. To do so, it sends a ServiceChange method to the MG with a "HandOff" method, and its
在部分故障或手动维护原因下,MGC可能希望指示其受控MG使用不同的MGC。为此,它向MG发送带有“切换”方法的ServiceChange方法及其
designated replacement in ServiceChangeMgcId. The MG should send a ServiceChange message with a "Handoff" method and a "MGC directed change" reason to the designated MGC. If it fails to get a reply, or fails to see an Audit command subsequently, it should behave as if its MGC failed, and start contacting secondary MGCs. If the MG is unable to establish a control relationship with any MGC, it shall wait a random amount of time as described in section 9.2 and then start contacting its primary, and if necessary, its secondary MGCs again.
ServiceChangeMgcId中的指定替换。MG应向指定的MGC发送带有“切换”方法和“MGC指示变更”原因的ServiceChange消息。如果它无法获得回复,或者随后无法看到审核命令,那么它应该表现为其MGC失败,并开始联系辅助MGC。如果MG无法与任何MGC建立控制关系,则应按照第9.2节所述随机等待一段时间,然后开始再次联系其主要MGC,如有必要,联系其次要MGC。
No recommendation is made on how the MGCs involved in the Handoff maintain state information; this is considered to be out of scope of this recommendation. The MGC and MG may take the following steps when Handoff occurs. When the MGC initiates a HandOff, the handover should be transparent to Operations on the Media Gateway. Transactions can be executed in any order, and could be in progress when the ServiceChange is executed. Accordingly, commands in progress continue, transaction replies are sent to the new MGC (after a new control association is established), and the MG should expect outstanding transaction replies from the new MGC. No new messages shall be sent to the new MGC until the control association is established. Repeated transaction requests shall be directed to the new MGC. The MG shall maintain state on all terminations and contexts.
未就切换中涉及的MGC如何维护状态信息提出建议;这被认为超出了本建议的范围。当发生切换时,MGC和MG可以采取以下步骤。当MGC启动切换时,切换对媒体网关上的操作应该是透明的。事务可以按任何顺序执行,并且可以在执行ServiceChange时进行。因此,正在执行的命令将继续执行,事务回复将发送到新的MGC(在建立新的控制关联之后),MG应期待新的MGC做出未完成的事务回复。在建立控制关联之前,不得向新MGC发送新消息。重复的交易请求应提交给新的MGC。MG应保持所有终端和上下文的状态。
It is possible that the MGC could be implemented in such a way that a failed MGC is replaced by a working MGC where the identity of the new MGC is the same as the failed one. In such a case, ServiceChangeMgcId would be specified with the previous value and the MG shall behave as if the value was changed, and send a ServiceChange message, as above.
MGC的实现方式可能是将故障MGC替换为工作MGC,其中新MGC的标识与故障MGC相同。在这种情况下,ServiceChangeMgcId将使用先前的值指定,MG的行为应与值已更改一样,并发送ServiceChange消息,如上所述。
Pairs of MGCs that are capable of redundant failover can notify the controlled MGs of the failover by the above mechanism.
能够进行冗余故障切换的MGC对可以通过上述机制将故障切换通知受控MG。
The primary mechanism for extension is by means of Packages. Packages define additional Properties, Events, Signals and Statistics that may occur on Terminations.
扩展的主要机制是通过包。包定义可能在终止时发生的其他属性、事件、信号和统计信息。
Packages defined by IETF will appear in separate RFCs.
IETF定义的包将出现在单独的RFC中。
Packages defined by ITU-T may appear in the relevant recommendations (e.g. as annexes).
ITU-T定义的包可能出现在相关建议中(例如,作为附件)。
1. A public document or a standard forum document, which can be referenced as the document that describes the package following the guideline above, should be specified.
1. 应指定公共文件或标准论坛文件,该文件可作为描述符合上述指南的文件包的参考文件。
2. The document shall specify the version of the Package that it describes.
2. 文件应规定其所描述的文件包版本。
3. The document should be available on a public web server and should have a stable URL. The site should provide a mechanism to provide comments and appropriate responses should be returned.
3. 文档应该在公共web服务器上可用,并且应该有一个稳定的URL。网站应提供提供评论的机制,并应返回适当的回复。
Packages define Properties, Events, Signals, and Statistics.
包定义属性、事件、信号和统计信息。
Packages may also define new error codes according to the guidelines given in section 13.2. This is a matter of documentary convenience: the package documentation is submitted to IANA in support of the error code registration. If a package is modified, it is unnecessary to provide IANA with a new document reference in support of the error code unless the description of the error code itself is modified.
软件包也可以根据第13.2节给出的指南定义新的错误代码。这是一个文档方便的问题:包文档提交给IANA以支持错误代码注册。如果修改了程序包,则无需向IANA提供新的文档引用以支持错误代码,除非修改了错误代码本身的描述。
Names of all such defined constructs shall consist of the PackageID (which uniquely identifies the package) and the ID of the item (which uniquely identifies the item in that package). In the text encoding the two shall be separated by a forward slash ("/") character. Example: togen/playtone is the text encoding to refer to the play tone signal in the tone generation package.
所有此类定义结构的名称应包括PackageID(唯一标识该包)和项目ID(唯一标识该包中的项目)。在文本编码中,两个字符应以正斜杠(“/”)分隔。示例:togen/playtone是指音调生成包中播放音调信号的文本编码。
A Package will contain the following sections:
包将包含以下部分:
Overall description of the package, specifying:
包的总体说明,具体说明:
. Package Name: only descriptive, . PackageID: Is an identifier . Description: . Version: A new version of a package can only add additional Properties, Events, Signals, Statistics and new possible values for an existing parameter described in the original package. No deletions or modifications shall be allowed. A version is an integer in the range from 1 to 99.
. 包名称:仅说明性。PackageID:是一个标识符。说明:。版本:包的新版本只能为原始包中描述的现有参数添加其他属性、事件、信号、统计信息和新的可能值。不允许删除或修改。版本是1到99之间的整数。
. Extends (Optional): A package may extend an existing package. The version of the original package must be specified. When a package extends another package it shall only add additional Properties, Events, Signals, Statistics and new possible values for an
. 扩展(可选):包可以扩展现有包。必须指定原始软件包的版本。当一个包扩展另一个包时,它只能为一个包添加额外的属性、事件、信号、统计信息和新的可能值
existing parameter described in the original package. An extended package shall not redefine or overload a name defined in the original package. Hence, if package B version 1 extends package A version 1, version 2 of B will not be able to extend the A version 2 if A version 2 defines a name already in B version 1.
原始包中描述的现有参数。扩展包不得重新定义或重载原始包中定义的名称。因此,如果包B版本1扩展了包A版本1,那么如果版本2定义了B版本1中已有的名称,则B版本2将无法扩展A版本2。
Properties defined by the package, specifying:
由包定义的属性,指定:
. Property Name: only descriptive. . PropertyID: Is an identifier . Description: . Type: One of: String: UTF-8 string Integer: 4 byte signed integer Double: 8 byte signed integer Character: Unicode UTF-8 encoding of a single letter. Could be more than one octet. Enumeration: One of a list of possible unique values (See 12.3) Sub-list: A list of several values from a list Boolean
. 属性名称:仅描述性。PropertyID:是一个标识符。说明:。类型:字符串:UTF-8字符串整数:4字节有符号整数双精度:8字节有符号整数字符:单字母的Unicode UTF-8编码。可能不止一个八位组。枚举:可能唯一值列表之一(见12.3)子列表:布尔列表中多个值的列表
. Possible Values: . Defined in: Which H.248 descriptor the property is defined in. LocalControl is for stream dependent properties. TerminationState is for stream independent properties.
. 可能的值:。定义于:定义属性的H.248描述符。LocalControl用于流相关属性。TerminationState用于流独立属性。
. Characteristics: Read / Write or both, and (optionally), global: Indicates whether a property is read-only, or read-write, and if it is global. If Global is omitted, the property is not global. If a property is declared as global, the value of the property is shared by all terminations realizing the package.
. 特征:读/写或两者,以及(可选)全局:指示属性是只读还是读写,以及是否为全局属性。如果省略“全局”,则该属性不是全局的。如果一个属性被声明为全局属性,那么该属性的值将由实现该包的所有终端共享。
Events defined by the package, specifying:
由包定义的事件,指定:
. Event name: only descriptive. . EventID: Is an identifier . Description: . EventsDescriptor Parameters: Parameters used by the MGC to configure the event, and found in the EventsDescriptor. See section 12.2.
. 事件名称:仅描述性。EventID:是一个标识符。说明:。EventsDescriptor参数:MGC用于配置事件的参数,可在EventsDescriptor中找到。见第12.2节。
. ObservedEventsDescriptor Parameters: Parameters returned to the MGC in Notify requests and in replies to command requests from the MGC that audit ObservedEventsDescriptor, and found in the ObservedEventsDescriptor. See section 12.2.
. ObservedEventsDescriptor参数:在Notify请求和对来自MGC的审核ObservedEventsDescriptor的命令请求的答复中返回给MGC的参数,并在ObservedEventsDescriptor中找到。见第12.2节。
. Signals defined by the package, specifying: . Signal Name: only descriptive. . SignalID: Is an identifier. SignalID is used in a SignalsDescriptor . Description . SignalType: One of: - OO (On/Off) - TO (TimeOut) - BR (Brief)
. 由包定义的信号,指定:。信号名称:仅用于说明。SignalID:是一个标识符。SignalID用于SignalsDescriptor中。描述信号类型:其中之一:-OO(开/关)-至(超时)-BR(简短)
Note - SignalType may be defined such that it is dependent on the value of one or more parameters. Signals that would be played with SignalType BR should have a default duration. The package has to define the default duration and signalType.
注-可以定义信号类型,使其取决于一个或多个参数的值。使用SignalType BR播放的信号应具有默认持续时间。包必须定义默认的持续时间和信号类型。
. Duration: in hundredths of seconds . Additional Parameters: See section 12.2
. 持续时间:以百分之一秒为单位。其他参数:见第12.2节
Statistics defined by the package, specifying:
由包定义的统计信息,指定:
. Statistic name: only descriptive. . StatisticID: Is an identifier. StatisticID is used in a StatisticsDescriptor. . Description . Units: unit of measure, e.g. milliseconds, packets.
. 统计名称:仅描述性。统计学家:是一个标识符。Statisticad用于统计描述符中。描述单位:度量单位,例如毫秒、数据包。
Additional guidance on the use of the package.
关于包装使用的附加指南。
12.2 Guidelines to defining Properties, Statistics and Parameters to Events and Signals.
12.2 定义事件和信号的属性、统计信息和参数的指南。
. Parameter Name: only descriptive . ParameterID: Is an identifier . Type: One of: String: UTF-8 octet string Integer: 4 octet signed integer Double: 8 octet signed integer
. 参数名称:仅为描述性参数。ParameterID:是一个标识符。类型:其中一个:字符串:UTF-8八位组字符串整数:4个八位组有符号整数双:8个八位组有符号整数
Character: Unicode UTF-8 encoding of a single letter. Could be more than one octet. Enumeration: One of a list of possible unique values (See 12.3) Sub-list: A list of several values from a list Boolean
字符:单个字母的Unicode UTF-8编码。可能不止一个八位组。枚举:可能唯一值列表之一(见12.3)子列表:布尔列表中多个值的列表
. Possible values: . Description:
. 可能的值:。说明:
Possible values for parameters include enumerations. Enumerations may be defined in a list. It is recommended that the list be IANA registered so that packages that extend the list can be defined without concern for conflicting names.
参数的可能值包括枚举。枚举可以在列表中定义。建议对列表进行IANA注册,以便可以定义扩展列表的包,而不必担心名称冲突。
Identifiers in text encoding shall be strings of up to 64 characters, containing no spaces, starting with an alphanumeric character and consisting of alphanumeric characters and / or digits, and possibly including the special character underscore ("_").
文本编码中的标识符应为最多64个字符的字符串,不含空格,以字母数字字符开头,由字母数字字符和/或数字组成,可能包括特殊字符下划线(“389;”)。
Identifiers in binary encoding are 2 octets long.
二进制编码中的标识符长度为2个八位字节。
Both text and binary values shall be specified for each identifier, including identifiers used as values in enumerated types.
应为每个标识符指定文本值和二进制值,包括用作枚举类型值的标识符。
A package can be registered with IANA for interoperability reasons. See section 13 for IANA considerations.
出于互操作性原因,可以向IANA注册包。IANA注意事项见第13节。
The following considerations SHALL be met to register a package with IANA:
向IANA注册软件包时应满足以下考虑:
1. A unique string name, unique serial number and version number is registered for each package. The string name is used with text encoding. The serial number shall be used with binary encoding. Serial Numbers 60000-64565 are reserved for private use. Serial number 0 is reserved.
1. 为每个包注册唯一的字符串名称、唯一的序列号和版本号。字符串名称与文本编码一起使用。序列号应使用二进制编码。序列号60000-64565保留供私人使用。保留序列号0。
2. A contact name, email and postal addresses for that contact shall be specified. The contact information shall be updated by the defining organization as necessary.
2. 应指定该联系人的联系人姓名、电子邮件和邮政地址。必要时,定义组织应更新联系信息。
3. A reference to a document that describes the package, which should be public:
3. 对描述软件包的文档的引用,该文档应为公共文档:
The document shall specify the version of the Package that it describes.
文件应规定其所描述的文件包版本。
If the document is public, it should be located on a public web server and should have a stable URL. The site should provide a mechanism to provide comments and appropriate responses should be returned.
如果文档是公共的,它应该位于公共web服务器上,并且应该有一个稳定的URL。网站应提供提供评论的机制,并应返回适当的回复。
4. Packages registered by other than recognized standards bodies shall have a minimum package name length of 8 characters.
4. 由非公认标准机构注册的包装应至少具有8个字符的包装名称长度。
5. All other package names are first come-first served if all other conditions are met
5. 如果满足所有其他条件,则所有其他包裹名称均为先到先得
The following considerations SHALL be met to register an error code with IANA:
在IANA注册错误代码时,应满足以下注意事项:
1. An error number and a one line (80 character maximum) string is registered for each error.
1. 为每个错误注册一个错误号和一行(最多80个字符)字符串。
2. A complete description of the conditions under which the error is detected shall be included in a publicly available document. The description shall be sufficiently clear to differentiate the error from all other existing error codes.
2. 应在公开文件中完整描述检测到错误的条件。描述应足够清晰,以区分错误与所有其他现有错误代码。
3. The document should be available on a public web server and should have a stable URL.
3. 文档应该在公共web服务器上可用,并且应该有一个稳定的URL。
4. Error numbers registered by recognized standards bodies shall have 3 or 4 character error numbers.
4. 由公认标准机构登记的错误编号应具有3或4个字符的错误编号。
5. Error numbers registered by all other organizations or individuals shall have 4 character error numbers.
5. 所有其他组织或个人登记的错误号应有4个字符的错误号。
6. An error number shall not be redefined, nor modified except by the organization or individual that originally defined it, or their successors or assigns.
6. 除非最初定义错误号的组织或个人或其继任者或受让人,否则不得重新定义或修改错误号。
The following considerations SHALL be met to register service change reason with IANA:
向IANA登记服务变更原因应满足以下考虑:
1. A one phrase, 80-character maximum, unique reason code is registered for each reason.
1. 为每个原因注册一个短语,最多80个字符,唯一的原因代码。
2. A complete description of the conditions under which the reason is used is detected shall be included in a publicly available document. The description shall be sufficiently clear to differentiate the reason from all other existing reasons.
2. 应在公开文件中包含对使用原因的条件的完整描述。说明应足够清晰,以区分原因与所有其他现有原因。
3. The document should be available on a public web server and should have a stable URL.
3. 文档应该在公共web服务器上可用,并且应该有一个稳定的URL。
ANNEX A: BINARY ENCODING OF THE PROTOCOL (NORMATIVE)
附件A:议定书的二进制编码(规范性)
This Annex specifies the syntax of messages using the notation defined in ASN.1 [ITU-T Recommendation X.680 (1997): Information Technology - Abstract Syntax Notation One (ASN.1) - Specification of basic notation.]. Messages shall be encoded for transmission by applying the basic encoding rules specified in [ITU-T Recommendation X.690(1994) Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER)].
本附件规定了使用ASN.1[ITU-T建议X.680(1997):信息技术-抽象语法符号一(ASN.1)-基本符号规范]中定义的符号的信息语法。应通过应用[ITU-T建议X.690(1994)信息技术-ASN.1编码规则:基本编码规则规范(BER)]中规定的基本编码规则对信息进行编码以进行传输。
The use of wildcards ALL and CHOOSE is allowed in the protocol. This allows a MGC to partially specify Termination IDs and let the MG choose from the values that conform to the partial specification. Termination IDs may encode a hierarchy of names. This hierarchy is provisioned. For instance, a TerminationID may consist of a trunk group, a trunk within the group and a circuit. Wildcarding must be possible at all levels. The following paragraphs explain how this is achieved.
协议中允许使用通配符ALL和CHOOSE。这允许MGC部分指定终止ID,并允许MG从符合部分规范的值中进行选择。终端ID可以对名称的层次结构进行编码。此层次结构已设置。例如,TerminationID可以由中继组、组内的中继和电路组成。必须在所有级别都可以进行通配符。以下段落解释了如何实现这一点。
The ASN.1 description uses octet strings of up to 8 octets in length for Termination IDs. This means that Termination IDs consist of at most 64 bits. A fully specified Termination ID may be preceded by a sequence of wildcarding fields. A wildcarding field is octet in length. Bit 7 (the most significant bit) of this octet specifies what type of wildcarding is invoked: if the bit value equals 1, then the ALL wildcard is used; if the bit value if 0, then the CHOOSE wildcard is used. Bit 6 of the wildcarding field specifies whether the wildcarding pertains to one level in the hierarchical naming scheme (bit value 0) or to the level of the hierarchy specified in the wildcarding field plus all lower levels (bit value 1). Bits 0 through 5 of the wildcarding field specify the bit position in the Termination ID at which the starts.
ASN.1描述使用长度最多为8个八位字节的八位字节字符串作为终止ID。这意味着终端ID最多由64位组成。完全指定的终止ID前面可以有一系列通配符字段。通配符字段的长度为八位字节。此八位字节的第7位(最高有效位)指定调用的通配符类型:如果位值等于1,则使用ALL通配符;如果位值为0,则使用CHOOSE通配符。通配符字段的第6位指定通配符是属于层次命名方案中的一个级别(位值0)还是属于通配符字段中指定的层次级别加上所有较低级别(位值1)。通配符字段的第0位到第5位指定终止ID中的位位置,在该位置开始。
We illustrate this scheme with some examples. In these examples, the most significant bit in a string of bits appears on the left hand side.
我们用一些例子来说明这个方案。在这些示例中,一串位中的最高有效位出现在左侧。
Assume that Termination IDs are three octets long and that each octet represents a level in a hierarchical naming scheme. A valid Termination ID is 00000001 00011110 01010101.
假设终止ID有三个八位字节长,每个八位字节表示分层命名方案中的一个级别。有效的终止ID为0000000 1 0001110 01010101。
Addressing ALL names with prefix 00000001 00011110 is done as follows: wildcarding field: 10000111 Termination ID: 00000001 00011110 xxxxxxxx.
使用前缀0000000 1 00011110寻址所有名称的操作如下:通配符字段:10000111终止ID:0000000 1 0001110 xxxxxxxx。
The values of the bits labeled "x" is irrelevant and shall be ignored by the receiver.
标记为“x”的位的值不相关,接收器应忽略。
Indicating to the receiver that is must choose a name with 00011110 as the second octet is done as follows: wildcarding fields: 00010111 followed by 00000111 Termination ID: xxxxxxxx 00011110 xxxxxxxx.
当第二个八位字节按如下方式完成时,向接收方指示必须选择一个带有0001110的名称:通配符字段:00010111,后跟00000111终止ID:XXXXXXXX0001110 xxxxxxxx。
The first wildcard field indicates a CHOOSE wildcard for the level in the naming hierarchy starting at bit 23, the highest level in our assumed naming scheme. The second wildcard field indicates a CHOOSE wildcard for the level in the naming hierarchy starting at bit 7, the lowest level in our assumed naming scheme.
第一个通配符字段表示命名层次结构中从第23位开始的级别的选择通配符,这是我们假设的命名方案中的最高级别。第二个通配符字段表示从第7位开始的命名层次结构中的级别的选择通配符,这是假定命名方案中的最低级别。
Finally, a CHOOSE-wildcarded name with the highest level of the name equal to 00000001 is specified as follows: wildcard field: 01001111 Termination ID: 0000001 xxxxxxxx xxxxxxxx .
最后,名称的最高级别等于00000001的CHOOSE通配符名称指定如下:通配符字段:0100111终止ID:0000001 xxxxxxxxxxxx。
Bit value 1 at bit position 6 of the first octet of the wildcard field indicates that the wildcarding pertains to the specified level in the naming hierarchy and all lower levels.
通配符字段第一个八位字节第6位的位值1表示通配符属于命名层次结构中的指定级别和所有较低级别。
Context IDs may also be wildcarded. In the case of Context IDs, however, specifying partial names is not allowed. Context ID 0x0 SHALL be used to indicate the NULL Context, Context ID 0xFFFFFFFE SHALL be used to indicate a CHOOSE wildcard, and Context ID 0xFFFFFFFF SHALL be used to indicate an ALL wildcard.
上下文ID也可以是通配符。但是,对于上下文ID,不允许指定部分名称。上下文ID 0x0用于表示空上下文,上下文ID 0xFFFFFFFE用于表示选择通配符,上下文ID 0xFFFFFF用于表示全通配符。
TerminationID 0xFFFFFFFFFFFFFFFF SHALL be used to indicate the ROOT Termination.
终端ID 0xFFFFFFFFFFFFFF应用于指示根终端。
This section contains the ASN.1 specification of the H.248 protocol syntax.
本节包含H.248协议语法的ASN.1规范。
NOTE - In case a transport mechanism is used that employs application level framing, the definition of Transaction below changes. Refer to the annex defining the transport mechanism for the definition that applies in that case.
注意-如果使用了采用应用程序级框架的传输机制,下面的事务定义将发生变化。有关适用于该情况的定义,请参阅定义运输机制的附件。
NOTE - The ASN.1 specification below contains a clause defining TerminationIDList as a sequence of TerminationIDs. The length of this sequence SHALL be one. The SEQUENCE OF construct is present only to allow future extensions.
注意-下面的ASN.1规范包含一个将TerminationIDList定义为TerminationID序列的子句。该序列的长度应为1。构造序列的存在只是为了允许将来的扩展。
MEDIA-GATEWAY-CONTROL DEFINITIONS AUTOMATIC TAGS::= BEGIN
MEDIA-GATEWAY-CONTROL DEFINITIONS AUTOMATIC TAGS::= BEGIN
MegacoMessage ::= SEQUENCE { authHeader AuthenticationHeader OPTIONAL, mess Message }
MegacoMessage ::= SEQUENCE { authHeader AuthenticationHeader OPTIONAL, mess Message }
AuthenticationHeader ::= SEQUENCE { secParmIndex SecurityParmIndex, seqNum SequenceNum, ad AuthData }
AuthenticationHeader ::= SEQUENCE { secParmIndex SecurityParmIndex, seqNum SequenceNum, ad AuthData }
SecurityParmIndex ::= OCTET STRING(SIZE(4))
SecurityParmIndex ::= OCTET STRING(SIZE(4))
SequenceNum ::= OCTET STRING(SIZE(4))
SequenceNum ::= OCTET STRING(SIZE(4))
AuthData ::= OCTET STRING (SIZE (16..32))
AuthData ::= OCTET STRING (SIZE (16..32))
Message ::= SEQUENCE { version INTEGER(0..99), -- The version of the protocol defined here is equal to 1. mId MId, -- Name/address of message originator messageBody CHOICE { messageError ErrorDescriptor, transactions SEQUENCE OF Transaction }, ... }
Message ::= SEQUENCE { version INTEGER(0..99), -- The version of the protocol defined here is equal to 1. mId MId, -- Name/address of message originator messageBody CHOICE { messageError ErrorDescriptor, transactions SEQUENCE OF Transaction }, ... }
MId ::= CHOICE { ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2)), -- Addressing structure of mtpAddress: -- 15 0 -- | PC | NI | -- 14 bits 2 bits ... }
MId ::= CHOICE { ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2)), -- Addressing structure of mtpAddress: -- 15 0 -- | PC | NI | -- 14 bits 2 bits ... }
DomainName ::= SEQUENCE {
DomainName ::= SEQUENCE {
name IA5String, -- The name starts with an alphanumeric digit followed by a -- sequence of alphanumeric digits, hyphens and dots. No two -- dots shall occur consecutively. portNumber INTEGER(0..65535) OPTIONAL }
name IA5String, -- The name starts with an alphanumeric digit followed by a -- sequence of alphanumeric digits, hyphens and dots. No two -- dots shall occur consecutively. portNumber INTEGER(0..65535) OPTIONAL }
IP4Address ::= SEQUENCE { address OCTET STRING (SIZE(4)), portNumber INTEGER(0..65535) OPTIONAL }
IP4Address ::= SEQUENCE { address OCTET STRING (SIZE(4)), portNumber INTEGER(0..65535) OPTIONAL }
IP6Address ::= SEQUENCE { address OCTET STRING (SIZE(16)), portNumber INTEGER(0..65535) OPTIONAL }
IP6Address ::= SEQUENCE { address OCTET STRING (SIZE(16)), portNumber INTEGER(0..65535) OPTIONAL }
PathName ::= IA5String(SIZE (1..64)) -- See section A.3
PathName ::= IA5String(SIZE (1..64)) -- See section A.3
Transaction ::= CHOICE { transactionRequest TransactionRequest, transactionPending TransactionPending, transactionReply TransactionReply, transactionResponseAck TransactionResponseAck, -- use of response acks is dependent on underlying transport ... }
Transaction ::= CHOICE { transactionRequest TransactionRequest, transactionPending TransactionPending, transactionReply TransactionReply, transactionResponseAck TransactionResponseAck, -- use of response acks is dependent on underlying transport ... }
TransactionId ::= INTEGER(0..4294967295) -- 32 bit unsigned integer
TransactionId ::= INTEGER(0..4294967295) -- 32 bit unsigned integer
TransactionRequest ::= SEQUENCE { transactionId TransactionId, actions SEQUENCE OF ActionRequest, ... }
TransactionRequest ::= SEQUENCE { transactionId TransactionId, actions SEQUENCE OF ActionRequest, ... }
TransactionPending ::= SEQUENCE { transactionId TransactionId, ... }
TransactionPending ::= SEQUENCE { transactionId TransactionId, ... }
TransactionReply ::= SEQUENCE { transactionId TransactionId, transactionResult CHOICE { transactionError ErrorDescriptor, actionReplies SEQUENCE OF ActionReply }, ... }
TransactionReply ::= SEQUENCE { transactionId TransactionId, transactionResult CHOICE { transactionError ErrorDescriptor, actionReplies SEQUENCE OF ActionReply }, ... }
TransactionResponseAck ::= SEQUENCE { firstAck TransactionId, lastAck TransactionId OPTIONAL }
TransactionResponseAck ::= SEQUENCE { firstAck TransactionId, lastAck TransactionId OPTIONAL }
ErrorDescriptor ::= SEQUENCE { errorCode ErrorCode, errorText ErrorText OPTIONAL }
ErrorDescriptor ::= SEQUENCE { errorCode ErrorCode, errorText ErrorText OPTIONAL }
ErrorCode ::= INTEGER(0..65535) -- See section 13 for IANA considerations w.r.t. error codes
ErrorCode ::= INTEGER(0..65535) -- See section 13 for IANA considerations w.r.t. error codes
ErrorText ::= IA5String
ErrorText ::= IA5String
ContextID ::= INTEGER(0..4294967295)
ContextID ::= INTEGER(0..4294967295)
-- Context NULL Value: 0 -- Context CHOOSE Value: 429467294 (0xFFFFFFFE) -- Context ALL Value: 4294967295 (0xFFFFFFFF)
-- Context NULL Value: 0 -- Context CHOOSE Value: 429467294 (0xFFFFFFFE) -- Context ALL Value: 4294967295 (0xFFFFFFFF)
ActionRequest ::= SEQUENCE { contextId ContextID, contextRequest ContextRequest OPTIONAL, contextAttrAuditReq ContextAttrAuditRequest OPTIONAL, commandRequests SEQUENCE OF CommandRequest }
ActionRequest ::= SEQUENCE { contextId ContextID, contextRequest ContextRequest OPTIONAL, contextAttrAuditReq ContextAttrAuditRequest OPTIONAL, commandRequests SEQUENCE OF CommandRequest }
ActionReply ::= SEQUENCE { contextId ContextID, errorDescriptor ErrorDescriptor OPTIONAL, contextReply ContextRequest OPTIONAL,
ActionReply ::= SEQUENCE { contextId ContextID, errorDescriptor ErrorDescriptor OPTIONAL, contextReply ContextRequest OPTIONAL,
commandReply SEQUENCE OF CommandReply }
commandReply}的commandReply序列
ContextRequest ::= SEQUENCE { priority INTEGER(0..15) OPTIONAL, emergency BOOLEAN OPTIONAL, topologyReq SEQUENCE OF TopologyRequest OPTIONAL, ... }
ContextRequest ::= SEQUENCE { priority INTEGER(0..15) OPTIONAL, emergency BOOLEAN OPTIONAL, topologyReq SEQUENCE OF TopologyRequest OPTIONAL, ... }
ContextAttrAuditRequest ::= SEQUENCE { topology NULL OPTIONAL, emergency NULL OPTIONAL, priority NULL OPTIONAL, ... }
ContextAttrAuditRequest ::= SEQUENCE { topology NULL OPTIONAL, emergency NULL OPTIONAL, priority NULL OPTIONAL, ... }
CommandRequest ::= SEQUENCE { command Command, optional NULL OPTIONAL, wildcardReturn NULL OPTIONAL, ... }
CommandRequest ::= SEQUENCE { command Command, optional NULL OPTIONAL, wildcardReturn NULL OPTIONAL, ... }
Command ::= CHOICE { addReq AmmRequest, moveReq AmmRequest, modReq AmmRequest, -- Add, Move, Modify requests have the same parameters subtractReq SubtractRequest, auditCapRequest AuditRequest, auditValueRequest AuditRequest, notifyReq NotifyRequest, serviceChangeReq ServiceChangeRequest, ... }
Command ::= CHOICE { addReq AmmRequest, moveReq AmmRequest, modReq AmmRequest, -- Add, Move, Modify requests have the same parameters subtractReq SubtractRequest, auditCapRequest AuditRequest, auditValueRequest AuditRequest, notifyReq NotifyRequest, serviceChangeReq ServiceChangeRequest, ... }
CommandReply ::= CHOICE { addReply AmmsReply, moveReply AmmsReply, modReply AmmsReply, subtractReply AmmsReply, -- Add, Move, Modify, Subtract replies have the same parameters
CommandReply ::= CHOICE { addReply AmmsReply, moveReply AmmsReply, modReply AmmsReply, subtractReply AmmsReply, -- Add, Move, Modify, Subtract replies have the same parameters
auditCapReply AuditReply, auditValueReply AuditReply, notifyReply NotifyReply, serviceChangeReply ServiceChangeReply, ... }
auditCapReply AuditReply,auditValueReply AuditReply,notifyReply notifyReply,serviceChangeReply serviceChangeReply,…}
TopologyRequest ::= SEQUENCE { terminationFrom TerminationID, terminationTo TerminationID, topologyDirection ENUMERATED { bothway(0), isolate(1), oneway(2) } }
TopologyRequest ::= SEQUENCE { terminationFrom TerminationID, terminationTo TerminationID, topologyDirection ENUMERATED { bothway(0), isolate(1), oneway(2) } }
AmmRequest ::= SEQUENCE { terminationID TerminationIDList, mediaDescriptor MediaDescriptor OPTIONAL, modemDescriptor ModemDescriptor OPTIONAL, muxDescriptor MuxDescriptor OPTIONAL, eventsDescriptor EventsDescriptor OPTIONAL, eventBufferDescriptor EventBufferDescriptor OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, digitMapDescriptor DigitMapDescriptor OPTIONAL, auditDescriptor AuditDescriptor OPTIONAL, ... }
AmmRequest ::= SEQUENCE { terminationID TerminationIDList, mediaDescriptor MediaDescriptor OPTIONAL, modemDescriptor ModemDescriptor OPTIONAL, muxDescriptor MuxDescriptor OPTIONAL, eventsDescriptor EventsDescriptor OPTIONAL, eventBufferDescriptor EventBufferDescriptor OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, digitMapDescriptor DigitMapDescriptor OPTIONAL, auditDescriptor AuditDescriptor OPTIONAL, ... }
AmmsReply ::= SEQUENCE { terminationID TerminationIDList, terminationAudit TerminationAudit OPTIONAL }
AmmsReply ::= SEQUENCE { terminationID TerminationIDList, terminationAudit TerminationAudit OPTIONAL }
SubtractRequest ::= SEQUENCE { terminationID TerminationIDList, auditDescriptor AuditDescriptor OPTIONAL, ... }
SubtractRequest ::= SEQUENCE { terminationID TerminationIDList, auditDescriptor AuditDescriptor OPTIONAL, ... }
AuditRequest ::= SEQUENCE {
AuditRequest ::= SEQUENCE {
terminationID TerminationID, auditDescriptor AuditDescriptor, ... }
terminationID terminationID,auditDescriptor auditDescriptor,…}
AuditReply ::= SEQUENCE { terminationID TerminationID, auditResult AuditResult }
AuditReply ::= SEQUENCE { terminationID TerminationID, auditResult AuditResult }
AuditResult ::= CHOICE { contextAuditResult TerminationIDList, terminationAuditResult TerminationAudit }
AuditResult ::= CHOICE { contextAuditResult TerminationIDList, terminationAuditResult TerminationAudit }
AuditDescriptor ::= SEQUENCE { auditToken BIT STRING { muxToken(0), modemToken(1), mediaToken(2), eventsToken(3), signalsToken(4), digitMapToken(5), statsToken(6), observedEventsToken(7), packagesToken(8), eventBufferToken(9) } OPTIONAL, ... }
AuditDescriptor ::= SEQUENCE { auditToken BIT STRING { muxToken(0), modemToken(1), mediaToken(2), eventsToken(3), signalsToken(4), digitMapToken(5), statsToken(6), observedEventsToken(7), packagesToken(8), eventBufferToken(9) } OPTIONAL, ... }
TerminationAudit ::= SEQUENCE OF AuditReturnParameter
TerminationAudit ::= SEQUENCE OF AuditReturnParameter
AuditReturnParameter ::= CHOICE { errorDescriptor ErrorDescriptor, mediaDescriptor MediaDescriptor, modemDescriptor ModemDescriptor, muxDescriptor MuxDescriptor, eventsDescriptor EventsDescriptor, eventBufferDescriptor EventBufferDescriptor, signalsDescriptor SignalsDescriptor, digitMapDescriptor DigitMapDescriptor, observedEventsDescriptor ObservedEventsDescriptor, statisticsDescriptor StatisticsDescriptor, packagesDescriptor PackagesDescriptor, ... }
AuditReturnParameter ::= CHOICE { errorDescriptor ErrorDescriptor, mediaDescriptor MediaDescriptor, modemDescriptor ModemDescriptor, muxDescriptor MuxDescriptor, eventsDescriptor EventsDescriptor, eventBufferDescriptor EventBufferDescriptor, signalsDescriptor SignalsDescriptor, digitMapDescriptor DigitMapDescriptor, observedEventsDescriptor ObservedEventsDescriptor, statisticsDescriptor StatisticsDescriptor, packagesDescriptor PackagesDescriptor, ... }
NotifyRequest ::= SEQUENCE { terminationID TerminationIDList, observedEventsDescriptor ObservedEventsDescriptor, errorDescriptor ErrorDescriptor OPTIONAL, ... }
NotifyRequest ::= SEQUENCE { terminationID TerminationIDList, observedEventsDescriptor ObservedEventsDescriptor, errorDescriptor ErrorDescriptor OPTIONAL, ... }
NotifyReply ::= SEQUENCE { terminationID TerminationIDList OPTIONAL, errorDescriptor ErrorDescriptor OPTIONAL, ... }
NotifyReply ::= SEQUENCE { terminationID TerminationIDList OPTIONAL, errorDescriptor ErrorDescriptor OPTIONAL, ... }
ObservedEventsDescriptor ::= SEQUENCE { requestId RequestID, observedEventLst SEQUENCE OF ObservedEvent }
ObservedEventsDescriptor ::= SEQUENCE { requestId RequestID, observedEventLst SEQUENCE OF ObservedEvent }
ObservedEvent ::= SEQUENCE { eventName EventName, streamID StreamID OPTIONAL, eventParList SEQUENCE OF EventParameter, timeNotation TimeNotation OPTIONAL }
ObservedEvent ::= SEQUENCE { eventName EventName, streamID StreamID OPTIONAL, eventParList SEQUENCE OF EventParameter, timeNotation TimeNotation OPTIONAL }
EventName ::= PkgdName
EventName ::= PkgdName
EventParameter ::= SEQUENCE { eventParameterName Name, value Value }
EventParameter ::= SEQUENCE { eventParameterName Name, value Value }
ServiceChangeRequest ::= SEQUENCE { terminationID TerminationIDList, serviceChangeParms ServiceChangeParm, ... }
ServiceChangeRequest ::= SEQUENCE { terminationID TerminationIDList, serviceChangeParms ServiceChangeParm, ... }
ServiceChangeReply ::= SEQUENCE { terminationID TerminationIDList, serviceChangeResult ServiceChangeResult,
ServiceChangeReply ::= SEQUENCE { terminationID TerminationIDList, serviceChangeResult ServiceChangeResult,
... }
... }
-- For ServiceChangeResult, no parameters are mandatory. Hence the -- distinction between ServiceChangeParm and ServiceChangeResParm.
-- For ServiceChangeResult, no parameters are mandatory. Hence the -- distinction between ServiceChangeParm and ServiceChangeResParm.
ServiceChangeResult ::= CHOICE { errorDescriptor ErrorDescriptor, serviceChangeResParms ServiceChangeResParm }
ServiceChangeResult ::= CHOICE { errorDescriptor ErrorDescriptor, serviceChangeResParms ServiceChangeResParm }
WildcardField ::= OCTET STRING(SIZE(1))
WildcardField ::= OCTET STRING(SIZE(1))
TerminationID ::= SEQUENCE { wildcard SEQUENCE OF WildcardField, id OCTET STRING(SIZE(1..8)) } -- See Section A.1 for explanation of wildcarding mechanism. -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.
TerminationID ::= SEQUENCE { wildcard SEQUENCE OF WildcardField, id OCTET STRING(SIZE(1..8)) } -- See Section A.1 for explanation of wildcarding mechanism. -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.
TerminationIDList ::= SEQUENCE OF TerminationID MediaDescriptor ::= SEQUENCE {
TerminationIDList ::= SEQUENCE OF TerminationID MediaDescriptor ::= SEQUENCE {
termStateDescr TerminationStateDescriptor OPTIONAL, streams CHOICE { oneStream StreamParms, multiStream SEQUENCE OF StreamDescriptor }, ... }
termStateDescr TerminationStateDescriptor OPTIONAL, streams CHOICE { oneStream StreamParms, multiStream SEQUENCE OF StreamDescriptor }, ... }
StreamDescriptor ::= SEQUENCE { streamID StreamID, streamParms StreamParms }
StreamDescriptor ::= SEQUENCE { streamID StreamID, streamParms StreamParms }
StreamParms ::= SEQUENCE { localControlDescriptor LocalControlDescriptor OPTIONAL, localDescriptor LocalRemoteDescriptor OPTIONAL, remoteDescriptor LocalRemoteDescriptor OPTIONAL, ... }
StreamParms ::= SEQUENCE { localControlDescriptor LocalControlDescriptor OPTIONAL, localDescriptor LocalRemoteDescriptor OPTIONAL, remoteDescriptor LocalRemoteDescriptor OPTIONAL, ... }
LocalControlDescriptor ::= SEQUENCE { streamMode StreamMode OPTIONAL, reserveValue BOOLEAN, reserveGroup BOOLEAN, propertyParms SEQUENCE OF PropertyParm, ... }
LocalControlDescriptor ::= SEQUENCE { streamMode StreamMode OPTIONAL, reserveValue BOOLEAN, reserveGroup BOOLEAN, propertyParms SEQUENCE OF PropertyParm, ... }
StreamMode ::= ENUMERATED { sendOnly(0), recvOnly(1), sendRecv(2), inactive(3), loopBack(4), ... }
StreamMode ::= ENUMERATED { sendOnly(0), recvOnly(1), sendRecv(2), inactive(3), loopBack(4), ... }
-- In PropertyParm, value is a SEQUENCE OF octet string. When sent -- by an MGC the interpretation is as follows: -- empty sequence means CHOOSE -- one element sequence specifies value -- longer sequence means "choose one of the values" -- The relation field may only be selected if the value sequence -- has length 1. It indicates that the MG has to choose a value -- for the property. E.g., x > 3 (using the greaterThan -- value for relation) instructs the MG to choose any value larger -- than 3 for property x. -- The range field may only be selected if the value sequence -- has length 2. It indicates that the MG has to choose a value -- in the range between the first octet in the value sequence and -- the trailing octet in the value sequence, including the -- boundary values. -- When sent by the MG, only responses to an AuditCapability request -- may contain multiple values, a range, or a relation field.
-- In PropertyParm, value is a SEQUENCE OF octet string. When sent -- by an MGC the interpretation is as follows: -- empty sequence means CHOOSE -- one element sequence specifies value -- longer sequence means "choose one of the values" -- The relation field may only be selected if the value sequence -- has length 1. It indicates that the MG has to choose a value -- for the property. E.g., x > 3 (using the greaterThan -- value for relation) instructs the MG to choose any value larger -- than 3 for property x. -- The range field may only be selected if the value sequence -- has length 2. It indicates that the MG has to choose a value -- in the range between the first octet in the value sequence and -- the trailing octet in the value sequence, including the -- boundary values. -- When sent by the MG, only responses to an AuditCapability request -- may contain multiple values, a range, or a relation field.
PropertyParm ::= SEQUENCE { name PkgdName, value SEQUENCE OF OCTET STRING, extraInfo CHOICE { relation Relation, range BOOLEAN } OPTIONAL
PropertyParm ::= SEQUENCE { name PkgdName, value SEQUENCE OF OCTET STRING, extraInfo CHOICE { relation Relation, range BOOLEAN } OPTIONAL
}
}
Name ::= OCTET STRING(SIZE(2))
Name ::= OCTET STRING(SIZE(2))
PkgdName ::= OCTET STRING(SIZE(4)) -- represents Package Name (2 octets) plus Property Name (2 octets) -- To wildcard a package use 0xFFFF for first two octets, choose -- is not allowed. To reference native property tag specified in -- Annex C, use 0x0000 as first two octets. -- Wildcarding of Package Name is permitted only if Property Name is -- also wildcarded.
PkgdName ::= OCTET STRING(SIZE(4)) -- represents Package Name (2 octets) plus Property Name (2 octets) -- To wildcard a package use 0xFFFF for first two octets, choose -- is not allowed. To reference native property tag specified in -- Annex C, use 0x0000 as first two octets. -- Wildcarding of Package Name is permitted only if Property Name is -- also wildcarded.
Relation ::= ENUMERATED { greaterThan(0), smallerThan(1), unequalTo(2), ... }
Relation ::= ENUMERATED { greaterThan(0), smallerThan(1), unequalTo(2), ... }
LocalRemoteDescriptor ::= SEQUENCE { propGrps SEQUENCE OF PropertyGroup, ... }
LocalRemoteDescriptor ::= SEQUENCE { propGrps SEQUENCE OF PropertyGroup, ... }
PropertyGroup ::= SEQUENCE OF PropertyParm TerminationStateDescriptor ::= SEQUENCE { propertyParms SEQUENCE OF PropertyParm, eventBufferControl EventBufferControl OPTIONAL, serviceState ServiceState OPTIONAL, ... }
PropertyGroup ::= SEQUENCE OF PropertyParm TerminationStateDescriptor ::= SEQUENCE { propertyParms SEQUENCE OF PropertyParm, eventBufferControl EventBufferControl OPTIONAL, serviceState ServiceState OPTIONAL, ... }
EventBufferControl ::= ENUMERATED { Off(0), LockStep(1), ... }
EventBufferControl ::= ENUMERATED { Off(0), LockStep(1), ... }
ServiceState ::= ENUMERATED { test(0), outOfSvc(1), inSvc(2), ... }
ServiceState ::= ENUMERATED { test(0), outOfSvc(1), inSvc(2), ... }
MuxDescriptor ::= SEQUENCE { muxType MuxType, termList SEQUENCE OF TerminationID, nonStandardData NonStandardData OPTIONAL, ... }
MuxDescriptor ::= SEQUENCE { muxType MuxType, termList SEQUENCE OF TerminationID, nonStandardData NonStandardData OPTIONAL, ... }
MuxType ::= ENUMERATED { h221(0), h223(1), h226(2), v76(3), ... }
MuxType ::= ENUMERATED { h221(0), h223(1), h226(2), v76(3), ... }
StreamID ::= INTEGER(0..65535) -- 16 bit unsigned integer
StreamID ::= INTEGER(0..65535) -- 16 bit unsigned integer
EventsDescriptor ::= SEQUENCE { requestID RequestID, eventList SEQUENCE OF RequestedEvent }
EventsDescriptor ::= SEQUENCE { requestID RequestID, eventList SEQUENCE OF RequestedEvent }
RequestedEvent ::= SEQUENCE { pkgdName PkgdName, streamID StreamID OPTIONAL, eventAction RequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter }
RequestedEvent ::= SEQUENCE { pkgdName PkgdName, streamID StreamID OPTIONAL, eventAction RequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter }
RequestedActions ::= SEQUENCE { keepActive BOOLEAN, eventDM EventDM OPTIONAL, secondEvent SecondEventsDescriptor OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
RequestedActions ::= SEQUENCE { keepActive BOOLEAN, eventDM EventDM OPTIONAL, secondEvent SecondEventsDescriptor OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
EventDM ::= CHOICE { digitMapName DigitMapName, digitMapValue DigitMapValue }
EventDM ::= CHOICE { digitMapName DigitMapName, digitMapValue DigitMapValue }
SecondEventsDescriptor ::= SEQUENCE { requestID RequestID, eventList SEQUENCE OF SecondRequestedEvent }
SecondEventsDescriptor ::= SEQUENCE { requestID RequestID, eventList SEQUENCE OF SecondRequestedEvent }
SecondRequestedEvent ::= SEQUENCE { pkgdName PkgdName, streamID StreamID OPTIONAL, eventAction SecondRequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter }
SecondRequestedEvent ::= SEQUENCE { pkgdName PkgdName, streamID StreamID OPTIONAL, eventAction SecondRequestedActions OPTIONAL, evParList SEQUENCE OF EventParameter }
SecondRequestedActions ::= SEQUENCE { keepActive BOOLEAN, eventDM EventDM OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
SecondRequestedActions ::= SEQUENCE { keepActive BOOLEAN, eventDM EventDM OPTIONAL, signalsDescriptor SignalsDescriptor OPTIONAL, ... }
EventBufferDescriptor ::= SEQUENCE OF ObservedEvent
EventBufferDescriptor ::= SEQUENCE OF ObservedEvent
SignalsDescriptor ::= SEQUENCE OF SignalRequest SignalRequest ::=CHOICE { signal Signal, seqSigList SeqSigList }
SignalsDescriptor ::= SEQUENCE OF SignalRequest SignalRequest ::=CHOICE { signal Signal, seqSigList SeqSigList }
SeqSigList ::= SEQUENCE { id INTEGER(0..65535), signalList SEQUENCE OF Signal }
SeqSigList ::= SEQUENCE { id INTEGER(0..65535), signalList SEQUENCE OF Signal }
Signal ::= SEQUENCE { signalName SignalName, streamID StreamID OPTIONAL, sigType SignalType OPTIONAL, duration INTEGER (0..65535) OPTIONAL, notifyCompletion BOOLEAN OPTIONAL, keepActive BOOLEAN OPTIONAL, sigParList SEQUENCE OF SigParameter }
Signal ::= SEQUENCE { signalName SignalName, streamID StreamID OPTIONAL, sigType SignalType OPTIONAL, duration INTEGER (0..65535) OPTIONAL, notifyCompletion BOOLEAN OPTIONAL, keepActive BOOLEAN OPTIONAL, sigParList SEQUENCE OF SigParameter }
SignalType ::= ENUMERATED { brief(0), onOff(1), timeOut(2), ... }
SignalType ::= ENUMERATED { brief(0), onOff(1), timeOut(2), ... }
SignalName ::= PkgdName
SignalName ::= PkgdName
SigParameter ::= SEQUENCE { sigParameterName Name, value Value }
SigParameter ::= SEQUENCE { sigParameterName Name, value Value }
RequestID ::= INTEGER(0..4294967295) -- 32 bit unsigned integer
RequestID ::= INTEGER(0..4294967295) -- 32 bit unsigned integer
ModemDescriptor ::= SEQUENCE { mtl SEQUENCE OF ModemType, mpl SEQUENCE OF PropertyParm, nonStandardData NonStandardData OPTIONAL }
ModemDescriptor ::= SEQUENCE { mtl SEQUENCE OF ModemType, mpl SEQUENCE OF PropertyParm, nonStandardData NonStandardData OPTIONAL }
ModemType ::= ENUMERATED { v18(0), v22(1), v22bis(2), v32(3), v32bis(4), v34(5), v90(6), v91(7), synchISDN(8), ... }
ModemType ::= ENUMERATED { v18(0), v22(1), v22bis(2), v32(3), v32bis(4), v34(5), v90(6), v91(7), synchISDN(8), ... }
DigitMapDescriptor ::= SEQUENCE { digitMapName DigitMapName, digitMapValue DigitMapValue }
DigitMapDescriptor ::= SEQUENCE { digitMapName DigitMapName, digitMapValue DigitMapValue }
DigitMapName ::= Name
DigitMapName ::= Name
DigitMapValue ::= SEQUENCE
DigitMapValue ::= SEQUENCE
{ startTimer INTEGER(0..99) OPTIONAL, shortTimer INTEGER(0..99) OPTIONAL, longTimer INTEGER(0..99) OPTIONAL, digitMapBody IA5String -- See Section A.3 for explanation of digit map syntax }
{ startTimer INTEGER(0..99) OPTIONAL, shortTimer INTEGER(0..99) OPTIONAL, longTimer INTEGER(0..99) OPTIONAL, digitMapBody IA5String -- See Section A.3 for explanation of digit map syntax }
ServiceChangeParm ::= SEQUENCE { serviceChangeMethod ServiceChangeMethod, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL, serviceChangeReason Value, serviceChangeDelay INTEGER(0..4294967295) OPTIONAL, -- 32 bit unsigned integer serviceChangeMgcId MId OPTIONAL, timeStamp TimeNotation OPTIONAL, nonStandardData NonStandardData OPTIONAL, }
ServiceChangeParm ::= SEQUENCE { serviceChangeMethod ServiceChangeMethod, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL, serviceChangeReason Value, serviceChangeDelay INTEGER(0..4294967295) OPTIONAL, -- 32 bit unsigned integer serviceChangeMgcId MId OPTIONAL, timeStamp TimeNotation OPTIONAL, nonStandardData NonStandardData OPTIONAL, }
ServiceChangeAddress ::= CHOICE { portNumber INTEGER(0..65535), -- TCP/UDP port number ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2)), ... }
ServiceChangeAddress ::= CHOICE { portNumber INTEGER(0..65535), -- TCP/UDP port number ip4Address IP4Address, ip6Address IP6Address, domainName DomainName, deviceName PathName, mtpAddress OCTET STRING(SIZE(2)), ... }
ServiceChangeResParm ::= SEQUENCE { serviceChangeMgcId MId OPTIONAL, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL }
ServiceChangeResParm ::= SEQUENCE { serviceChangeMgcId MId OPTIONAL, serviceChangeAddress ServiceChangeAddress OPTIONAL, serviceChangeVersion INTEGER(0..99) OPTIONAL, serviceChangeProfile ServiceChangeProfile OPTIONAL }
ServiceChangeMethod ::= ENUMERATED { failover(0), forced(1), graceful(2), restart(3), disconnected(4),
ServiceChangeMethod ::= ENUMERATED { failover(0), forced(1), graceful(2), restart(3), disconnected(4),
handOff(5), ... }
移交(5),…}
ServiceChangeProfile ::= SEQUENCE { profileName Name, version INTEGER(0..99) }
ServiceChangeProfile ::= SEQUENCE { profileName Name, version INTEGER(0..99) }
PackagesDescriptor ::= SEQUENCE OF PackagesItem
PackagesDescriptor ::= SEQUENCE OF PackagesItem
PackagesItem ::= SEQUENCE { packageName Name, packageVersion INTEGER(0..99) }
PackagesItem ::= SEQUENCE { packageName Name, packageVersion INTEGER(0..99) }
StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter
StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter
StatisticsParameter ::= SEQUENCE { statName PkgdName, statValue Value }
StatisticsParameter ::= SEQUENCE { statName PkgdName, statValue Value }
NonStandardData ::= SEQUENCE { nonStandardIdentifier NonStandardIdentifier, data OCTET STRING }
NonStandardData ::= SEQUENCE { nonStandardIdentifier NonStandardIdentifier, data OCTET STRING }
NonStandardIdentifier ::= CHOICE { object OBJECT IDENTIFIER, h221NonStandard H221NonStandard, experimental IA5STRING(SIZE(8)), -- first two characters should be "X-" or "X+" ... }
NonStandardIdentifier ::= CHOICE { object OBJECT IDENTIFIER, h221NonStandard H221NonStandard, experimental IA5STRING(SIZE(8)), -- first two characters should be "X-" or "X+" ... }
H221NonStandard ::= SEQUENCE { t35CountryCode INTEGER(0..255), -- country, as per T.35 t35Extension INTEGER(0..255), -- assigned nationally manufacturerCode INTEGER(0..65535), -- assigned nationally ... }
H221NonStandard ::= SEQUENCE { t35CountryCode INTEGER(0..255), -- country, as per T.35 t35Extension INTEGER(0..255), -- assigned nationally manufacturerCode INTEGER(0..65535), -- assigned nationally ... }
TimeNotation ::= SEQUENCE { date IA5String(SIZE(8)), -- yyyymmdd format time IA5String(SIZE(8)) -- hhmmssss format }
TimeNotation ::= SEQUENCE { date IA5String(SIZE(8)), -- yyyymmdd format time IA5String(SIZE(8)) -- hhmmssss format }
Value ::= OCTET STRING
Value ::= OCTET STRING
END
终止
From a syntactic viewpoint, digit maps are strings with syntactic restrictions imposed upon them. The syntax of valid digit maps is specified in ABNF [RFC 2234]. The syntax for digit maps presented in this section is for illustrative purposes only. The definition of digitMap in Annex B takes precedence in the case of differences between the two.
从语法的角度来看,数字映射是带有语法限制的字符串。ABNF[RFC 2234]中规定了有效数字映射的语法。本节中给出的数字地图语法仅用于说明目的。如果两者之间存在差异,则以附录B中的数字地图定义为准。
digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP) digitStringList = digitString *( LWSP "/" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP) digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter)
digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP) digitStringList = digitString *( LWSP "/" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP) digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter)
digitMapLetter = DIGIT ;digits 0-9 / %x41-4B / %x61-6B ;a-k and A-K / "L" / "S" ;Inter-event timers ;(long, short) / "Z" ;Long duration event LWSP = *(WSP / COMMENT / EOL) WSP = SP / HTAB COMMENT = ";" *(SafeChar / RestChar / WSP) EOL EOL = (CR [LF]) / LF SP = %x20 HTAB = %x09 CR = %x0D LF = %x0A SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "." RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "=" / %x22 DIGIT = %x30-39 ; digits 0 through 9
digitMapLetter = DIGIT ;digits 0-9 / %x41-4B / %x61-6B ;a-k and A-K / "L" / "S" ;Inter-event timers ;(long, short) / "Z" ;Long duration event LWSP = *(WSP / COMMENT / EOL) WSP = SP / HTAB COMMENT = ";" *(SafeChar / RestChar / WSP) EOL EOL = (CR [LF]) / LF SP = %x20 HTAB = %x09 CR = %x0D LF = %x0A SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "." RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "=" / %x22 DIGIT = %x30-39 ; digits 0 through 9
ALPHA = %x41-5A / %x61-7A ; A-Z, a-z A path name is also a string with syntactic restrictions imposed upon it. The ABNF production defining it is copied from Annex B.
ALPHA = %x41-5A / %x61-7A ; A-Z, a-z A path name is also a string with syntactic restrictions imposed upon it. The ABNF production defining it is copied from Annex B.
PathName = NAME *(["/"] ["*"] ["@"] (ALPHA / DIGIT)) ["*"] NAME = ALPHA *63(ALPHA / DIGIT / "_" )
PathName = NAME *(["/"] ["*"] ["@"] (ALPHA / DIGIT)) ["*"] NAME = ALPHA *63(ALPHA / DIGIT / "_" )
ANNEX B TEXT ENCODING OF THE PROTOCOL (NORMATIVE)
附件B议定书的文本编码(规范性)
In a text encoding of the protocol, while TerminationIDs are arbitrary, by judicious choice of names, the wildcard character, "*" may be made more useful. When the wildcard character is encountered, it will "match" all TerminationIDs having the same previous and following characters (if appropriate). For example, if there were TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID R13/3/* would match all of them. There are some circumstances where ALL Terminations must be referred to. The TerminationID "*" suffices, and is referred to as ALL. The CHOOSE TerminationID "$" may be used to signal to the MG that it has to create an ephemeral Termination or select an idle physical Termination.
In a text encoding of the protocol, while TerminationIDs are arbitrary, by judicious choice of names, the wildcard character, "*" may be made more useful. When the wildcard character is encountered, it will "match" all TerminationIDs having the same previous and following characters (if appropriate). For example, if there were TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID R13/3/* would match all of them. There are some circumstances where ALL Terminations must be referred to. The TerminationID "*" suffices, and is referred to as ALL. The CHOOSE TerminationID "$" may be used to signal to the MG that it has to create an ephemeral Termination or select an idle physical Termination.
The protocol syntax is presented in ABNF according to RFC2234.
协议语法根据RFC2234在ABNF中给出。
megacoMessage = LWSP [authenticationHeader SEP ] message
MegaComMessage=LWSP[authenticationHeader SEP]消息
authenticationHeader = AuthToken EQUAL SecurityParmIndex COLON SequenceNum COLON AuthData
authenticationHeader=AuthToken EQUAL SecurityParamIndex COLON SequenceNum COLON AuthData
SecurityParmIndex = "0x" 8(HEXDIG) SequenceNum = "0x" 8(HEXDIG) AuthData = "0x" 32*64(HEXDIG)
SecurityParmIndex = "0x" 8(HEXDIG) SequenceNum = "0x" 8(HEXDIG) AuthData = "0x" 32*64(HEXDIG)
message = MegacopToken SLASH Version SEP mId SEP messageBody ; The version of the protocol defined here is equal to 1.
message=MegacopToken斜杠版本SEP mId SEP messageBody;此处定义的协议版本等于1。
messageBody = ( errorDescriptor / transactionList )
messageBody = ( errorDescriptor / transactionList )
transactionList = 1*( transactionRequest / transactionReply / transactionPending / transactionResponseAck ) ;Use of response acks is dependent on underlying transport
transactionList = 1*( transactionRequest / transactionReply / transactionPending / transactionResponseAck ) ;Use of response acks is dependent on underlying transport
transactionPending = PendingToken EQUAL TransactionID LBRKT RBRKT
transactionPending=PendingToken等于TransactionID LBRKT RBRKT
transactionResponseAck = ResponseAckToken LBRKT transactionAck *(COMMA transactionAck) RBRKT transactionAck = transactionID / (transactionID "-" transactionID)
transactionResponseAck=ResponseAckToken LBRKT transactionAck*(逗号transactionAck)RBRKT transactionAck=transactionID/(transactionID“-”transactionID)
transactionRequest = TransToken EQUAL TransactionID LBRKT actionRequest *(COMMA actionRequest) RBRKT
transactionRequest=TransToken EQUAL TransactionID LBRKT actionRequest*(逗号actionRequest)RBRKT
actionRequest = CtxToken EQUAL ContextID LBRKT (( contextRequest [COMMA commandRequestList]) / commandRequestList) RBRKT
actionRequest=CtxToken EQUAL ContextID LBRKT((contextRequest[COMMA commandRequestList])/commandRequestList)RBRKT
contextRequest = ((contextProperties [COMMA contextAudit]) / contextAudit)
contextRequest = ((contextProperties [COMMA contextAudit]) / contextAudit)
contextProperties = contextProperty *(COMMA contextProperty)
contextProperties=contextProperty*(逗号contextProperty)
; at-most-once contextProperty = (topologyDescriptor / priority / EmergencyToken)
; at-most-once contextProperty = (topologyDescriptor / priority / EmergencyToken)
contextAudit = ContextAuditToken LBRKT contextAuditProperties *(COMMA contextAuditProperties) RBRKT
contextAudit=ContextAuditToken LBRKT contextAuditProperties*(逗号contextAuditProperties)RBRKT
; at-most-once contextAuditProperties = ( TopologyToken / EmergencyToken / PriorityToken )
; at-most-once contextAuditProperties = ( TopologyToken / EmergencyToken / PriorityToken )
commandRequestList= ["O-"] commandRequest *(COMMA ["O-"] commandRequest)
commandRequestList= ["O-"] commandRequest *(COMMA ["O-"] commandRequest)
commandRequest = ( ammRequest / subtractRequest / auditRequest / notifyRequest / serviceChangeRequest)
commandRequest = ( ammRequest / subtractRequest / auditRequest / notifyRequest / serviceChangeRequest)
transactionReply = ReplyToken EQUAL TransactionID LBRKT ( errorDescriptor / actionReplyList ) RBRKT
transactionReply=ReplyToken EQUAL TransactionID LBRKT(errorDescriptor/actionReplyList)RBRKT
actionReplyList = actionReply *(COMMA actionReply )
actionReplyList=actionReply*(逗号actionReply)
actionReply = CtxToken EQUAL ContextID LBRKT ( errorDescriptor / commandReply ) RBRKT
actionReply=CtxToken EQUAL ContextID LBRKT(errorDescriptor/commandReply)RBRKT
commandReply = (( contextProperties [COMMA commandReplyList] ) / commandReplyList )
commandReply = (( contextProperties [COMMA commandReplyList] ) / commandReplyList )
commandReplyList = commandReplys *(COMMA commandReplys )
commandReplyList=commandReplys*(逗号commandReplys)
commandReplys = (serviceChangeReply / auditReply / ammsReply / notifyReply )
commandReplys = (serviceChangeReply / auditReply / ammsReply / notifyReply )
;Add Move and Modify have the same request parameters ammRequest = (AddToken / MoveToken / ModifyToken ) EQUAL TerminationID [LBRKT ammParameter *(COMMA ammParameter) RBRKT]
;Add Move and Modify have the same request parameters ammRequest = (AddToken / MoveToken / ModifyToken ) EQUAL TerminationID [LBRKT ammParameter *(COMMA ammParameter) RBRKT]
;at-most-once ammParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / eventBufferDescriptor / auditDescriptor)
;at-most-once ammParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / eventBufferDescriptor / auditDescriptor)
ammsReply = (AddToken / MoveToken / ModifyToken / SubtractToken ) EQUAL TerminationID [ LBRKT terminationAudit RBRKT ]
ammsReply = (AddToken / MoveToken / ModifyToken / SubtractToken ) EQUAL TerminationID [ LBRKT terminationAudit RBRKT ]
subtractRequest = ["W-"] SubtractToken EQUAL TerminationID [ LBRKT auditDescriptor RBRKT]
subtractRequest = ["W-"] SubtractToken EQUAL TerminationID [ LBRKT auditDescriptor RBRKT]
auditRequest = ["W-"] (AuditValueToken / AuditCapToken ) EQUAL TerminationID LBRKT auditDescriptor RBRKT
auditRequest = ["W-"] (AuditValueToken / AuditCapToken ) EQUAL TerminationID LBRKT auditDescriptor RBRKT
auditReply = (AuditValueToken / AuditCapToken ) ( contextTerminationAudit / auditOther)
auditReply = (AuditValueToken / AuditCapToken ) ( contextTerminationAudit / auditOther)
auditOther = EQUAL TerminationID LBRKT terminationAudit RBRKT
auditOther=相等终止ID LBRKT终止Audit RBRKT
terminationAudit = auditReturnParameter *(COMMA auditReturnParameter)
terminationAudit=auditReturnParameter*(逗号auditReturnParameter)
contextTerminationAudit = EQUAL CtxToken ( terminationIDList / LBRKT errorDescriptor RBRKT )
contextTerminationAudit=EQUAL CtxToken(terminationIDList/LBRKT errorDescriptor RBRKT)
;at-most-once except errorDescriptor auditReturnParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / observedEventsDescriptor / eventBufferDescriptor / statisticsDescriptor / packagesDescriptor / errorDescriptor )
;at-most-once except errorDescriptor auditReturnParameter = (mediaDescriptor / modemDescriptor / muxDescriptor / eventsDescriptor / signalsDescriptor / digitMapDescriptor / observedEventsDescriptor / eventBufferDescriptor / statisticsDescriptor / packagesDescriptor / errorDescriptor )
auditDescriptor = AuditToken LBRKT [ auditItem *(COMMA auditItem) ] RBRKT
auditDescriptor=AuditToken LBRKT[auditItem*(逗号auditItem)]RBRKT
notifyRequest = NotifyToken EQUAL TerminationID LBRKT ( observedEventsDescriptor [ COMMA errorDescriptor ] ) RBRKT
notifyRequest=NotifyToken EQUAL TerminationID LBRKT(observedEventsDescriptor[逗号错误描述符])RBRKT
notifyReply = NotifyToken EQUAL TerminationID [ LBRKT errorDescriptor RBRKT ]
notifyReply=NotifyToken相等终止ID[LBRKT errorDescriptor RBRKT]
serviceChangeRequest = ServiceChangeToken EQUAL TerminationID LBRKT serviceChangeDescriptor RBRKT
serviceChangeRequest=ServiceChangeToken相等终止ID LBRKT serviceChangeDescriptor RBRKT
serviceChangeReply = ServiceChangeToken EQUAL TerminationID [LBRKT (errorDescriptor / serviceChangeReplyDescriptor) RBRKT]
serviceChangeReply=ServiceChangeToken相等终止ID[LBRKT(errorDescriptor/serviceChangeReplyDescriptor)RBRKT]
errorDescriptor = ErrorToken EQUAL ErrorCode LBRKT [quotedString] RBRKT
errorDescriptor=ErrorToken等于错误代码LBRKT[quotedString]RBRKT
ErrorCode = 1*4(DIGIT) ; could be extended
ErrorCode = 1*4(DIGIT) ; could be extended
TransactionID = UINT32
TransactionID = UINT32
mId = (( domainAddress / domainName ) [":" portNumber]) / mtpAddress / deviceName
mId = (( domainAddress / domainName ) [":" portNumber]) / mtpAddress / deviceName
; ABNF allows two or more consecutive "." although it is meaningless ; in a domain name. domainName = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" / ".") ">" deviceName = pathNAME
; ABNF allows two or more consecutive "." although it is meaningless ; in a domain name. domainName = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" / ".") ">" deviceName = pathNAME
ContextID = (UINT32 / "*" / "-" / "$")
ContextID = (UINT32 / "*" / "-" / "$")
domainAddress = "[" (IPv4address / IPv6address) "]" ;RFC2373 contains the definition of IP6Addresses. IPv6address = hexpart [ ":" IPv4address ] IPv4address = V4hex DOT V4hex DOT V4hex DOT V4hex V4hex = 1*3(DIGIT) ; "0".."225" ; this production, while occurring in RFC2373, is not referenced ; IPv6prefix = hexpart SLASH 1*2DIGIT hexpart = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq hexseq = hex4 *( ":" hex4) hex4 = 1*4HEXDIG
domainAddress = "[" (IPv4address / IPv6address) "]" ;RFC2373 contains the definition of IP6Addresses. IPv6address = hexpart [ ":" IPv4address ] IPv4address = V4hex DOT V4hex DOT V4hex DOT V4hex V4hex = 1*3(DIGIT) ; "0".."225" ; this production, while occurring in RFC2373, is not referenced ; IPv6prefix = hexpart SLASH 1*2DIGIT hexpart = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq hexseq = hex4 *( ":" hex4) hex4 = 1*4HEXDIG
portNumber = UINT16
portNumber = UINT16
; An mtp address is two octets long mtpAddress = MTPToken LBRKT octetString RBRKT
; mtp地址是两个八位字节长的mtpAddress=MTPToken LBRKT八位字节字符串RBRKT
terminationIDList = LBRKT TerminationID *(COMMA TerminationID) RBRKT
terminationIDList=LBRKT TerminationID*(逗号TerminationID)RBRKT
; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]
; Total length of pathNAME must not exceed 64 chars. pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" ) ["@" pathDomainName ]
; ABNF allows two or more consecutive "." although it is meaningless ; in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" / "*" / ".")
; ABNF allows two or more consecutive "." although it is meaningless ; in a path domain name. pathDomainName = (ALPHA / DIGIT / "*" ) *63(ALPHA / DIGIT / "-" / "*" / ".")
TerminationID = "ROOT" / pathNAME / "$" / "*"
TerminationID = "ROOT" / pathNAME / "$" / "*"
mediaDescriptor = MediaToken LBRKT mediaParm *(COMMA mediaParm) RBRKT
mediaDescriptor=MediaToken LBRKT mediaParm*(逗号mediaParm)RBRKT
; at-most-once per item ; and either streamParm or streamDescriptor but not both mediaParm = (streamParm / streamDescriptor / terminationStateDescriptor)
; at-most-once per item ; and either streamParm or streamDescriptor but not both mediaParm = (streamParm / streamDescriptor / terminationStateDescriptor)
; at-most-once streamParm = ( localDescriptor / remoteDescriptor / localControlDescriptor )
; at-most-once streamParm = ( localDescriptor / remoteDescriptor / localControlDescriptor )
streamDescriptor = StreamToken EQUAL StreamID LBRKT streamParm *(COMMA streamParm) RBRKT
streamDescriptor=StreamToken相等StreamID LBRKT streamParm*(逗号streamParm)RBRKT
localControlDescriptor = LocalControlToken LBRKT localParm *(COMMA localParm) RBRKT
localControlDescriptor=LocalControlToken LBRKT localParm*(逗号localParm)RBRKT
; at-most-once per item localParm = ( streamMode / propertyParm / reservedValueMode / reservedGroupMode )
; at-most-once per item localParm = ( streamMode / propertyParm / reservedValueMode / reservedGroupMode )
reservedValueMode = ReservedValueToken EQUAL ( "ON" / "OFF" ) reservedGroupMode = ReservedGroupToken EQUAL ( "ON" / "OFF" )
reservedValueMode = ReservedValueToken EQUAL ( "ON" / "OFF" ) reservedGroupMode = ReservedGroupToken EQUAL ( "ON" / "OFF" )
streamMode = ModeToken EQUAL streamModes
streamMode = ModeToken EQUAL streamModes
streamModes = (SendonlyToken / RecvonlyToken / SendrecvToken / InactiveToken / LoopbackToken )
streamModes = (SendonlyToken / RecvonlyToken / SendrecvToken / InactiveToken / LoopbackToken )
propertyParm = pkgdName parmValue parmValue = (EQUAL alternativeValue/ INEQUAL VALUE) alternativeValue = ( VALUE / LSBRKT VALUE *(COMMA VALUE) RSBRKT / LSBRKT VALUE DOT DOT VALUE RSBRKT )
propertyParm = pkgdName parmValue parmValue = (EQUAL alternativeValue/ INEQUAL VALUE) alternativeValue = ( VALUE / LSBRKT VALUE *(COMMA VALUE) RSBRKT / LSBRKT VALUE DOT DOT VALUE RSBRKT )
INEQUAL = LWSP (">" / "<" / "#" ) LWSP LSBRKT = LWSP "[" LWSP RSBRKT = LWSP "]" LWSP
INEQUAL = LWSP (">" / "<" / "#" ) LWSP LSBRKT = LWSP "[" LWSP RSBRKT = LWSP "]" LWSP
localDescriptor = LocalToken LBRKT octetString RBRKT
localDescriptor = LocalToken LBRKT octetString RBRKT
remoteDescriptor = RemoteToken LBRKT octetString RBRKT
remoteDescriptor = RemoteToken LBRKT octetString RBRKT
eventBufferDescriptor= EventBufferToken LBRKT observedEvent *( COMMA observedEvent ) RBRKT
eventBufferDescriptor=EventBufferToken LBRKT observedEvent*(逗号observedEvent)RBRKT
eventBufferControl = BufferToken EQUAL ( "OFF" / LockStepToken )
eventBufferControl=BufferToken相等(“关闭”/LockStepToken)
terminationStateDescriptor = TerminationStateToken LBRKT terminationStateParm *( COMMA terminationStateParm ) RBRKT
terminationStateDescriptor=TerminationStateToken LBRKT terminationStateParm*(逗号terminationStateParm)RBRKT
; at-most-once per item terminationStateParm =(propertyParm / serviceStates / eventBufferControl )
; 每项最多一次terminationStateParm=(PropertyPart/serviceStates/eventBufferControl)
serviceStates = ServiceStatesToken EQUAL ( TestToken / OutOfSvcToken / InSvcToken )
serviceStates=ServiceStatesToken相等(TestToken/OutOfSvcToken/InSvcToken)
muxDescriptor = MuxToken EQUAL MuxType terminationIDList
muxDescriptor=MuxToken相等MuxType terminationIDList
MuxType = ( H221Token / H223Token / H226Token / V76Token / extensionParameter )
MuxType = ( H221Token / H223Token / H226Token / V76Token / extensionParameter )
StreamID = UINT16 pkgdName = (PackageName SLASH ItemID) ;specific item / (PackageName SLASH "*") ;all events in package / ("*" SLASH "*") ; all events supported by the MG PackageName = NAME ItemID = NAME
StreamID = UINT16 pkgdName = (PackageName SLASH ItemID) ;specific item / (PackageName SLASH "*") ;all events in package / ("*" SLASH "*") ; all events supported by the MG PackageName = NAME ItemID = NAME
eventsDescriptor = EventsToken EQUAL RequestID LBRKT requestedEvent *( COMMA requestedEvent ) RBRKT
eventsDescriptor=EventsToken EQUAL RequestID LBRKT requestedEvent*(逗号requestedEvent)RBRKT
requestedEvent = pkgdName [ LBRKT eventParameter *( COMMA eventParameter ) RBRKT ]
requestedEvent=pkgdName[LBRKT事件参数*(逗号事件参数)RBRKT]
; at-most-once each of KeepActiveToken , eventDM and eventStream ;at most one of either embedWithSig or embedNoSig but not both ;KeepActiveToken and embedWithSig must not both be present eventParameter = ( embedWithSig / embedNoSig / KeepActiveToken /eventDM / eventStream / eventOther )
; at-most-once each of KeepActiveToken , eventDM and eventStream ;at most one of either embedWithSig or embedNoSig but not both ;KeepActiveToken and embedWithSig must not both be present eventParameter = ( embedWithSig / embedNoSig / KeepActiveToken /eventDM / eventStream / eventOther )
embedWithSig = EmbedToken LBRKT signalsDescriptor [COMMA embedFirst ] RBRKT embedNoSig = EmbedToken LBRKT embedFirst RBRKT
EmbeddeWithSig=EmbeddeToken LBRKT信号描述符[逗号EmbeddeFirst]RBRKT EmbeddeNoSig=EmbeddeToken LBRKT EmbeddeFirst RBRKT
; at-most-once of each embedFirst = EventsToken EQUAL RequestID LBRKT secondRequestedEvent *(COMMA secondRequestedEvent) RBRKT
; 每个embedFirst=EventsToken相等请求ID LBRKT secondRequestedEvent*(逗号secondRequestedEvent)RBRKT最多一次
secondRequestedEvent = pkgdName [ LBRKT secondEventParameter *( COMMA secondEventParameter ) RBRKT ]
secondRequestedEvent=pkgdName[LBRKT secondEventParameter*(逗号secondEventParameter)RBRKT]
; at-most-once each of embedSig , KeepActiveToken, eventDM or ; eventStream ; KeepActiveToken and embedSig must not both be present secondEventParameter = ( EmbedSig / KeepActiveToken / eventDM / eventStream / eventOther )
; at-most-once each of embedSig , KeepActiveToken, eventDM or ; eventStream ; KeepActiveToken and embedSig must not both be present secondEventParameter = ( EmbedSig / KeepActiveToken / eventDM / eventStream / eventOther )
embedSig = EmbedToken LBRKT signalsDescriptor RBRKT
embedSig = EmbedToken LBRKT signalsDescriptor RBRKT
eventStream = StreamToken EQUAL StreamID
eventStream = StreamToken EQUAL StreamID
eventOther = eventParameterName parmValue
eventOther = eventParameterName parmValue
eventParameterName = NAME
eventParameterName = NAME
eventDM = DigitMapToken ((EQUAL digitMapName ) / (LBRKT digitMapValue RBRKT ))
eventDM=DigitMapToken((相等的digitMapName)/(LBRKT digitMapValue RBRKT))
signalsDescriptor = SignalsToken LBRKT [ signalParm *(COMMA signalParm)] RBRKT
signalsDescriptor=SignalsToken LBRKT[signalParm*(逗号signalParm)]RBRKT
signalParm = signalList / signalRequest
signalParm = signalList / signalRequest
signalRequest = signalName [ LBRKT sigParameter *(COMMA sigParameter) RBRKT ]
signalRequest=signalName[LBRKT SIGSParameter*(逗号SIGSParameter)RBRKT]
signalList = SignalListToken EQUAL signalListId LBRKT signalListParm *(COMMA signalListParm) RBRKT
signalList=SignalListToken等于signalListId LBRKT signalListParm*(逗号signalListParm)RBRKT
signalListId = UINT16
signalListId = UINT16
;exactly once signalType, at most once duration and every signal ;parameter signalListParm = signalRequest
;仅一个信号类型,最多一个持续时间和每个信号;参数signalListParm=signalRequest
signalName = pkgdName ;at-most-once sigStream, at-most-once sigSignalType, ;at-most-once sigDuration, every signalParameterName at most once sigParameter = sigStream / sigSignalType / sigDuration / sigOther / notifyCompletion / KeepActiveToken sigStream = StreamToken EQUAL StreamID sigOther = sigParameterName parmValue sigParameterName = NAME sigSignalType = SignalTypeToken EQUAL signalType signalType = (OnOffToken / TimeOutToken / BriefToken) sigDuration = DurationToken EQUAL UINT16 notifyCompletion = NotifyCompletionToken EQUAL ("ON" / "OFF")
signalName = pkgdName ;at-most-once sigStream, at-most-once sigSignalType, ;at-most-once sigDuration, every signalParameterName at most once sigParameter = sigStream / sigSignalType / sigDuration / sigOther / notifyCompletion / KeepActiveToken sigStream = StreamToken EQUAL StreamID sigOther = sigParameterName parmValue sigParameterName = NAME sigSignalType = SignalTypeToken EQUAL signalType signalType = (OnOffToken / TimeOutToken / BriefToken) sigDuration = DurationToken EQUAL UINT16 notifyCompletion = NotifyCompletionToken EQUAL ("ON" / "OFF")
observedEventsDescriptor = ObservedEventsToken EQUAL RequestID LBRKT observedEvent *(COMMA observedEvent) RBRKT
observedEventsDescriptor=ObservedEventsToken相等请求ID LBRKT observedEvent*(逗号observedEvent)RBRKT
;time per event, because it might be buffered observedEvent = [ TimeStamp LWSP COLON] LWSP pkgdName [ LBRKT observedEventParameter *(COMMA observedEventParameter) RBRKT ]
;time per event, because it might be buffered observedEvent = [ TimeStamp LWSP COLON] LWSP pkgdName [ LBRKT observedEventParameter *(COMMA observedEventParameter) RBRKT ]
;at-most-once eventStream, every eventParameterName at most once observedEventParameter = eventStream / eventOther
;最多一次eventStream,每个eventParameterName最多观察一次EventParameter=eventStream/eventOther
RequestID = UINT32
RequestID = UINT32
modemDescriptor = ModemToken (( EQUAL modemType) / (LSBRKT modemType *(COMMA modemType) RSBRKT)) [ LBRKT NAME parmValue *(COMMA NAME parmValue) RBRKT ]
modemDescriptor=ModemToken((相等modemType)/(LSBRKT modemType*(逗号modemType)RSBRKT))[LBRKT NAME parmValue*(逗号NAME parmValue)RBRKT]
; at-most-once modemType = (V32bisToken / V22bisToken / V18Token / V22Token / V32Token / V34Token / V90Token / V91Token / SynchISDNToken / extensionParameter)
; at-most-once modemType = (V32bisToken / V22bisToken / V18Token / V22Token / V32Token / V34Token / V90Token / V91Token / SynchISDNToken / extensionParameter)
digitMapDescriptor = DigitMapToken EQUAL digitMapName ( LBRKT digitMapValue RBRKT ) digitMapName = NAME digitMapValue = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA] ["L" COLON Timer COMMA] digitMap Timer = 1*2DIGIT digitMap = digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)
digitMapDescriptor = DigitMapToken EQUAL digitMapName ( LBRKT digitMapValue RBRKT ) digitMapName = NAME digitMapValue = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA] ["L" COLON Timer COMMA] digitMap Timer = 1*2DIGIT digitMap = digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)
digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP) digitLetter = *((DIGIT "-" DIGIT ) / digitMapLetter) digitMapLetter = DIGIT ;Basic event symbols / %x41-4B / %x61-6B ; a-k, A-K / "L" / "S" ;Inter-event timers (long, short) / Z" ;Long duration modifier
digitStringList = digitString *( LWSP "|" LWSP digitString ) digitString = 1*(digitStringElement) digitStringElement = digitPosition [DOT] digitPosition = digitMapLetter / digitMapRange digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP) digitLetter = *((DIGIT "-" DIGIT ) / digitMapLetter) digitMapLetter = DIGIT ;Basic event symbols / %x41-4B / %x61-6B ; a-k, A-K / "L" / "S" ;Inter-event timers (long, short) / Z" ;Long duration modifier
;at-most-once auditItem = ( MuxToken / ModemToken / MediaToken / SignalsToken / EventBufferToken / DigitMapToken / StatsToken / EventsToken / ObservedEventsToken / PackagesToken )
;at-most-once auditItem = ( MuxToken / ModemToken / MediaToken / SignalsToken / EventBufferToken / DigitMapToken / StatsToken / EventsToken / ObservedEventsToken / PackagesToken )
serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm *(COMMA serviceChangeParm) RBRKT
serviceChangeDescriptor=ServicesToken LBRKT serviceChangeParm*(逗号serviceChangeParm)RBRKT
serviceChangeParm = (serviceChangeMethod / serviceChangeReason / serviceChangeDelay / serviceChangeAddress / serviceChangeProfile / extension / TimeStamp / serviceChangeMgcId / serviceChangeVersion )
serviceChangeParm = (serviceChangeMethod / serviceChangeReason / serviceChangeDelay / serviceChangeAddress / serviceChangeProfile / extension / TimeStamp / serviceChangeMgcId / serviceChangeVersion )
serviceChangeReplyDescriptor = ServicesToken LBRKT servChgReplyParm *(COMMA servChgReplyParm) RBRKT
serviceChangeReplyDescriptor=ServicesToken LBRKT servChgReplyParm*(逗号servChgReplyParm)RBRKT
;at-most-once. Version is REQUIRED on first ServiceChange response servChgReplyParm = (serviceChangeAddress / serviceChangeMgcId / serviceChangeProfile / serviceChangeVersion ) serviceChangeMethod = MethodToken EQUAL (FailoverToken / ForcedToken / GracefulToken / RestartToken / DisconnectedToken / HandOffToken / extensionParameter)
;at-most-once. Version is REQUIRED on first ServiceChange response servChgReplyParm = (serviceChangeAddress / serviceChangeMgcId / serviceChangeProfile / serviceChangeVersion ) serviceChangeMethod = MethodToken EQUAL (FailoverToken / ForcedToken / GracefulToken / RestartToken / DisconnectedToken / HandOffToken / extensionParameter)
serviceChangeReason = ReasonToken EQUAL VALUE serviceChangeDelay = DelayToken EQUAL UINT32 serviceChangeAddress = ServiceChangeAddressToken EQUAL VALUE serviceChangeMgcId = MgcIdToken EQUAL mId serviceChangeProfile = ProfileToken EQUAL NAME SLASH Version serviceChangeVersion = VersionToken EQUAL Version extension = extensionParameter parmValue
serviceChangeReason=ReasonToken等值serviceChangeDelay=DelayToken等值UINT32 serviceChangeAddress=ServiceChangeAddressToken等值serviceChangeMgcId=MgcIdToken等值中间服务ChangeProfile=ProfileToken等值名称斜线版本serviceChangeVersion=VersionToken等值版本扩展=extensionParameter parmValue
packagesDescriptor = PackagesToken LBRKT packagesItem *(COMMA packagesItem) RBRKT
packagesDescriptor=PackagesToken LBRKT packagesItem*(逗号packagesItem)RBRKT
Version = 1*2(DIGIT)
Version = 1*2(DIGIT)
packagesItem = NAME "-" UINT16
PackageItem=名称“-”UINT16
TimeStamp = Date "T" Time ; per ISO 8601:1988 ; Date = yyyymmdd Date = 8(DIGIT) ; Time = hhmmssss Time = 8(DIGIT) statisticsDescriptor = StatsToken LBRKT statisticsParameter *(COMMA statisticsParameter ) RBRKT
TimeStamp = Date "T" Time ; per ISO 8601:1988 ; Date = yyyymmdd Date = 8(DIGIT) ; Time = hhmmssss Time = 8(DIGIT) statisticsDescriptor = StatsToken LBRKT statisticsParameter *(COMMA statisticsParameter ) RBRKT
;at-most-once per item statisticsParameter = pkgdName EQUAL VALUE
;每个项目最多一次statisticsParameter=pkgdName相等值
topologyDescriptor = TopologyToken LBRKT terminationA COMMA terminationB COMMA topologyDirection RBRKT terminationA = TerminationID terminationB = TerminationID topologyDirection = BothwayToken / IsolateToken / OnewayToken
topologyDescriptor=TopologyToken LBRKT terminationA逗号terminationB逗号topologyDirection RBRKT terminationA=TerminationID terminationB=TerminationID topologyDirection=BothwayToken/IsolateToken/OnewayToken
priority = PriorityToken EQUAL UINT16
priority = PriorityToken EQUAL UINT16
extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)
extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)
; octetString is used to describe SDP defined in RFC2327. ; Caution should be taken if CRLF in RFC2327 is used. ; To be safe, use EOL in this ABNF. ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}" octetString = *(nonEscapeChar) nonEscapeChar = ( "\}" / %x01-7C / %x7E-FF ) quotedString = DQUOTE 1*(SafeChar / RestChar/ WSP) DQUOTE
; octetString is used to describe SDP defined in RFC2327. ; Caution should be taken if CRLF in RFC2327 is used. ; To be safe, use EOL in this ABNF. ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}" octetString = *(nonEscapeChar) nonEscapeChar = ( "\}" / %x01-7C / %x7E-FF ) quotedString = DQUOTE 1*(SafeChar / RestChar/ WSP) DQUOTE
UINT16 = 1*5(DIGIT) ; %x0-FFFF UINT32 = 1*10(DIGIT) ; %x0-FFFFFFFF
UINT16 = 1*5(DIGIT) ; %x0-FFFF UINT32 = 1*10(DIGIT) ; %x0-FFFFFFFF
NAME = ALPHA *63(ALPHA / DIGIT / "_" ) VALUE = quotedString / 1*(SafeChar) SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "|" / "."
NAME = ALPHA *63(ALPHA / DIGIT / "_" ) VALUE = quotedString / 1*(SafeChar) SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" / "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" / "(" / ")" / "%" / "|" / "."
EQUAL = LWSP %x3D LWSP ; "=" COLON = %x3A ; ":" LBRKT = LWSP %x7B LWSP ; "{" RBRKT = LWSP %x7D LWSP ; "}" COMMA = LWSP %x2C LWSP ; "," DOT = %x2E ; "." SLASH = %x2F ; "/"
EQUAL = LWSP %x3D LWSP ; "=" COLON = %x3A ; ":" LBRKT = LWSP %x7B LWSP ; "{" RBRKT = LWSP %x7D LWSP ; "}" COMMA = LWSP %x2C LWSP ; "," DOT = %x2E ; "." SLASH = %x2F ; "/"
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z DIGIT = %x30-39 ; 0-9 DQUOTE = %x22 ; " (Double Quote) HEXDIG = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" ) SP = %x20 ; space HTAB = %x09 ; horizontal tab CR = %x0D ; Carriage return LF = %x0A ; linefeed LWSP = *( WSP / COMMENT / EOL ) EOL = (CR [LF] / LF ) WSP = SP / HTAB ; white space SEP = ( WSP / EOL / COMMENT) LWSP COMMENT = ";" *(SafeChar/ RestChar / WSP / %x22) EOL RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "="
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z DIGIT = %x30-39 ; 0-9 DQUOTE = %x22 ; " (Double Quote) HEXDIG = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" ) SP = %x20 ; space HTAB = %x09 ; horizontal tab CR = %x0D ; Carriage return LF = %x0A ; linefeed LWSP = *( WSP / COMMENT / EOL ) EOL = (CR [LF] / LF ) WSP = SP / HTAB ; white space SEP = ( WSP / EOL / COMMENT) LWSP COMMENT = ";" *(SafeChar/ RestChar / WSP / %x22) EOL RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" / "<" / ">" / "="
AddToken = ("Add" / "A") AuditToken = ("Audit" / "AT") AuditCapToken = ("AuditCapability" / "AC") AuditValueToken = ("AuditValue" / "AV") AuthToken = ("Authentication" / "AU") BothwayToken = ("Bothway" / "BW") BriefToken = ("Brief" / "BR") BufferToken = ("Buffer" / "BF") CtxToken = ("Context" / "C") ContextAuditToken = ("ContextAudit" / "CA") DigitMapToken = ("DigitMap" / "DM") DiscardToken = ("Discard" / "DS") DisconnectedToken = ("Disconnected" / "DC") DelayToken = ("Delay" / "DL") DurationToken = ("Duration" / "DR") EmbedToken = ("Embed" / "EB") EmergencyToken = ("Emergency" / "EM") ErrorToken = ("Error" / "ER") EventBufferToken = ("EventBuffer" / "EB") EventsToken = ("Events" / "E") FailoverToken = ("Failover" / "FL") ForcedToken = ("Forced" / "FO") GracefulToken = ("Graceful" / "GR") H221Token = ("H221" ) H223Token = ("H223" ) H226Token = ("H226" ) HandOffToken = ("HandOff" / "HO") InactiveToken = ("Inactive" / "IN") IsolateToken = ("Isolate" / "IS") InSvcToken = ("InService" / "IV")
AddToken = ("Add" / "A") AuditToken = ("Audit" / "AT") AuditCapToken = ("AuditCapability" / "AC") AuditValueToken = ("AuditValue" / "AV") AuthToken = ("Authentication" / "AU") BothwayToken = ("Bothway" / "BW") BriefToken = ("Brief" / "BR") BufferToken = ("Buffer" / "BF") CtxToken = ("Context" / "C") ContextAuditToken = ("ContextAudit" / "CA") DigitMapToken = ("DigitMap" / "DM") DiscardToken = ("Discard" / "DS") DisconnectedToken = ("Disconnected" / "DC") DelayToken = ("Delay" / "DL") DurationToken = ("Duration" / "DR") EmbedToken = ("Embed" / "EB") EmergencyToken = ("Emergency" / "EM") ErrorToken = ("Error" / "ER") EventBufferToken = ("EventBuffer" / "EB") EventsToken = ("Events" / "E") FailoverToken = ("Failover" / "FL") ForcedToken = ("Forced" / "FO") GracefulToken = ("Graceful" / "GR") H221Token = ("H221" ) H223Token = ("H223" ) H226Token = ("H226" ) HandOffToken = ("HandOff" / "HO") InactiveToken = ("Inactive" / "IN") IsolateToken = ("Isolate" / "IS") InSvcToken = ("InService" / "IV")
KeepActiveToken = ("KeepActive" / "KA") LocalToken = ("Local" / "L") LocalControlToken = ("LocalControl" / "O") LockStepToken = ("LockStep" / "SP") LoopbackToken = ("Loopback" / "LB") MediaToken = ("Media" / "M") MegacopToken = ("MEGACO" / "!") MethodToken = ("Method" / "MT") MgcIdToken = ("MgcIdToTry" / "MG") ModeToken = ("Mode" / "MO") ModifyToken = ("Modify" / "MF") ModemToken = ("Modem" / "MD") MoveToken = ("Move" / "MV") MTPToken = ("MTP") MuxToken = ("Mux" / "MX") NotifyToken = ("Notify" / "N") NotifyCompletionToken = ("NotifyCompletion" / "NC") ObservedEventsToken = ("ObservedEvents" / "OE") OnewayToken = ("Oneway" / "OW") OnOffToken = ("OnOff" / "OO") OutOfSvcToken = ("OutOfService" / "OS") PackagesToken = ("Packages" / "PG") PendingToken = ("Pending" / "PN") PriorityToken = ("Priority" / "PR") ProfileToken = ("Profile" / "PF") ReasonToken = ("Reason" / "RE") RecvonlyToken = ("ReceiveOnly" / "RC") ReplyToken = ("Reply" / "P") RestartToken = ("Restart" / "RS") RemoteToken = ("Remote" / "R") ReservedGroupToken = ("ReservedGroup" / "RG") ReservedValueToken = ("ReservedValue" / "RV") SendonlyToken = ("SendOnly" / "SO") SendrecvToken = ("SendReceive" / "SR") ServicesToken = ("Services" / "SV") ServiceStatesToken = ("ServiceStates" / "SI") ServiceChangeToken = ("ServiceChange" / "SC") ServiceChangeAddressToken = ("ServiceChangeAddress" / "AD") SignalListToken = ("SignalList" / "SL") SignalsToken = ("Signals" / "SG") SignalTypeToken = ("SignalType" / "SY") StatsToken = ("Statistics" / "SA") StreamToken = ("Stream" / "ST") SubtractToken = ("Subtract" / "S") SynchISDNToken = ("SynchISDN" / "SN") TerminationStateToken = ("TerminationState" / "TS") TestToken = ("Test" / "TE") TimeOutToken = ("TimeOut" / "TO")
KeepActiveToken = ("KeepActive" / "KA") LocalToken = ("Local" / "L") LocalControlToken = ("LocalControl" / "O") LockStepToken = ("LockStep" / "SP") LoopbackToken = ("Loopback" / "LB") MediaToken = ("Media" / "M") MegacopToken = ("MEGACO" / "!") MethodToken = ("Method" / "MT") MgcIdToken = ("MgcIdToTry" / "MG") ModeToken = ("Mode" / "MO") ModifyToken = ("Modify" / "MF") ModemToken = ("Modem" / "MD") MoveToken = ("Move" / "MV") MTPToken = ("MTP") MuxToken = ("Mux" / "MX") NotifyToken = ("Notify" / "N") NotifyCompletionToken = ("NotifyCompletion" / "NC") ObservedEventsToken = ("ObservedEvents" / "OE") OnewayToken = ("Oneway" / "OW") OnOffToken = ("OnOff" / "OO") OutOfSvcToken = ("OutOfService" / "OS") PackagesToken = ("Packages" / "PG") PendingToken = ("Pending" / "PN") PriorityToken = ("Priority" / "PR") ProfileToken = ("Profile" / "PF") ReasonToken = ("Reason" / "RE") RecvonlyToken = ("ReceiveOnly" / "RC") ReplyToken = ("Reply" / "P") RestartToken = ("Restart" / "RS") RemoteToken = ("Remote" / "R") ReservedGroupToken = ("ReservedGroup" / "RG") ReservedValueToken = ("ReservedValue" / "RV") SendonlyToken = ("SendOnly" / "SO") SendrecvToken = ("SendReceive" / "SR") ServicesToken = ("Services" / "SV") ServiceStatesToken = ("ServiceStates" / "SI") ServiceChangeToken = ("ServiceChange" / "SC") ServiceChangeAddressToken = ("ServiceChangeAddress" / "AD") SignalListToken = ("SignalList" / "SL") SignalsToken = ("Signals" / "SG") SignalTypeToken = ("SignalType" / "SY") StatsToken = ("Statistics" / "SA") StreamToken = ("Stream" / "ST") SubtractToken = ("Subtract" / "S") SynchISDNToken = ("SynchISDN" / "SN") TerminationStateToken = ("TerminationState" / "TS") TestToken = ("Test" / "TE") TimeOutToken = ("TimeOut" / "TO")
TopologyToken = ("Topology" / "TP") TransToken = ("Transaction" / "T") ResponseAckToken = ("TransactionResponseAck"/ "K") V18Token = ("V18") V22Token = ("V22") V22bisToken = ("V22b") V32Token = ("V32") V32bisToken = ("V32b") V34Token = ("V34") V76Token = ("V76") V90Token = ("V90") V91Token = ("V91")
TopologyToken = ("Topology" / "TP") TransToken = ("Transaction" / "T") ResponseAckToken = ("TransactionResponseAck"/ "K") V18Token = ("V18") V22Token = ("V22") V22bisToken = ("V22b") V32Token = ("V32") V32bisToken = ("V32b") V34Token = ("V34") V76Token = ("V76") V90Token = ("V90") V91Token = ("V91")
ANNEX C TAGS FOR MEDIA STREAM PROPERTIES (NORMATIVE)
附录C媒体流属性标签(规范性)
Parameters for Local descriptors and Remote descriptors are specified as tag-value pairs if binary encoding is used for the protocol. This annex contains the property names (PropertyID), the tags (Property Tag), type of the property (Type) and the values (Value).Values presented in the Value field when the field contains references shall be regarded as "information". The reference contains the normative values. If a value field does not contain a reference then the values in that field can be considered as "normative".
如果协议使用二进制编码,则本地描述符和远程描述符的参数指定为标记值对。本附录包含属性名称(PropertyID)、标签(property Tag)、属性类型(type)和值(Value)。当字段包含参考时,值字段中显示的值应视为“信息”。参考文件包含标准值。如果值字段不包含引用,则该字段中的值可视为“标准值”。
Tags are given as hexadecimal numbers in this annex. When setting the value of a property, a MGC may underspecify the value according to one of the mechanisms specified in section 7.1.1.
标签在本附录中以十六进制数字给出。当设置属性值时,MGC可能会根据第7.1.1节中规定的机制之一对该值进行低估。
For type "enumeration" the value is represented by the value in brackets, e.g., Send(0), Receive(1).
对于“枚举”类型,值由括号中的值表示,例如发送(0)、接收(1)。
PropertyID Property Type Value Tag
PropertyID属性类型值标记
Media 1001 Enumeration Audio(0), Video(1), Data(2),
媒体1001枚举音频(0)、视频(1)、数据(2),
Transmission mode 1002 Enumeration Send(0), Receive(1), Send&Receive(2)
传输模式1002枚举发送(0)、接收(1)、发送和接收(2)
Number of Channels 1003 Unsigned 0-255 Integer Sampling rate 1004 Unsigned 0-2^32 Integer Bitrate 1005 Integer (0..4294967295) Note - units of 100 bit/s
通道数1003无符号0-255整数采样率1004无符号0-2^32整数比特率1005整数(0..4294967295)注意-单位为100位/秒
ACodec 1006 Octet String Audio Codec Type: Reference: ITU-T Rec. Q.765 - Application transport mechanism. Non-ITU codecs are defined with the appropriate standards organisation under a defined Organizational Identifier.
ACodec 1006八位字符串音频编解码器类型:参考:ITU-T Rec.Q.765-应用程序传输机制。非ITU编解码器由适当的标准组织在定义的组织标识符下定义。
Samplepp 1007 Unsigned Maximum samples or Integer frames per packet: 0- 65535
Samplepp 1007每个数据包的无符号最大采样数或整数帧数:0-65535
Silencesupp 1008 BOOLEAN Silence Suppression: True/false
沉默抑制1008布尔沉默抑制:真/假
Encrypttype 1009 Octet string Ref.: rec. H.245
加密类型1009八位字节字符串参考:记录H.245
Encryptkey 100A Octet string Encryption key SIZE(0..65535) Ref.: rec. H.235
Encryptkey 100A八位字符串加密密钥大小(0..65535)参考:记录H.235
Echocanc 100B Enumeration Echo Canceller: Off(0), G.165(1), G168(2)
Echocanc 100B计数回声消除器:关闭(0),G.165(1),G168(2)
Gain 100C Unsigned Gain in db: 0-65535 Integer Jitterbuff 100D Unsigned Jitter buffer size in Integer ms: 0-65535
增益100C无符号增益(以db为单位):0-65535整数抖动buff 100D无符号抖动缓冲区大小(以整数ms为单位):0-65535
PropDelay 100E Unsigned Propagation Delay: Integer 0..65535 Maximum propagation delay in milliseconds for the bearer connection between two media gateways. The maximum delay will be dependent on the bearer technology.
PropDelay 100E无符号传播延迟:整数0..65535两个媒体网关之间的承载连接的最大传播延迟(毫秒)。最大延迟将取决于承载技术。
RTPpayload 100F integer Payload type in RTP Profile for Audio and Video Conferences with Minimal Control Ref.: RFC 1890
RTP配置文件中的RTPpayload 100F整数有效负载类型,用于具有最小控制的音频和视频会议参考:RFC 1890
PropertyID Property Type Value Tag
PropertyID属性类型值标记
H.221 2001 Octet Ref.: rec. H.245, string H222LogicalChannelParameters
H.221 2001八位字节参考:记录H.245,字符串H222逻辑通道参数
H223 2002 Octet Ref.: rec. H.245, string H223LogicalChannelParameters
H223 2002八位字节参考:记录H.245,字符串H223逻辑通道参数
V76 2003 Octet Ref.: rec. H.245, String V76LogicalChannelParameters
V76 2003八位字节参考:记录H.245,字符串V76LogicalChannel参数
H2250 2004 Octet Ref.: rec. H.245, String H2250LogicalChannelParameters
H2250 2004八位字节参考:记录H.245,字符串H2250逻辑通道参数
PropertyID Property Type Value Tag Mediatx 3001 Enumeration Media Transport Type: TDM Circuit(0), ATM(1), FR(2), Ipv4(3), Ipv6(4), _
PropertyID属性类型值标记Mediatx 3001枚举媒体传输类型:TDM电路(0)、ATM(1)、FR(2)、Ipv4(3)、Ipv6(4)_
BIR 3002 4 OCTET Value depends on transport technology
BIR 3002 4八位字节值取决于传输技术
NSAP 3003 1-20 OCTETS See NSAP Reference: ITU X.213 Annex A
NSAP 3003 1-20八位字节见NSAP参考:ITU X.213附录A
PropertyID Property Type Value Tag
PropertyID属性类型值标记
AESA 4001 20 OCTETS ATM End System Address
AESA 4001 20八位字节ATM终端系统地址
VPVC 4002 2 x 16 bit VPC/VCI integer
VPVC 4002 2 x 16位VPC/VCI整数
SC 4003 4 bits Service Category Reference: ITU Recommendation Q.2931 (1995)
SC 4003 4位服务类别参考:ITU建议Q.2931(1995)
BCOB 4004 5 bit integer Broadband Bearer Class
BCOB 4004 5位整数宽带承载类
Reference: ITU Recommendation Q.2961.2 (06/97)
参考:国际电联建议Q.2961.2(06/97)
BBTC 4005 octet Broadband Transfer Capability Reference: ITU Recommendation Q.2961 (10/95)
BBTC 4005八位组宽带传输能力参考:ITU建议Q.2961(10/95)
ATC 4006 Enumeration I.371 ATM Traffic Capability
ATC 4006枚举I.371 ATM业务能力
Reference: ITU Recommendation I.371: DBR(0), SBR1(1), SBR2(2), SBR(3), ABT/IT(4), ABT/DT(5), ABR(6)
Reference: ITU Recommendation I.371: DBR(0), SBR1(1), SBR2(2), SBR(3), ABT/IT(4), ABT/DT(5), ABR(6)
STC 4007 2 bits Susceptibility to clipping Reference: ITU Recommendation Q.2931 (1995) 00 Susceptible 01 Not-susceptible
STC 4007 2位限幅参考敏感度:ITU建议Q.2931(1995)00敏感度01不敏感度
UPCC 4008 2 bits User Plane Connection configuration: Reference: ITU Recommendation Q.2931 (1995) 00 Pt-to-pt, 01 Pt-to-mpt
UPCC 4008 2位用户平面连接配置:参考:ITU建议Q.2931(1995)00 Pt到Pt,01 Pt到mpt
PCR0 4009 24 bit Peak Cell Rate (For integer CLP=0) Reference: ITU Recommendation I.371
PCR0 4009 24位峰值信元速率(整数CLP=0)参考:ITU建议I.371
SCR0 400A 24 bit Sustainable Cell Rate integer (For CLP=0) Reference: ITU Recommendation I.371
SCR0 400A 24位可持续信元速率整数(对于CLP=0)参考:ITU建议I.371
MBS0 400B 24 bit Maximum Burst Size (For integer CLP=0) Reference: ITU Recommendation I.371
MBS0400B 24位最大突发大小(对于整数CLP=0)参考:ITU建议I.371
PCR1 400C 24 bit Peak Cell Rate (For integer CLP=0+1) Reference: ITU Recommendation I.371
PCR1 400C 24位峰值信元速率(整数CLP=0+1)参考:ITU建议I.371
SCR2 400D 24 bit Sustainable Cell Rate integer (For CLP=0+1) Reference: ITU Recommendation I.371
SCR2 400D 24位可持续信元速率整数(对于CLP=0+1)参考:ITU建议I.371
MBS3 400E 24 bit Maximum Burst Size (For integer CLP=0+1)
MBS3 400E 24位最大突发大小(对于整数CLP=0+1)
Reference: ITU Recommendation I.371
参考:国际电联建议I.371
BEI 400F Boolean Best Effort Indicator
BEI 400F布尔尽力指示器
TI 4010 Boolean Tagging
TI4010布尔标记
FD 4011 Boolean Frame Discard
FD 4011布尔帧丢弃
FCDV 4012 24 bit Forward P-P CDV integer
FCDV 4012 24位前向P-P CDV整数
BCDV 4013 24 bit Backward P-P CDV integer
BCDV 4013 24位反向P-P CDV整数
FCLR0 4014 8 bit integer Forward Cell Loss Ratio (For CLP=0)
FCLR0 4014 8位整数前向信元丢失率(对于CLP=0)
BCLR0 4015 8 bit integer Backward P-P Cell Loss Ratio (For CLP=0)
BCLR0 4015 8位整数反向P-P单元丢失率(对于CLP=0)
FCLR1 4016 8 bit integer Forward Cell Loss Ratio
FCLR1 4016 8位整数前向信元丢失率
BCLR1 4017 8 bit integer Backward P-P Cell Loss Ratio (For CLP=0+1)
BCLR1 4017 8位整数反向P-P单元丢失率(对于CLP=0+1)
FCDV 4018 24 bit Forward Cell Delay integer Variation
FCDV 4018 24位前向小区延迟整数变化
BCDV 4019 24 bit Backward Cell Delay integer Variation
BCDV 4019 24位向后单元延迟整数变化
FACDV 401A 24 bit Forward Acceptable P-P-P integer CDV
FACDV 401A 24位前向可接受的P-P-P整数CDV
BACDV 401B 24 bit Backward Acceptable P-P integer CDV
BACDV 401B 24位向后可接受的P-P整数CDV
FCCDV 401C 24 bit Forward Cumulative P-P integer CDV
FCCDV 401C 24位前向累积P-P整数CDV
BCCDV 401D 24 bit Backward Cumulative P-P integer CDV
BCCDV 401D 24位向后累积P-P整数CDV
FCLR 401E 8 bit integer Acceptable Forward Cell Loss Ratio
FCLR 401E 8位整数可接受的前向信元丢失率
BCLR 401F 8 bit integer Acceptable Backward Cell Loss Ratio
BCLR 401F 8位整数可接受的反向信元丢失率
EETD 4020 16 bit End-to-end transit delay integer
EETD 4020 16位端到端传输延迟整数
Mediatx (See 4021 AAL Type General Properties) Reference: ITU Recommendation Q.2931 (1995)
Mediatx(见4021 AAL型通用属性)参考:ITU建议Q.2931(1995)
QosClass 4022 Integer 0-4 Qos Class Reference: ITU Recommendation Q.2931 (1995) QoS Parameter Application: Qos Class0 QoS ApplicationBest Effort Parameter Unspecified
QosClass 4022整数0-4 Qos等级参考:ITU建议Q.2931(1995)Qos参数应用:Qos等级0 Qos应用尽力而为参数未指定
0 Unspecified Best EffortConstant Bit rate Specified circuit emulation 1 Specified Constant Bit rate circuit Specified emulationVariable bit rate video and audio 2 Specified Variable bit rate video and Specified audioConnection-oriented data 3 Specified Connection-oriented Specified dataConnectionless data 4 Specified Connectionless data
0未指定的最佳效果恒定比特率指定的电路仿真1指定的恒定比特率电路指定的仿真可变比特率视频和音频2指定的可变比特率视频和指定的音频面向连接的数据3指定的面向连接的指定数据无连接的数据4指定的无连接的数据
AALtype 4023 1 OCTET AAL Type Reference: ITU Recommendation Q.2931 (1995) 00000000 AAL for voice 00000001 AAL type 1 00000010 AAL type 2 00000011 AAL type 3/4 00000101 AAL type 5 00010000 user defined AAL
AAL类型4023 1八位组AAL类型参考:ITU建议Q.2931(1995)00000000语音AAL 00000001 AAL类型10000010 AAL类型20000011AAL类型3/40000101 AAL类型500010000用户定义AAL
PropertyID Property Type Value Tag
PropertyID属性类型值标记
DLCI 5001 Unsigned Integer Data link connection id
DLCI 5001无符号整数数据链路连接id
CID 5002 Unsigned Integer sub-channel id.
CID 5002无符号整数子信道id。
SID/Noiselevel 5003 Unsigned Integer silence insertion descriptor
SID/Noiselevel 5003无符号整数静默插入描述符
Primary Payload 5004 Unsigned Integer Primary Payload Type type Covers FAX and codecs
主有效负载5004无符号整数主有效负载类型包括传真和编解码器
PropertyID Property Type Value Tag
PropertyID属性类型值标记
IPv4 6001 32 BITS Ipv4Address: Ipv4Address Reference: IETF RFC791
IPv4 6001 32位IPv4地址:IPv4地址参考:IETF RFC791
IPv6 6002 128 BITS IPv6 Address: Reference: IETF RFC2460
IPv6 6002 128位IPv6地址:参考:IETF RFC2460
Port 6003 unsigned integer 0-65535
端口6003无符号整数0-65535
Porttype 6004 enumerated TCP(0), UDP(1), SCTP(2)
端口类型6004枚举TCP(0)、UDP(1)、SCTP(2)
PropertyID Property Type Value Tag
PropertyID属性类型值标记
AESA 7001 20 OCTETS AAL2 service endpoint address as defined in Reference: ITU Recommendation Q.2630.1 ESEA NSEA
参考:ITU建议Q.2630.1 ESEA NSEA中定义的AESA 7001 20八位字节AAL2服务端点地址
BIR See C.3 4 OCTETS Served user generated reference as defined in Reference: ITU Recommendation Q.2630.1 SUGR
BIR参见参考文献:ITU建议Q.2630.1 SUGR中定义的C.3 4八位字节服务用户生成参考
ALC 7002 12 OCTETS AAL2 link characteristics as defined in Reference: ITU Recommendation Q.2630.1 max/average CPS-SDU bitrate, max/average CPS-SDU size
参考文献:ITU建议Q.2630.1最大/平均CPS-SDU比特率、最大/平均CPS-SDU大小中定义的ALC 7002 12八位字节AAL2链路特性
SSCS 7003 I.366.2: Service audio (8 OCTETS) specific multirate (3 OCTETS) convergence or I.366.1: sublayer SAR-assured (14 OCTETS)/ information unassured (7 OCTETS) as defined in Reference: Q.2630.1 and used in I.366.1 and I.366.2 I.366.2: audio/multirate
SSCS 7003 I.366.2:服务音频(8个八位字节)特定多速率(3个八位字节)收敛或I.366.1:参考文件Q.2630.1中定义并在I.366.1和I.366.2 I.366.2:音频/多速率中使用的子层SAR保证(14个八位字节)/信息未保证(7个八位字节)
I.366.1: SAR-assured/unassured
I.366.1:SAR保证/未保证
SUT 7004 1..254 octets Served user transport parameter as defined in Reference: ITU Recommendation Q.2630.1
SUT 7004 1..254八位字节服务于参考:ITU建议Q.2630.1中定义的用户传输参数
TCI 7005 BOOLEAN Test connection indicator
TCI 7005布尔测试连接指示器
as defined in Reference: ITU Recommendation Q.2630.1
如参考文献:ITU建议Q.2630.1中所定义
Timer_CU 7006 32 bit integer Timer-CU: Milliseconds to hold partially filled cell before sending.
计时器\u CU 7006 32位整数计时器CU:在发送前保留部分填充单元格的毫秒数。
MaxCPSSDU 7007 8 bit integer Maximum Common Part Sublayer Service Data Unit Ref.: rec. Q.2630.1
MaxCPSSDU 7007 8位整数最大公共部分子层服务数据单元参考:记录Q.2630.1
SCLP 7008 Boolean Set Cell Local PriorityLP bit: True if CLP bit is to be set
SCLP 7008布尔设置单元本地优先级LP位:如果要设置CLP位,则为True
EETR 7009 Boolean Timing Requirements Reference: ITU Recommendation Q.2931 (1995) End to End Timing Required: In broadband bearer capability
EETR 7009布尔定时要求参考:ITU建议Q.2931(1995)所需端到端定时:宽带承载能力
CID 700A 8 bits subchannel id, 0-255 Ref.: rec. I.363.2 (09/97)
CID 700A 8位子信道id,0-255参考:记录I.363.2(09/97)
PropertyID Property Type Value Tag
PropertyID属性类型值标记
BIR See GIT (Generic Table Identifier Transport) 4 OCTETS C.3 Ref.: Recommendation Q.2941.1 (09/97)
BIR见GIT(通用表标识符传输)4八位字节C.3参考:建议Q.2941.1(09/97)
AAL1ST 8001 1 OCTET AAL1 Subtype:
AAL1ST 8001 1八位组AAL1子类型:
Reference: ITU Recommendation Q.2931 (1995) 00000000 Null
参考:国际电联建议Q.2931(1995)00000000空
00000001 voiceband signal transport on 64kbit/s 00000010 circuit transport 00000100 high-quality audio signal transport 00000101 video signal transport
0000000 1 64kbit/s上的声带信号传输00000010电路传输00000100高质量音频信号传输00000101视频信号传输
CBRR 8002 1 OCTET CBR Rate Reference: ITU Recommendation Q.2931 (1995) 00000001 64 kbit/s 00000100 1544 kbit/s 00000101 6312 kbit/s 00000110 32064 kbit/s 00000111 44736 kbit/s 00001000 97728 kbit/s 00010000 2048 kbit/s 00010001 8448 kbit/s 00010010 34368 kbit/s 00010011 139264 kbit/s 01000000 n x 64 kbit/s 01000001 n * 8 kbit/s
CBRR 8002 1八位字节CBR率参考:ITU建议Q.2931(1995)00000001 64 kbit/s 00000100 1544 kbit/s 00000101 6312 kbit/s 00000110 32064 kbit/s 00000111 44736 kbit/s 00001000 97728 kbit/s 0001000002048 kbit/s 00010010 34368 kbit/s 00010011 139264 kbit/s 01000000n x 64 kbit/s 01000001 n*8 kbit/s
MULT See Multiplier, or n x Table 64k/8k/300 C.9
MULT见乘数,或n x表64k/8k/300 C.9
Reference: ITU Recommendation Q.2931 (1995)
参考:国际电联建议Q.2931(1995年)
SCRI 8003 1 OCTECT Source Clock Frequency Recovery Method Reference: ITU Recommendation Q.2931 (1995) 00000000 NULL 00000001 SRTS 00000010 ACM
SCRI 8003 1八分之一源时钟频率恢复方法参考:ITU建议Q.2931(1995)00000000 NULL 00000001 SRTS 00000010 ACM
ECM 8004 1 OCTECT Error Correction Method Reference: ITU Recommendation Q.2931 (1995) 00000000 Null 00000001 FEC-LOSS 00000010 FEC-DELAY
ECM 8004 1八分位纠错方法参考:ITU建议Q.2931(1995)00000000 Null 00000001 FEC-LOSS 00000010 FEC-DELAY
SDTB 8005 16 bit integer Structured Data Transfer Blocksize Reference: ITU Recommendation I.363.1 Block size of SDT CBR service
SDTB 8005 16位整数结构化数据传输块大小参考:ITU建议I.363.1 SDT CBR服务的块大小
PFCI 8006 8 bit integer Partially filled cells indentifier Reference: ITU Recommendation I.363.1
PFCI 8006 8位整数部分填充单元标识符参考:ITU建议I.363.1
1-47
1-47
EETR See See Table C.7 See Table C.7 Table C.7
EETR见表C.7见表C.7表C.7
PropertyID Property Type Value Tag
PropertyID属性类型值标记
TMR 9001 1 OCTET Transmission Medium Requirement (Q.763)
TMR 9001 1八位字节传输介质要求(Q.763)
Reference: ITU Recommendation Q.763(09/97) Bit 8 7 6 5 4 3 2 1 00000000 - speech 00000001 - spare 00000010 - 64 kbit/s unrestricted 00000011 - 3.1 kHz audio 00000100 - reserved for alternate speech (service 2)/64 kbit/s unrestricted (service 1) 00000101 - reserved for alternate 64 kbit/s unrestricted (service 1)/speech (service 2) 00000110 - 64 kbit/s preferred 00000111 - 2 x 64 kbit/s unrestricted 00001000 - 384 kbit/s unrestricted 00001001 - 1536 kbit/s unrestricted 00001010 - 1920 kbit/s unrestricted 00001011 through 00001111- spare 00010000 - 3 x 64 kbit/s unrestricted 00010001 - 4 x 64 kbit/s unrestricted 00010010 - 5 x 64 kbit/s unrestricted 00010011 spare 00010100 - 7 x 64 kbit/s unrestricted 00010101 - 8 x 64 kbit/s unrestricted 00010110 - 9 x 64 kbit/s unrestricted 00010111 - 10 x 64 kbit/s unrestricted 00011000 - 11 x 64 kbit/s unrestricted 00011001 - 12 x 64 kbit/s unrestricted 00011010 - 13 x 64 kbit/s unrestricted 00011011 - 14 x 64 kbit/s unrestricted 00011100 - 15 x 64 kbit/s unrestricted 00011101 - 16 x 64 kbit/s unrestricted 00011110 - 17 x 64 kbit/s unrestricted 00011111 - 18 x 64 kbit/s unrestricted 00100000 - 19 x 64 kbit/s unrestricted 00100001 - 20 x 64 kbit/s unrestricted
Reference: ITU Recommendation Q.763(09/97) Bit 8 7 6 5 4 3 2 1 00000000 - speech 00000001 - spare 00000010 - 64 kbit/s unrestricted 00000011 - 3.1 kHz audio 00000100 - reserved for alternate speech (service 2)/64 kbit/s unrestricted (service 1) 00000101 - reserved for alternate 64 kbit/s unrestricted (service 1)/speech (service 2) 00000110 - 64 kbit/s preferred 00000111 - 2 x 64 kbit/s unrestricted 00001000 - 384 kbit/s unrestricted 00001001 - 1536 kbit/s unrestricted 00001010 - 1920 kbit/s unrestricted 00001011 through 00001111- spare 00010000 - 3 x 64 kbit/s unrestricted 00010001 - 4 x 64 kbit/s unrestricted 00010010 - 5 x 64 kbit/s unrestricted 00010011 spare 00010100 - 7 x 64 kbit/s unrestricted 00010101 - 8 x 64 kbit/s unrestricted 00010110 - 9 x 64 kbit/s unrestricted 00010111 - 10 x 64 kbit/s unrestricted 00011000 - 11 x 64 kbit/s unrestricted 00011001 - 12 x 64 kbit/s unrestricted 00011010 - 13 x 64 kbit/s unrestricted 00011011 - 14 x 64 kbit/s unrestricted 00011100 - 15 x 64 kbit/s unrestricted 00011101 - 16 x 64 kbit/s unrestricted 00011110 - 17 x 64 kbit/s unrestricted 00011111 - 18 x 64 kbit/s unrestricted 00100000 - 19 x 64 kbit/s unrestricted 00100001 - 20 x 64 kbit/s unrestricted
00100010 - 21 x 64 kbit/s unrestricted 00100011 - 22 x 64 kbit/s unrestricted 00100100 - 23x 64 kbit/s unrestricted 00100101 - spare 00100110 - 25 x 64 kbit/s unrestricted 00100111 - 26 x 64 kbit/s unrestricted 00101000 - 27 x 64 kbit/s unrestricted 00101001 - 28 x 64 kbit/s unrestricted 00101010 - 29 x 64 kbit/s unrestricted 00101011 through 11111111 Spare
00100010 - 21 x 64 kbit/s unrestricted 00100011 - 22 x 64 kbit/s unrestricted 00100100 - 23x 64 kbit/s unrestricted 00100101 - spare 00100110 - 25 x 64 kbit/s unrestricted 00100111 - 26 x 64 kbit/s unrestricted 00101000 - 27 x 64 kbit/s unrestricted 00101001 - 28 x 64 kbit/s unrestricted 00101010 - 29 x 64 kbit/s unrestricted 00101011 through 11111111 Spare
TMRSR 9002 1 OCTET Transmission Medium Requirement Subrate
TMRSR 9002 1八进制传输介质要求子速率
0 - unspecified 1 - 8kbit/s 2 - 16kbit/s 3 - 32kbit/s
0 - unspecified 1 - 8kbit/s 2 - 16kbit/s 3 - 32kbit/s
Contcheck 9003 BOOLEAN Continuity Check Reference: ITU Recommendation Q.763(09/97) 0 - Not required on this circuit 1 - Required on this circuit
Contcheck 9003布尔连续性检查参考:ITU建议Q.763(09/97)0-本电路不需要1-本电路需要
ITC 9004 5 BITS Information Transfer Capability Reference: ITU Recommendation Q.763(09/97) Bits 5 4 3 2 1 00000 - Speech 01000 -Unrestricted digital information 01001- Restricted digital information 10000 3.1 kHz audio 10001 - Unrestricted digital information with tones/announcements (Note 2) 11000 -Video All other values are reserved.
ITC 9004 5位信息传输能力参考:ITU建议Q.763(09/97)位5 4 3 2 1 00000-语音01000-非限制数字信息01001-限制数字信息10000 3.1 kHz音频10001-带铃声/公告的非限制数字信息(注2)11000-视频保留所有其他值。
TransMode 9005 2 BITS Transfer Mode Reference: ITU Recommendation Q.931 (1998) Bit 2 1 00 - Circuit mode 10 - Packet mode
TransMode 9005 2位传输模式参考:ITU建议Q.931(1998)第2位1 00-电路模式10-分组模式
TransRate 9006 5 BITS Transfer Rate Reference: ITU Recommendation Q.931 (1998) Bit 5 4 3 2 1 00000 - This code shall be used for packet mode calls 10000 - 64 kbit/s
传输速率9006 5比特传输速率参考:ITU建议Q.931(1998)比特5 4 3 2 1 00000-此代码应用于10000-64 kbit/s的分组模式呼叫
10001 - 2 x 64 kbit/s 10011 -384 kbit/s 10101 -1536 kbit/s 10111 -1920 kbit/s 11000 - Multirate (64 kbit/s base rate)
10001 - 2 x 64 kbit/s 10011 -384 kbit/s 10101 -1536 kbit/s 10111 -1920 kbit/s 11000 - Multirate (64 kbit/s base rate)
MULT 9007 7 BITS Rate Multiplier Reference: ITU Recommendation Q.931 (1998) Any value from 2 to n (maximum number of B-channels)
MULT 9007 7比特率倍增器参考:ITU建议Q.931(1998)2到n的任何值(最大B通道数)
USI 9008 5 BITS User Information Layer 1 Protocol Reference: ITU Recommendation Q.931 (1998) Bits 5 4 3 2 1 00001 - CCITT standardized rate adaption V.110 and X.30. 00010 - Recommendation G.711 u-law 00011 - Recommendation G.711 A-law 00100 - Recommendation G.721 32 kbit/s ADPCM and Recommendation I.460. 00101 - Recommendations H.221 and H.242 00110 - Recommendations H.223 and H.245 00111 - Non-ITU-T standardized rate adaption. 01000 - ITU-T standardized rate adaption V.120. 01001 - CCITT standardized rate adaption X.31 HDLC flag stuffing. All other values are reserved.
USI 9008 5位用户信息第1层协议参考:ITU建议Q.931(1998)BITS 5 4 3 2 1 00001-CCITT标准化速率自适应V.110和X.30。00010-建议G.711 u-law 00011-建议G.711 A-law 00100-建议G.721 32 kbit/s ADPCM和建议I.460。00101-建议H.221和H.242 00110-建议H.223和H.245 00111-非ITU-T标准化速率自适应。01000-ITU-T标准化速率自适应V.120。01001-CCITT标准化速率自适应X.31 HDLC标志填充。所有其他值均保留。
syncasync 9009 BOOLEAN Synchronous/ Asynchronous Reference: ITU Recommendation Q.931 (1998) 0 - Synchronous data 1 - Asynchronous data
syncasync 9009布尔同步/异步参考:ITU建议Q.931(1998)0-同步数据1-异步数据
negotiation 900A BOOLEAN Negotiation Reference: ITU Recommendation Q.931 (1998) 0 - In-band negotiation possible 1 - In-band negotiation not possible
协商900A布尔协商参考:ITU建议Q.931(1998)0-带内协商可能1-带内协商不可能
Userrate 900B 5 BITS User Rate Reference: ITU Recommendation Q.931 (1998) Bits 5 4 3 2 1 00000 - Rate is indicated by E-bits specified in Recommendation I.460 or may be negotiated in-band 00001 - 0.6 kbit/s Recommendations V.6 and X.1 00010 - 1.2 kbit/s Recommendation V.6 00011 - 2.4 kbit/s Recommendations V.6 and X.1 00100 - 3.6 kbit/s Recommendation V.6 00101 - 4.8 kbit/s Recommendations V.6 and X.1 00110 - 7.2 kbit/s RecommendationV.6
Userrate 900B 5 BITS User Rate Reference: ITU Recommendation Q.931 (1998) Bits 5 4 3 2 1 00000 - Rate is indicated by E-bits specified in Recommendation I.460 or may be negotiated in-band 00001 - 0.6 kbit/s Recommendations V.6 and X.1 00010 - 1.2 kbit/s Recommendation V.6 00011 - 2.4 kbit/s Recommendations V.6 and X.1 00100 - 3.6 kbit/s Recommendation V.6 00101 - 4.8 kbit/s Recommendations V.6 and X.1 00110 - 7.2 kbit/s RecommendationV.6
00111 - 8 kbit/s Recommendation I.460 01000 - 9.6 kbit/s Recommendations V.6 and X.1 01001 - 14.4 kbit/s Recommendation V.6 01010 - 16 kbit/s Recommendation I.460 01011 - 19.2 kbit/s Recommendation V.6 01100 - 32 kbit/s Recommendation I.460 01101 - 38.4 kbit/s Recommendation V.110 01110 - 48 kbit/s Recommendations V.6 and X.1 01111 - 56 kbit/s Recommendation V.6 10010 - 57.6 kbit/s Recommendation V.14 extended 10011 - 28.8 kbit/s Recommendation V.110 10100 - 24 kbit/s Recommendation V.110 10101 - 0.1345 kbit/s Recommendation X.1 10110 - 0.100 kbit/s Recommendation X.1 10111 - 0.075/1.2 kbit/s Recommendations V.6 and X.1 11000 - 1.2/0.075 kbit/s Recommendations V.6 and X.1 11001 - 0.050 kbit/s Recommendations V.6 and X.1 11010 - 0.075 kbit/s Recommendations V.6 and X.1 11011 - 0.110 kbit/s Recommendations V.6 and X.1 11100 - 0.150 kbit/s Recommendations V.6 and X.1 11101 - 0.200 kbit/s Recommendations V.6 and X.1 11110 - 0.300 kbit/s Recommendations V.6 and X.1 11111 - 12 kbit/s Recommendation V.6 All other values are reserved.
00111-8 kbit/s建议I.460 01000-9.6 kbit/s建议V.6和X.1 01001-14.4 kbit/s建议V.6 01010-16 kbit/s建议I.460 01011-19.2 kbit/s建议V.6 01100-32 kbit/s建议I.460 01101-38.4 kbit/s建议V.110 01110-48 kbit/s建议V.6和X.1 01111-56 kbit/s建议V.6 10010-57.6 kbit/s建议V.14扩展10011-28.8 kbit/s建议V.110 10100-24 kbit/s建议V.110 10101-0.1345 kbit/s建议X.1 10110-0.100 kbit/s建议X.1 10111-0.075/1.2 kbit/s建议V.6和X.1 11000-1.2/0.075 kbit/s建议V.6和X.1 11001-0.050kbit/s建议V.6和X.1 11010-0.075 kbit/s建议V.6和X.1 11011-0.110 kbit/s建议V.6和X.1 11100-0.150 kbit/s建议V.6和X.1 11101-0.200 kbit/s建议V.6和X.1 11110-0.300 kbit/s建议V.6和X.1 11111-12 kbit/s建议V.6保留所有其他值。
INTRATE 900C 2 BITS Intermediate Rate Reference: ITU Recommendation Q.931 (1998) Bit 2 1 00 - Not used 01 - 8 kbit/s 10 - 16 kbit/s 11 - 32 kbit/s
INTRATE 900C 2比特中间速率参考:ITU建议Q.931(1998)比特2 1 00-未使用01-8 kbit/s 10-16 kbit/s 11-32 kbit/s
nictx 900D BOOLEAN Network Independent Clock (NIC) on transmission Reference: ITU Recommendation Q.931 (1998) 0 - Not required to send data with network independent clock 1 - Required to send data with network independent clock nicrx 900E BOOLEAN Network independent clock (NIC) on reception Reference: ITU Recommendation Q.931 (1998) 0 - Cannot accept data with network independent clock (i.e. sender does not support this optional procedure) 1 - Can accept data with network independent clock (i.e. sender does support this optional procedure)
nictx 900D布尔网络独立时钟(NIC)传输参考:ITU建议Q.931(1998)0-不需要使用网络独立时钟1发送数据-需要使用网络独立时钟nicrx 900E布尔网络独立时钟(NIC)发送数据接收参考:ITU建议Q.931(1998)0-无法接受具有网络独立时钟的数据(即发送方不支持此可选过程)1-可以接受具有网络独立时钟的数据(即发送方不支持此可选过程)
flowconttx 900F BOOLEAN Flow Control on transmission (Tx) Reference: ITU Recommendation Q.931 (1998) 0 - Not required to send data with flow control mechanism 1 - Required to send data with flow control mechanism
flowconttx 900F传输上的布尔流控制(Tx)参考:ITU建议Q.931(1998)0-不需要使用流控制机制1发送数据-需要使用流控制机制发送数据
flowcontrx 9010 BOOLEAN Flow control on reception (Rx) Reference: ITU Recommendation Q.931 (1998) 0 - Cannot accept data with flow control mechanism (i.e. sender does not support this optional procedure) 1 - Can accept data with flow control mechanism (i.e. sender does support this optional procedure)
flowcontrx 9010接收时的布尔流控制(Rx)参考:ITU建议Q.931(1998)0-无法使用流控制机制接受数据(即发送方不支持此可选过程)1-可以使用流控制机制接受数据(即发送方不支持此可选过程)
rateadapthdr 9011 BOOLEAN Rate adaption header/no header Reference: ITU Recommendation Q.931 (1998) 0 - Rate adaption header not included 1 - Rate adaption header included
rateadapthdr 9011布尔速率自适应报头/无报头参考:ITU建议Q.931(1998)0-不包括速率自适应报头1-包括速率自适应报头
multiframe 9012 BOOLEAN Multiple frame establishment support in data link Reference: ITU Recommendation Q.931 (1998) 0 - Multiple frame establishment not supported. Only UI frames allowed. 1 - Multiple frame establishment supported
数据链路中的多帧9012布尔多帧建立支持参考:ITU建议Q.931(1998)0-不支持多帧建立。只允许用户界面框架。1-支持多帧建立
OPMODE 9013 BOOLEAN Mode of operation Reference: ITU Recommendation Q.931 (1998) 0 Bit transparent mode of operation 1 Protocol sensitive mode of operation
OPMODE 9013布尔操作模式参考:ITU建议Q.931(1998)0位透明操作模式1协议敏感操作模式
llidnegot 9014 BOOLEAN Logical link identifier negotiation Reference: ITU Recommendation Q.931 (1998) 0 Default, LLI = 256 only 1 Full protocol negotiation
llidnegot 9014布尔逻辑链路标识符协商参考:ITU建议Q.931(1998)0默认值,LLI=256仅1个完整协议协商
assign 9015 BOOLEAN Assignor/assignee Reference: ITU Recommendation Q.931 (1998) 0 Message originator is "Default assignee" 1 Message originator is "Assignor only"
assign 9015布尔赋值人/受让人参考:国际电联建议Q.931(1998)0电文发起者为“默认受让人”1电文发起者为“仅转让人”
inbandneg 9016 BOOLEAN In-band/out-band negotiation Reference: ITU Recommendation Q.931 (1998)
inbandneg 9016布尔带内/带外协商参考:ITU建议Q.931(1998)
0- Negotiation is done with USER INFORMATION messages on a temporary signalling connection 1- Negotiation is done in-band using logical link zero
0-使用临时信令连接上的用户信息消息进行协商1-使用逻辑链路0在频带内进行协商
stopbits 9017 2 BITS Number of stop bits Reference: ITU Recommendation Q.931 (1998) Bits 2 1 00 - Not used 01 - 1 bit 10 - 1.5 bits 11 - 2 bits
停止位9017 2位停止位参考:ITU建议Q.931(1998)位2 1 00-未使用01-1位10-1.5位11-2位
databits 9018 2 BIT Number of data bits excluding parity Bit if present Reference: ITU Recommendation Q.931 (1998) Bit 2 1 00 - Not used 01 - 5 bits 10 - 7 bits 11 - 8 bits
数据位9018 2位数据位数,不包括奇偶校验位参考:ITU建议Q.931(1998)位2 1 00-未使用01-5位10-7位11-8位
parity 9019 3 BIT Parity information Reference: ITU Recommendation Q.931 (1998) Bit 3 2 1 000 - Odd 010 - Even 011 -None 100 - Forced to 0 101 - Forced to 1 All other values are reserved.
奇偶校验9019 3位奇偶校验信息参考:ITU建议Q.931(1998)比特3 2 1 000-奇数010-偶数011-无100-强制为0 101-强制为1所有其他值均保留。
duplexmode 901A BOOLEAN Mode duplex Reference: ITU Recommendation Q.931 (1998) 0 - Half duplex 1 - Full duplex
双工模式901A布尔模式双工参考:ITU建议Q.931(1998)0-半双工1-全双工
modem 901B 6 BIT Modem Type Reference: ITU Recommendation Q.931 (1998) Bits 6 5 4 3 2 1 00000 through 000101 National Use 010001 - Recommendation V.21 010010 - Recommendation V.22 010011 - Recommendation V.22 bis 010100 - Recommendation V.23 010101 - Recommendation V.26 011001 - Recommendation V.26 bis 010111 -Recommendation V.26 ter
调制解调器901B 6位调制解调器类型参考:国际电联建议Q.931(1998)比特6 5 4 3 2 1 00000至000101国家使用010001-建议V.21 010010-建议V.22 010011-建议V.22 bis 010100-建议V.23 010101-建议V.26 011001-建议V.26 bis 010111-建议V.26之三
011000 - RecommendationV.27 011001 - Recommendation V.27 bis 011010 - Recommendation V.27 ter 011011 - Recommendation V.29 011101 - Recommendation V.32 011110 - Recommendation V.34 100000 through 101111 National Use 110000 through 111111 User Specified
011000-建议V.27 011001-建议V.27之二011010-建议V.27之三01101101101-建议V.29 011101-建议V.32 011110-建议V.34 100000至101111国家使用110000至111111用户指定
layer2prot 901C 5 BIT User information layer 2 protocol Reference: ITU Recommendation Q.931 (1998) Bit 5 4 3 2 1 00010 - Recommendation Q.921/I.441 [3] 00110 - Recommendation X.25 [5], link layer 01100 - LAN logical link control (ISO/IEC 8802-2) All other values are reserved.
layer2prot 901C 5位用户信息第2层协议参考:ITU建议Q.931(1998)BIT 5 4 3 2 1 00010-建议Q.921/I.441[3]00110-建议X.25[5],链路层01100-LAN逻辑链路控制(ISO/IEC 8802-2)。保留所有其他值。
layer3prot 901D 5 BIT User information layer 3 protocol Reference: ITU Recommendation Q.931 (1998) Bit 5 4 3 2 1 00010 - Recommendation Q.931/I.451 00110 - Recommendation X.25, packet layer 01011 - ISO/IEC TR 9577 (Protocol identification in the network layer) All other values are reserved.
layer3prot 901D 5位用户信息第3层协议参考:ITU建议Q.931(1998)BIT 5 4 3 2 1 00010-建议Q.931/I.451 00110-建议X.25,数据包层01011-ISO/IEC TR 9577(网络层中的协议标识)保留所有其他值。
addlayer3prot 901E OCTET Additional User Information layer 3 protocol Reference: ITU Recommendation Q.931 (1998)
addlayer3prot 901E八位字节附加用户信息第3层协议参考:ITU建议Q.931(1998)
Bits 4321 4321 1100 1100 - Internet Protocol (RFC 791) (ISO/IEC TR 9577) 1100 1111 - Point-to-point Protocol (RFC 1548)
比特4321 4321 1100 1100-互联网协议(RFC 791)(ISO/IEC TR 9577)1100 1111-点对点协议(RFC 1548)
DialledN 901F 30 OCTETS Dialled Number DiallingN 9020 30 OCTETS Dialling Number
拨号N 901F 30八位字节拨号号码拨号N 9020 30八位字节拨号号码
ECHOCI 9021 Enumeration Echo Control Information echo canceler off (0), incoming echo canceler on (1), outgoing echo canceler on (2), incoming and outgoing echo canceler on (3)
ECHOCI 9021枚举回声控制信息回声消除器关闭(0),传入回声消除器打开(1),传出回声消除器打开(2),传入和传出回声消除器打开(3)
NCI 9022 1 OCTET Nature of Connection Indicators Reference: ITU Recommendation Q.763
NCI 9022 1连接指示器的八位字节性质参考:ITU建议Q.763
Bits 8 7 6 5 4 3 2 1 Bits 2 1 Satellite Indicator 0 0 no satellite circuit in the connection 0 1 one satellite circuit in the connection 1 0 two satellite circuits in the connection 1 1 spare
位8 7 6 5 4 3 2 1位2 1卫星指示器0 0连接中无卫星电路0 1连接中有一个卫星电路1 0连接中有两个卫星电路1备用
Bits 4 3 Continuity check indicator 0 0 continuity check not required 0 1 continuity check required on this circuit 1 0 continuity check performed on a previous circuit 1 1 spare
位4 3导通性检查指示器0 0不需要导通性检查0 1需要对该电路进行导通性检查1 0对以前的电路1进行导通性检查1
Bits 5 Echo control device indicator 0 outgoing echo control device not included 1 outgoing echo control device included
位5回波控制装置指示器0未包括输出回波控制装置1包括输出回波控制装置
Bits 8 7 6 Spare
位8 7 6备用
PropertyID Property Type Value Tag
PropertyID属性类型值标记
FMSDU A001 32 bit integer Forward Maximum CPCS-SDU Size: Reference: ITU Recommendation Q.2931 (1995) Maximum CPCS-SDU size sent in the direction from the calling user to the called user.
FMSDU A001 32位整数前向最大CPCS-SDU大小:参考:ITU建议Q.2931(1995)从主叫用户向被叫用户发送的最大CPCS-SDU大小。
BMSDU A002 32 bit integer Backwards Maximum CPCS-SDU Size Reference: ITU Recommendation Q.2931 (1995) Maximum CPCS-SDU size sent in the direction from the called user to the calling user.
BMSDU A002 32位整数向后最大CPCS-SDU大小参考:ITU建议Q.2931(1995)从被叫用户向主叫用户发送的最大CPCS-SDU大小。
SSCS See See table C.7 See table C.7 table C.7 Additional values: VPI/VCI
SSC见表C.7见表C.7表C.7附加值:VPI/VCI
SC See See Table C.4 See table C.4 Table C.4
SC见表C.4见表C.4表C.4
PropertyID Property Type Value Tag
PropertyID属性类型值标记
SDP_V B001 STRING Protocol Version
SDP_V B001字符串协议版本
SDP_O B002 STRING Owner/creator and session ID
SDP_O B002字符串所有者/创建者和会话ID
SDP_S B003 STRING Sesson name
SDP_S B003字符串Sesson名称
SDP_I B004 STRING Session identifier
SDP_I B004字符串会话标识符
SDP_U B005 STRING URI of descriptor
描述符的SDP_B005字符串URI
SDC_E B006 STRING email address
SDC_E B006字符串电子邮件地址
SDP_P B007 STRING phone number
SDP_P B007字符串电话号码
SDP_C B008 STRING Connection information
SDP_C B008字符串连接信息
SDP_B B009 STRING Bandwidth Information
SDP_B B009字符串带宽信息
SDP_Z B00A STRING time zone adjustment
SDP_Z B00A字符串时区调整
SDP_K B00B STRING Encryption Key
SDP_K B00B字符串加密密钥
SDP_A B00C STRING Zero or more session attributes
SDP_A B00C字符串零个或多个会话属性
SDP_T B00D STRING Active Session Time
SDP_T B00D字符串活动会话时间
SDP_R B00E STRING Zero or more repeat times
SDP_R B00E字符串零次或多次重复
Reference in all cases: IETF RFC2327, "Session Description Protocol"
所有情况下的参考:IETF RFC2327,“会话描述协议”
PropertyID Property Type Value Tag OLC C001 octet string The value of H.245 OpenLogicalChannel structure.
PropertyID属性类型值标记OLC C001八位字符串H.245 OpenLogicalChannel结构的值。
OLCack C002 octet string The value of H.245 OpenLogicalChannelAck structure. OLCcnf C003 octet string The value of H.245 OpenLogicalChannelConfirm structure. OLCrej C004 octet string The value of H.245 OpenLogicalChannelReject structure. CLC C005 octet string The value of H.245 CloseLogicalChannel structure. CLCack C006 octet string The value of H.245 CloseLogicalChannelAck structure. Reference in all cases: ITU-T Recommendation H.245
OLCack C002八位字符串H.245 OpenLogicalChannel结构的值。OLCcnf C003八位字符串H.245 OpenLogicalChannel结构的值。OLCrej C004八位字符串H.245 OpenLogicalChannel拒绝结构的值。CLC C005八位字节字符串H.245 CloseLogicalChannel结构的值。CLCack C006八位字节字符串H.245 CloseLogicalChannelAck结构的值。所有情况下的参考:ITU-T建议H.245
ANNEX D TRANSPORT OVER IP (NORMATIVE)
附录D IP传输(规范性)
Protocol messages defined in this document may be transmitted over UDP. When no port is provided by the peer (see section 7.2.8), commands should be sent to the default port number, 2944 for text-encoded operation or 2945 for binary-encoded operation. Responses must be sent to the address and port from which the corresponding commands were sent except if the response is to a handoff or failover, in which case the procedures of 11.5 apply.
本文件中定义的协议消息可通过UDP传输。当对等方未提供任何端口时(参见第7.2.8节),应将命令发送至默认端口号,2944用于文本编码操作,2945用于二进制编码操作。响应必须发送到发送相应命令的地址和端口,除非响应是切换或故障切换,在这种情况下,11.5中的程序适用。
Implementors using IP/UDP with ALF should be aware of the restrictions of the MTU on the maximum message size.
在ALF中使用IP/UDP的实现者应该知道MTU对最大消息大小的限制。
Messages, being carried over UDP, may be subject to losses. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times. The transmission procedures shall thus provide an "At-Most-Once" functionality.
通过UDP传输的消息可能会丢失。在没有及时响应的情况下,命令会重复执行。大多数命令不是幂等的。例如,如果多次执行Add命令,MG的状态将变得不可预测。因此,传输程序应提供“最多一次”功能。
Peer protocol entities are expected to keep in memory a list of the responses that they sent to recent transactions and a list of the transactions that are currently outstanding. The transaction identifier of each incoming message is compared to the transaction identifiers of the recent responses sent to the same MId. If a match is found, the entity does not execute the transaction, but simply repeats the response. If no match is found, the message will be
对等协议实体需要在内存中保存它们发送给最近事务的响应列表和当前未完成的事务列表。将每个传入消息的事务标识符与发送到同一MId的最近响应的事务标识符进行比较。如果找到匹配项,则实体不执行事务,而只是重复响应。如果未找到匹配项,则消息将被删除
compared to the list of currently outstanding transactions. If a match is found in that list, indicating a duplicate transaction, the entity does not execute the transaction (see section 8.2.3 for procedures on sending TransactionPending).
与当前未结交易清单相比。如果在该列表中找到匹配项,表明存在重复交易,则该实体不会执行该交易(有关发送TransactionPending的程序,请参阅第8.2.3节)。
The procedure uses a long timer value, noted LONG-TIMER in the following. The timer should be set larger than the maximum duration of a transaction, which should take into account the maximum number of repetitions, the maximum value of the repetition timer and the maximum propagation delay of a packet in the network. A suggested value is 30 seconds.
该过程使用长定时器值,如下所示为长定时器。计时器的设置应大于事务的最大持续时间,这应考虑最大重复次数、重复计时器的最大值以及网络中数据包的最大传播延迟。建议值为30秒。
The copy of the responses may be destroyed either LONG-TIMER seconds after the response is issued, or when the entity receives a confirmation that the response has been received, through the "Response Acknowledgement parameter". For transactions that are acknowledged through this parameter, the entity shall keep a copy of the transaction-id for LONG-TIMER seconds after the response is issued, in order to detect and ignore duplicate copies of the transaction request that could be produced by the network.
响应的副本可以在响应发出后的长时间秒内销毁,或者在实体通过“响应确认参数”接收到已收到响应的确认时销毁。对于通过此参数确认的交易,实体应在响应发出后长时间保留交易id副本,以便检测和忽略网络可能产生的交易请求副本。
Transaction identifiers are 32 bit integer numbers. A Media Gateway Controller may decide to use a specific number space for each of the MGs that they manage, or to use the same number space for all MGs that belong to some arbitrary group. MGCs may decide to share the load of managing a large MG between several independent processes. These processes will share the same transaction number space. There are multiple possible implementations of this sharing, such as having a centralized allocation of transaction identifiers, or pre-allocating non-overlapping ranges of identifiers to different processes. The implementations shall guarantee that unique transaction identifiers are allocated to all transactions that originate from a logical MGC (identical mId). MGs can simply detect duplicate transactions by looking at the transaction identifier and mId only.
事务标识符是32位整数。媒体网关控制器可以决定为其管理的每个MG使用特定的数字空间,或者为属于某个任意组的所有MG使用相同的数字空间。MGC可能决定在多个独立进程之间分担管理大型MG的任务。这些进程将共享相同的事务编号空间。这种共享有多种可能的实现,例如事务标识符的集中分配,或者将不重叠的标识符范围预分配给不同的进程。实现应保证将唯一事务标识符分配给源自逻辑MGC(相同mId)的所有事务。MGs只需查看事务标识符和mId即可检测重复事务。
The TransactionResponse Acknowledgement parameter can be found in any message. It carries a set of "confirmed transaction-id ranges". Entities may choose to delete the copies of the responses to transactions whose id is included in "confirmed transaction-id
TransactionResponse确认参数可以在任何消息中找到。它携带一组“已确认的交易id范围”。实体可选择删除id包含在“确认交易id”中的交易响应副本
ranges" received in the transaction response messages. They should silently discard further commands when the transaction-id falls within these ranges.
在事务响应消息中接收到“范围”。当事务id在这些范围内时,它们应自动放弃进一步的命令。
The "confirmed transaction-id ranges" values shall not be used if more than LONG-TIMER seconds have elapsed since the MG issued its last response to that MGC, or when a MG resumes operation. In this situation, transactions should be accepted and processed, without any test on the transaction-id.
如果MG向该MGC发出最后一次响应后已超过长定时器秒,或MG恢复运行时,不得使用“确认交易id范围”值。在这种情况下,应该接受和处理事务,而不对事务id进行任何测试。
Messages that carry the "Transaction Response Acknowledgement" parameter may be transmitted in any order. The entity shall retain the "confirmed transaction-id ranges" receivedfor LONG-TIMER seconds.
携带“事务响应确认”参数的消息可以以任何顺序传输。实体应将收到的“确认交易id范围”保留为长时间秒。
In the binary encoding, if only the firstAck is present in a response acknowledgement (see Annex A.2), only one transaction is acknowledged. If both firstAck and lastAck are present, then the range of transactions from firstAck to lastAck is acknowledged. In the text encoding, a horizontal dash is used to indicate a range of transactions being acknowledged (see Annex B.2).
在二进制编码中,如果响应确认(见附录a.2)中仅存在第一个ACK,则仅确认一个事务。如果firstAck和lastAck都存在,则确认从firstAck到lastAck的事务范围。在文本编码中,水平破折号用于表示确认的交易范围(见附录B.2)。
It is the responsibility of the requesting entity to provide suitable time outs for all outstanding transactions, and to retry transactions when time outs have been exceeded. Furthermore, when repeated transactions fail to be acknowledged, it is the responsibility of the requesting entity to seek redundant services and/or clear existing or pending connections.
请求实体有责任为所有未完成的事务提供适当的超时,并在超过超时时重试事务。此外,当重复交易无法确认时,请求实体有责任寻求冗余服务和/或清除现有或未决连接。
The specification purposely avoids specifying any value for the retransmission timers. These values are typically network dependent. The retransmission timers should normally estimate the timer value by measuring the time spent between the sending of a command and the return of a response.
该规范有意避免为重传定时器指定任何值。这些值通常依赖于网络。重传计时器通常应通过测量发送命令和返回响应之间的时间来估计计时器值。
Note - One possibility is to use the algorithm implemented in TCP-IP, which uses two variables:
注-一种可能性是使用TCP-IP中实现的算法,该算法使用两个变量:
. The average acknowledgement delay, AAD, estimated through an exponentially smoothed average of the observed delays.
. 平均确认延迟AAD通过观察到的延迟的指数平滑平均值进行估计。
. The average deviation, ADEV, estimated through an exponentially smoothed average of the absolute value of the difference between the observed delay and the current average. The retransmission timer, in TCP, is set to the sum of the average delay plus N times the average deviation. The maximum value of the timer should however be bounded for the protocol defined in this
. 平均偏差ADEV,通过观察到的延迟与当前平均值之差的绝对值的指数平滑平均值进行估计。TCP中的重传计时器设置为平均延迟加上N倍平均偏差之和。但是,计时器的最大值应为本节中定义的协议所限定
document, in order to guarantee that no repeated packet would be received by the gateways after LONG-TIMER seconds. A suggested maximum value is 4 seconds.
文档,以确保网关在长时间计时后不会接收到重复的数据包。建议的最大值为4秒。
After any retransmission, the entity should do the following:
在任何重新传输后,实体应执行以下操作:
. It should double the estimated value of the average delay, AAD
. 它应该是平均延迟AAD估计值的两倍
. It should compute a random value, uniformly distributed between 0.5 AAD and AAD
. 它应该计算一个随机值,均匀分布在0.5 AAD和AAD之间
. It should set the retransmission timer to the sum of that random value and N times the average deviation.
. 它应该将重传计时器设置为该随机值和N倍平均偏差之和。
This procedure has two effects. Because it includes an exponentially increasing component, it will automatically slow down the stream of messages in case of congestion. Because it includes a random component, it will break the potential synchronization between notifications triggered by the same external event.
这个过程有两个效果。因为它包含了一个指数级增长的组件,它会在拥塞情况下自动降低消息流的速度。因为它包含一个随机组件,它将破坏由同一外部事件触发的通知之间的潜在同步。
Executing some transactions may require a long time. Long execution times may interact with the timer based retransmission procedure. This may result either in an inordinate number of retransmissions, or in timer values that become too long to be efficient. Entities that can predict that a transaction will require a long execution time may send a provisional response, "Transaction Pending".
执行某些事务可能需要很长时间。长执行时间可能与基于计时器的重传过程相互作用。这可能导致重新传输的次数过多,或者导致计时器值变得太长而无法发挥效率。能够预测事务将需要较长执行时间的实体可以发送临时响应“transaction Pending”。
Entities that receive a Transaction Pending shall switch to a different repetition timer for repeating requests. The root termination has a property (ProvisionalResponseTimerValue), which can be set to the requested maximum number of milliseconds between receipt of a command and transmission of the TransactionPending response. Upon receipt of a final response, an immediate confirmation shall be sent, and normal repetition timers shall be used thereafter. Receipt of a Transaction Pending after receipt of a reply shall be ignored.
接收待处理事务的实体应切换到不同的重复计时器以重复请求。根终止具有一个属性(临时ResponseTimerValue),可以将该属性设置为从接收命令到传输TransactionPending响应之间请求的最大毫秒数。收到最终回复后,应立即发送确认,随后应使用正常的重复计时器。在收到回复后,应忽略待处理交易的接收。
The protocol is organized as a set of transactions, each of which is composed request and a response, commonly referred to as an acknowledgement. The protocol messages, being carried over UDP, may be subject to losses. In the absence of a timely response, transactions are repeated. Entities are expected to keep in memory a
协议被组织为一组事务,每个事务由请求和响应组成,通常称为确认。通过UDP传输的协议消息可能会丢失。在没有及时响应的情况下,交易会重复进行。实体应保存在内存中
list of the responses that they sent to recent transactions, i.e. a list of all the responses they sent over the last LONG-TIMER seconds, and a list of the transactions that are currently being executed.
他们发送给最近事务的响应列表,即他们在过去长时间内发送的所有响应的列表,以及当前正在执行的事务的列表。
The repetition mechanism is used to guard against three types of possible errors:
重复机制用于防止三种可能的错误:
. transmission errors, when for example a packet is lost due to noise on a line or congestion in a queue; . component failure, when for example an interface to a entity becomes unavailable; . entity failure, when for example an entire entity become unavailable.
. transmission errors, when for example a packet is lost due to noise on a line or congestion in a queue; . component failure, when for example an interface to a entity becomes unavailable; . entity failure, when for example an entire entity become unavailable.
The entities should be able to derive from the past history an estimate of the packet loss rate due to transmission errors. In a properly configured system, this loss rate should be kept very low, typically less than 1%. If a Media Gateway Controller or a Media Gateway has to repeat a message more than a few times, it is very legitimate to assume that something else than a transmission error is occurring. For example, given a loss rate of 1%, the probability that five consecutive transmission attempts fail is 1 in 100 billion, an event that should occur less than once every 10 days for a Media Gateway Controller that processes 1 000 transactions per second. (Indeed, the number of repetition that is considered excessive should be a function of the prevailing packet loss rate.) We should note that the "suspicion threshold", which we will call "Max1", is normally lower than the "disconnection threshold", which should be set to a larger value.
这些实体应该能够从过去的历史中得出由于传输错误导致的分组丢失率的估计值。在正确配置的系统中,此丢失率应保持非常低,通常小于1%。如果媒体网关控制器或媒体网关必须重复一条消息多次,则可以假设发生了传输错误以外的其他错误。例如,如果丢失率为1%,则五次连续传输尝试失败的概率为1000亿分之一,对于每秒处理1000个事务的媒体网关控制器,该事件应不到每10天发生一次。(事实上,被认为过多的重复次数应该是当前数据包丢失率的函数。)我们应该注意到,我们称之为“Max1”的“怀疑阈值”通常低于“断开阈值”,而“断开阈值”应该设置为更大的值。
A classic retransmission algorithm would simply count the number of successive repetitions, and conclude that the association is broken after retransmitting the packet an excessive number of times (typically between 7 and 11 times.) In order to account for the possibility of an undetected or in-progress "failover", we modify the classic algorithm so that if the Media Gateway receives a valid ServiceChange message announcing a failover, it will start transmitting outstanding commands to that new MGC. Responses to commands are still transmitted to the source address of the command.
经典的重传算法只需计算连续重复的次数,并得出结论,在重传数据包的次数过多(通常在7到11次之间)后,关联被破坏,以考虑未检测到或正在进行的“故障转移”的可能性,我们修改了经典算法,这样,如果媒体网关接收到宣布故障转移的有效ServiceChange消息,它将开始向新的MGC发送未完成的命令。对命令的响应仍然传输到命令的源地址。
In order to automatically adapt to network load, this document specifies exponentially increasing timers. If the initial timer is set to 200 milliseconds, the loss of a fifth retransmission will be detected after about 6 seconds. This is probably an acceptable waiting delay to detect a failover. The repetitions should continue after that delay not only in order to perhaps overcome a transient
为了自动适应网络负载,本文档指定了指数增长的计时器。如果初始计时器设置为200毫秒,则在大约6秒后将检测到第五次重新传输的丢失。这可能是检测故障转移的可接受等待延迟。在延迟之后,重复应该继续进行,而不仅仅是为了克服一个短暂的问题
connectivity problem, but also in order to allow some more time for the execution of a failover - waiting a total delay of 30 seconds is probably acceptable.
连接问题,但也是为了允许更多的时间执行故障切换-等待30秒的总延迟可能是可以接受的。
It is, however, important that the maximum delay of retransmissions be bounded. Prior to any retransmission, it is checked that the time elapsed since the sending of the initial datagram is no greater than T-MAX. If more than T-MAX time has elapsed, the MG concludes that the MGC has failed, and it begins its recovery process. When the MG establishes a new control association, it can retransmit to the new MGC. Alternatively, a MG may use a ServiceChange with ServiceChangeMethod equal to disconnected to inform the new MGC that the MG lost one or more transactions. The value T-MAX is related to the LONG-TIMER value: the LONG-TIMER value is obtained by adding to T-MAX the maximum propagation delay in the network.
然而,重要的是,重传的最大延迟是有界的。在任何重传之前,检查初始数据报发送后经过的时间是否不超过T-MAX。如果超过T-MAX时间,则MG得出MGC失败的结论,并开始其恢复过程。当MG建立一个新的控制关联时,它可以重新传输给新的MGC。或者,MG可以使用ServiceChangeMethod等于disconnected的ServiceChange通知新MGC MG丢失了一个或多个事务。值T-MAX与长定时器值相关:长定时器值是通过将网络中的最大传播延迟添加到T-MAX中获得的。
Protocol messages as defined in this document may be transmitted over TCP. When no port is specified by the other side (see section 7.2.8), the commands should be sent to the default port. The defined protocol has messages as the unit of transfer, while TCP is a stream-oriented protocol. TPKT, according to RFC1006 SHALL be used to delineate messages within the TCP stream.
本文件中定义的协议消息可通过TCP传输。当另一方未指定端口时(见第7.2.8节),应将命令发送至默认端口。定义的协议将消息作为传输单元,而TCP是面向流的协议。根据RFC1006,TPKT应用于描述TCP流中的消息。
In a transaction-oriented protocol, there are still ways for transaction requests or responses to be lost. As such, it is recommended that entities using TCP transport implement application level timers for each request and each response, similar to those specified for application level framing over UDP.
在面向事务的协议中,仍然存在丢失事务请求或响应的方法。因此,建议使用TCP传输的实体为每个请求和每个响应实现应用程序级计时器,类似于为UDP上的应用程序级帧指定的计时器。
Messages, being carried over TCP, are not subject to transport losses, but loss of a transaction request or its reply may nonetheless be noted in real implementations. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times.
通过TCP传输的消息不会受到传输丢失的影响,但在实际实现中可能会注意到事务请求或其回复的丢失。在没有及时响应的情况下,命令会重复执行。大多数命令不是幂等的。例如,如果多次执行Add命令,MG的状态将变得不可预测。
To guard against such losses, it is recommended that entities follow the procedures in section D.1.1
为防止此类损失,建议实体遵守第D.1.1节中的程序
For the same reasons, it is possible that transaction replies may be lost even with a reliable delivery protocol such as TCP. It is recommended that entities follow the procedures in section D.1.2.2.
出于同样的原因,即使使用可靠的传递协议(如TCP),事务回复也可能丢失。建议实体遵循第D.1.2.2节中的程序。
With reliable delivery, the incidence of loss of a transaction request or reply is expected to be very low. Therefore, only simple timer mechanisms are required. Exponential back-off algorithms should not be necessary, although they could be employed where, as in an MGC, the code to do so is already required, since MGCs must implement ALF/UDP as well as TCP.
在可靠交付的情况下,交易请求或回复丢失的发生率预计将非常低。因此,只需要简单的计时器机制。指数退避算法应该是不必要的,尽管它们可以在MGC中已经需要代码的地方使用,因为MGC必须实现ALF/UDP以及TCP。
As with UDP, executing some transactions may require a long time. Entities that can predict that a transaction will require a long execution time may send a provisional response, "Transaction Pending". They should send this response if they receive a repetition of a transaction that is still being executed.
与UDP一样,执行某些事务可能需要很长时间。能够预测事务将需要较长执行时间的实体可以发送临时响应“transaction Pending”。如果接收到仍在执行的事务的重复,则应发送此响应。
Entities that receive a Transaction Pending shall switch to a longer repetition timer for that transaction.
接收待决事务的实体应切换到该事务的较长重复计时器。
Entities shall retain Transactions and replies until they are confirmed. The basic procedure of section D.1.4 should be followed, but simple timer values should be sufficient. There is no need to send an immediate confirmation upon receipt of a final response.
实体应保留交易和回复,直至确认。应遵循第D.1.4节的基本程序,但简单的计时器值应足够。无需在收到最终回复后立即发送确认。
TCP provides ordered delivery of transactions. No special procedures are required. It should be noted that ALF/UDP allows sending entity to modify its behavior under congestion, and in particular, could reorder transactions when congestion is encountered. TCP could not achieve the same results.
TCP提供事务的有序传递。不需要特别程序。应该注意的是,ALF/UDP允许发送实体在拥塞情况下修改其行为,特别是在遇到拥塞时可以重新排序事务。TCP无法实现相同的结果。
ANNEX E BASIC PACKAGES
附件E基本包
This Annex contains definitions of some packages for use with the Megaco protocol.
本附件包含Megaco协议使用的一些包的定义。
PackageID: g (0x000e) Version: 1 Extends: None
PackageID:g(0x000e)版本:1扩展:无
Description: Generic package for commonly encountered items.
描述:常见项目的通用包。
None
没有一个
Cause ----- EventID: cause (0x0001)
Cause ----- EventID: cause (0x0001)
Generic error event
一般错误事件
ObservedEvents Descriptor Parameters:
ObservedEvents描述符参数:
General Cause ------------- ParameterID: Generalcause (0x0001)
General Cause ------------- ParameterID: Generalcause (0x0001)
Description: This parameter groups the failures into six groups, which the MGC may act upon.
说明:此参数将故障分为六组,MGC可对其采取行动。
Possible values: Enumerated, "NR" Normal Release (0x0001) "UR" Unavailable Resources (0x0002) "FT" Failure, Temporary (0x0003) "FP" Failure, Permanent (0x0004) "IW" Interworking Error (0x0005) "UN" Unsupported (0x0006)
可能值:枚举,“NR”正常释放(0x0001)“UR”不可用资源(0x0002)“FT”故障、临时(0x0003)“FP”故障、永久(0x0004)“IW”互通错误(0x0005)“UN”不受支持(0x0006)
Failure Cause ------------- ParameterID: Failurecause (0x0002)
Failure Cause ------------- ParameterID: Failurecause (0x0002)
Description: The Release Cause is the value generated by the Released equipment, i.e. a released network connection. The concerned value is defined in the appropriate bearer control protocol.
说明:释放原因是释放的设备产生的值,即释放的网络连接。相关值在适当的承载控制协议中定义。
Possible Values: OCTET STRING
可能值:八进制字符串
Signal Completion ----------------- EventID: sc (0x0002)
Signal Completion ----------------- EventID: sc (0x0002)
Indicates termination of one or more signals for which the notifyCompletion parameter was set to "ON". For further procedural description, see sections 7.1.11, 7.1.17, and 7.2.7.
指示notifyCompletion参数设置为“ON”的一个或多个信号的终止。有关进一步的程序说明,请参见第7.1.11节、第7.1.17节和第7.2.7节。
ObservedEvents Descriptor parameters:
ObservedEvents描述符参数:
Signal Identity --------------- ParameterID: SigID (0x0001)
Signal Identity --------------- ParameterID: SigID (0x0001)
This parameter identifies the signals which have terminated.
此参数标识已终止的信号。
Type: list
类型:列表
Possible values: a list of signals and/or sequential signal lists which have terminated. A signal outside of a sequential signal list shall be identified using the pkgdName syntax without wildcarding. An individual signal inside of a sequential signal list shall be identified using the sequential signal list syntax with the correct signal list identifier, enclosing the name of the specific signal which terminated in pkgdName syntax.
可能值:已终止的信号列表和/或顺序信号列表。顺序信号列表之外的信号应使用pkgdName语法识别,无需通配符。序列信号列表中的单个信号应使用序列信号列表语法和正确的信号列表标识符进行识别,并附上以pkgdName语法终止的特定信号的名称。
Termination Method ------------------ ParameterID: Meth (0x0002)
Termination Method ------------------ ParameterID: Meth (0x0002)
Indicates the means by which the signal terminated.
指示信号终止的方式。
Type: enumeration
类型:枚举
Possible values: "TO" (0x0001) Duration expired "EV" (0x0002) Interrupted by event "SD" (0x0003) Halted by new Signals Descriptor "NC" (0x0004) Not completed, other cause
可能值:“至”(0x0001)持续时间已过期“EV”(0x0002)被事件“SD”(0x0003)中断,由新信号描述符“NC”(0x0004)停止,未完成,其他原因
None
没有一个
None
没有一个
Base Root Package PackageID: root (0x000f) Version: 1 Extends: None
基本根包PackageID:Root(0x000f)版本:1扩展:无
Description: This package defines Gateway wide properties.
描述:此包定义网关范围的属性。
MaxNrOfContexts --------------- PropertyID: maxNumberOfContexts (0x0001)
MaxNrOfContexts --------------- PropertyID: maxNumberOfContexts (0x0001)
The value of this property gives the maximum number of contexts that can exist at any time. The NULL context is not included in this number.
此属性的值提供了在任何时候都可以存在的最大上下文数。此数字中不包括空上下文。
Type: Double
类型:双
Possible values: 1 and up
可能值:1及以上
MaxTerminationsPerContext ------------------------- PropertyID: maxTerminationsPerContext (0x0002)
MaxTerminationsPerContext ------------------------- PropertyID: maxTerminationsPerContext (0x0002)
The maximum number of allowed terminations in a context, see section 6.1
上下文中允许的最大终止数,见第6.1节
Type: Integer
类型:整数
Possible Values: any integer
可能值:任意整数
Defined In: TerminationState
在中定义:TerminationState
normalMGExecutionTime --------------------- PropertyId: normalMGExecutionTime (0x0003)
normalMGExecutionTime --------------------- PropertyId: normalMGExecutionTime (0x0003)
Settable by the MGC to indicate the interval within which the MGC expects a response to any transaction from the MG (exclusive of network delay)
可由MGC设置,以指示MGC期望MG对任何事务做出响应的时间间隔(不包括网络延迟)
Type: Integer
类型:整数
Possible Values: any integer, represents milliseconds
可能值:任何整数,表示毫秒
normalMGCExecutionTime ---------------------- PropertyId: normalMGCExecutionTime (0x0004)
normalMGCExecutionTime ---------------------- PropertyId: normalMGCExecutionTime (0x0004)
Settable by the MGC to indicate the interval within which the MG should expects a response to any transaction from the MGC (exclusive of network delay)
可由MGC设置,以指示MG期望MGC对任何事务做出响应的时间间隔(不包括网络延迟)
Type: Integer
类型:整数
Possible Values: any integer, represents milliseconds
可能值:任何整数,表示毫秒
ProvisionalResponseTimerValue ----------------------------- PropertyId: ProvisionalResponseTimerValue (0x0005)
ProvisionalResponseTimerValue ----------------------------- PropertyId: ProvisionalResponseTimerValue (0x0005)
Indicates the time within which to expect a Pending Response if a Transaction cannot be completed. Initially set to normalMGExecutionTime or normalMGCExecutionTime as appropriate, plus network delay, but may be lowered.
指示在事务无法完成时预期挂起响应的时间。初始设置为normalMGExecutionTime或NormalMgceExecutionTime(视情况而定),加上网络延迟,但可能会降低。
None
没有一个
None
没有一个
None
没有一个
None
没有一个
PackageID: tonegen (0x0001) Version: 1 Extends: None
PackageID:tonegen(0x0001)版本:1扩展:无
Description: This package defines signals to generate audio tones. This package does not specify parameter values. It is intended to be extendable. Generally, tones are defined as an individual signal with a parameter, ind, representing "interdigit" time delay, and a tone id to be used with playtones. A tone id should be kept consistent with any tone generation for the same tone. MGs are expected to be provisioned with the characteristics of appropriate tones for the country in which the MG is located.
描述:此软件包定义用于生成音频音调的信号。此包不指定参数值。它是可扩展的。通常,音调被定义为具有参数ind(表示“交指”时间延迟)和音调id(用于播放音调)的单个信号。音调id应与同一音调的任何音调生成保持一致。MG应具有MG所在国家的适当音调特征。
None
没有一个
None
没有一个
Play tone --------- SignalID: pt (0x0001)
Play tone --------- SignalID: pt (0x0001)
Plays audio tone over an audio channel
通过音频通道播放音频音调
Signal Type: Brief
信号类型:简要
Duration: Provisioned
持续时间:已设置
Additional Parameters:
其他参数:
Tone id list ------------ ParameterID: tl (0x0001)
Tone id list ------------ ParameterID: tl (0x0001)
Type: list of tone ids.
类型:音调ID列表。
List of tones to be played in sequence. The list SHALL contain one or more tone ids.
按顺序播放的音调列表。该列表应包含一个或多个音调ID。
Inter signal duration --------------------- ParameterID: ind (0x0002)
Inter signal duration --------------------- ParameterID: ind (0x0002)
Type: integer.
类型:整数。
Timeout between two consecutive tones in milliseconds
两个连续音调之间的超时(毫秒)
No tone ids are specified in this package. Packages that extend this package can add possible values for tone id as well as adding individual tone signals.
此包中未指定音调ID。扩展此包的包可以为音调id添加可能的值,也可以添加单个音调信号。
None
没有一个
None
没有一个
PackageID: tonedet (0x0002) Version: 1 Extends: None
PackageID:tonedet(0x0002)版本:1扩展:无
This Package defines events for audio tone detection. Tones are selected by name (tone id). MGs are expected to be provisioned with the characteristics of appropriate tones for the country in which the MG is located.
此包定义音频音调检测的事件。按名称(音调id)选择音调。MG应具有MG所在国家的适当音调特征。
This package does not specify parameter values. It is intended to be extendable.
此包不指定参数值。它是可扩展的。
None
没有一个
Start tone detected ------------------- EventID: std, 0x0001
Start tone detected ------------------- EventID: std, 0x0001
Detects the start of a tone. The characteristics of positive tone detection is implementation dependent.
检测音调的开始。肯定音调检测的特性取决于实现。
EventsDescriptor parameters:
EventsDescriptor参数:
Tone id list ------------ ParameterID: tl (0x0001)
Tone id list ------------ ParameterID: tl (0x0001)
Type: list of tone ids
类型:音调ID列表
Possible values: The only tone id defined in this package is "wild card" which is "*" in text encoding and 0x0000 in binary. Extensions to this package would add possible values for tone id. If tl is "wild card", any tone id is detected.
可能值:此包中定义的唯一音调id是“通配符”,文本编码为“*”,二进制编码为0x0000。此包的扩展将为音调id添加可能的值。如果tl为“通配符”,则会检测到任何音调id。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Tone id -------- ParameterID: tid (0x0003)
Tone id -------- ParameterID: tid (0x0003)
Type: Enumeration
类型:枚举
Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add additional possible values for tone id.
可能的值:上面定义的“通配符”是此包中定义的唯一值。此包的扩展将为音调id添加其他可能的值。
End tone detected ----------------- EventID: etd, 0x0002
End tone detected ----------------- EventID: etd, 0x0002
Detects the end of a tone.
检测音调的结束。
EventDescriptor parameters:
EventDescriptor参数:
Tone id list ------------ ParameterID: tl (0x0001)
Tone id list ------------ ParameterID: tl (0x0001)
Type: enumeration or list of enumerated types
类型:枚举或枚举类型列表
Possible values: No possible values are specified in this package. Extensions to this package would add possible values for tone id.
可能值:此包中未指定可能值。此包的扩展将为音调id添加可能的值。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Tone id ------- ParameterID: tid (0x0003)
Tone id ------- ParameterID: tid (0x0003)
Type: Enumeration
类型:枚举
Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add possible values for tone id
可能的值:上面定义的“通配符”是此包中定义的唯一值。此包的扩展将为音调id添加可能的值
Duration -------- ParameterId: dur (0x0002)
Duration -------- ParameterId: dur (0x0002)
Type: integer, in milliseconds
类型:整数,以毫秒为单位
This parameter contains the duration of the tone from first detection until it stopped.
此参数包含从第一次检测到停止的音调持续时间。
Long tone detected ------------------ EventID: ltd, 0x0003
Long tone detected ------------------ EventID: ltd, 0x0003
Detects that a tone has been playing for at least a certain amount of time
检测音调已播放至少一段时间
EventDescriptor parameters:
EventDescriptor参数:
Tone id list ------------ ParameterID: tl (0x0001)
Tone id list ------------ ParameterID: tl (0x0001)
Type: enumeration or list
类型:枚举或列表
Possible values: "wildcard" as defined above is the only value defined in this package. Extensions to this package would add possible values for tone id
可能的值:上面定义的“通配符”是此包中定义的唯一值。此包的扩展将为音调id添加可能的值
Duration: --------- ParameterID: dur (0x0002)
Duration: --------- ParameterID: dur (0x0002)
Type: integer, duration to test against
类型:整数,测试的持续时间
Possible values: any legal integer, expressed in milliseconds.
可能值:任何合法整数,以毫秒为单位。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
Tone id ------- ParameterID: tid (0x0003)
Tone id ------- ParameterID: tid (0x0003)
Possible values: No possible values are specified in this package. Extensions to this package would add possible values for tone id.
可能值:此包中未指定可能值。此包的扩展将为音调id添加可能的值。
None
没有一个
None
没有一个
None
没有一个
PackageID: dg (0x0003) Version: 1 Extends: tonegen version 1
PackageID: dg (0x0003) Version: 1 Extends: tonegen version 1
This package defines the basic DTMF tones as signals and extends the allowed values of parameter tl of playtone in tonegen.
该软件包将基本DTMF音调定义为信号,并扩展了tonegen中playtone参数tl的允许值。
None
没有一个
None
没有一个
dtmf character 0 ---------------- SignalID: d0 (0x0010)
dtmf character 0 ---------------- SignalID: d0 (0x0010)
Generate DTMF 0 tone. The physical characteristic of DTMF 0 is defined in the gateway.
生成DTMF 0音。DTMF 0的物理特性在网关中定义。
Signal Type: Brief
信号类型:简要
Duration: Provisioned
持续时间:已设置
Additional Parameters:
其他参数:
None
没有一个
Additional Values: -----------------
Additional Values: -----------------
d0 (0x0010) is defined as a toneid for playtone.
d0(0x0010)定义为播放音调的音调ID。
The other dtmf characters are specified in exactly the same way. A table with all signal names and signal IDs is included. Note that each dtmf character is defined as both a signal and a toneid, thus extending the basic tone generation package. Also note that dtmf SignalIds are different from the names used in a digit map.
其他dtmf字符的指定方式完全相同。包括一个包含所有信号名称和信号ID的表。请注意,每个dtmf字符都定义为信号和音调ID,因此扩展了基本音调生成包。还要注意,dtmf信号ID与数字映射中使用的名称不同。
Signal Name Signal ID/tone id
信号名称信号ID/音调ID
dtmf character 0 d0 (0x0010) dtmf character 1 d1 (0x0011) dtmf character 2 d2 (0x0012) dtmf character 3 d3 (0x0013) dtmf character 4 d4 (0x0014) dtmf character 5 d5 (0x0015) dtmf character 6 d6 (0x0016) dtmf character 7 d7 (0x0017) dtmf character 8 d8 (0x0018) dtmf character 9 d9 (0x0019) dtmf character * ds (0x0020)
dtmf字符0D0(0x0010)dtmf字符1D1(0x0011)dtmf字符2D2(0x0012)dtmf字符3D3(0x0013)dtmf字符4D4(0x0014)dtmf字符5D5(0x0015)dtmf字符6D6(0x0016)dtmf字符7D7(0x0017)dtmf字符8D8(0x0018)dtmf字符9D9(0x0019)dtmf字符*ds(0x0020)
dtmf character # do (0x0021) dtmf character A da (0x001a) dtmf character B db (0x001b) dtmf character C dc (0x001c) dtmf character D dd (0x001d)
双音多频字符#do(0x0021)双音多频字符A da(0x001a)双音多频字符B db(0x001b)双音多频字符C dc(0x001c)双音多频字符D dd(0x001d)
None
没有一个
None
没有一个
PackageID: dd (0x0004) Version: 1 Extends: tonedet version 1
PackageID:dd(0x0004)版本:1扩展:tonedet版本1
This package defines the basic DTMF tones detection. This Package extends the possible values of tone id in the "start tone detected" "end tone detected" and "long tone detected" events.
此软件包定义基本DTMF音调检测。此包扩展了“检测到开始音调”、“检测到结束音调”和“检测到长音调”事件中音调id的可能值。
Additional tone id values are all tone ids described in package dg (basic DTMF generator package).
附加音调id值是dg包(基本DTMF发生器包)中描述的所有音调id。
The following table maps DTMF events to digit map symbols as described in section 7.1.14.
下表将DTMF事件映射为第7.1.14节所述的数字映射符号。
DTMF Event Symbol
DTMF事件符号
d0 "0" d1 "1" d2 "2" d3 "3" d4 "4" d5 "5" d6 "6" d7 "7" d8 "8" d9 "9" da "A" or "a"
d0“0”d1“1”d2“2”d3“3”d4“4”d5“5”d6“6”d7“7”d8“8”d9“9”da“A”或“A”
db "B" or "b" dc "C" or "c" dd "D" or "d" ds "E" or "e" do "F" or "f"
db“B”或“B”dc“C”或“C”dd“D”或“D”ds“E”或“E”do“F”或“F”
None
没有一个
DTMF digits -----------
DTMF digits -----------
EventIds are defined with the same names as the SignalIds defined in the table found in section E.5.3.
EventID的定义与第E.5.3节表格中定义的SignalID的名称相同。
DigitMap Completion Event ------------------------- EventID: ce, 0x0001
DigitMap Completion Event ------------------------- EventID: ce, 0x0001
Generated when a digit map completes as described in section 7.1.14.
如第7.1.14节所述,当数字映射完成时生成。
EventsDescriptor parameters: digit map processing is activated only if a digit map parameter is present, specifying a digit map by name or by value. Other parameters such as a KeepActive flag or embedded Events or Signals Descriptors may be present.
EventsDescriptor参数:仅当存在数字映射参数(按名称或值指定数字映射)时,才会激活数字映射处理。可能存在其他参数,如KeepActive标志或嵌入式事件或信号描述符。
ObservedEventsDescriptor parameters:
ObservedEventsDescriptor参数:
DigitString ----------- ParameterID: ds (0x0001)
DigitString ----------- ParameterID: ds (0x0001)
Type: string of digit map symbols (possibly empty) returned as a quotedString.
类型:作为quotedString返回的数字映射符号字符串(可能为空)。
Possible values: a sequence of the characters "0" through "9", "A" through "F", and the long duration modifier "L".
可能的值:字符“0”到“9”、“a”到“F”以及长持续时间修饰符“L”的序列。
Description: the portion of the current dial string as described in section 7.1.14 which matched part or all of an alternative event sequence specified in the digit map.
描述:第7.1.14节所述的当前拨号字符串部分,与数字映射中指定的部分或全部替代事件序列相匹配。
Termination Method ------------------ ParameterID: Meth (0x0003)
Termination Method ------------------ ParameterID: Meth (0x0003)
Type: enumeration
类型:枚举
Possible values: "UM" (0x0001) Unambiguous match "PM" (0x0002) Partial match, completion by timer expiry or unmatched event "FM" (0x0003) Full match, completion by timer expiry or unmatched event
可能的值:“UM”(0x0001)明确匹配“PM”(0x0002)部分匹配、计时器到期完成或不匹配事件“FM”(0x0003)完全匹配、计时器到期完成或不匹配事件
Description: indicates the reason for generation of the event. See the procedures in section 7.1.14.
描述:指示生成事件的原因。参见第7.1.14节中的程序。
None
没有一个
None
没有一个
None
没有一个
PackageID: cg, 0x0005 Version: 1 Extends: tonegen version 1
PackageID:cg,0x0005版本:1扩展:tonegen版本1
This package defines the basic call progress tones as signals and extends the allowed values of the tl parameter of playtone in tonegen.
此软件包将基本通话进度音定义为信号,并扩展了tonegen中playtone的tl参数的允许值。
None
没有一个
None
没有一个
Dial Tone --------- SignaID: dt (0x0030)
Dial Tone --------- SignaID: dt (0x0030)
Generate dial tone. The physical characteristic of dial tone is available in the gateway.
生成拨号音。拨号音的物理特性在网关中可用。
Signal Type: Timeout
信号类型:超时
Duration: Provisioned
持续时间:已设置
Additional Parameters: None
其他参数:无
Additional Values ----------------- dt (0x0030) is defined as a tone id for playtone The other tones of this package are defined in exactly the same way. A table with all signal names and signal IDs is included. Note that each tone is defined as both a signal and a toneid, thus extending the basic tone generation package.
Additional Values ----------------- dt (0x0030) is defined as a tone id for playtone The other tones of this package are defined in exactly the same way. A table with all signal names and signal IDs is included. Note that each tone is defined as both a signal and a toneid, thus extending the basic tone generation package.
Signal Name Signal ID/tone id
信号名称信号ID/音调ID
Dial Tone dt (0x0030) Ringing Tone rt (0x0031) Busy Tone bt (0x0032) Congestion Tone ct (0x0033) Special Information Tone sit(0x0034) Warning Tone wt (0x0035) Payphone Recognition Tone pt (0x0036) Call Waiting Tone cw (0x0037) Caller Waiting Tone cr (0x0038)
拨号音dt(0x0030)铃声rt(0x0031)忙音bt(0x0032)拥塞音ct(0x0033)特殊信息音sit(0x0034)警告音wt(0x0035)付费电话识别音pt(0x0036)呼叫等待音cw(0x0037)呼叫等待音cr(0x0038)
None
没有一个
NOTE - The required set of tone ids corresponds to those defined in Recommendation E.180/Q.35 [ITU-T Recommendation E.180/Q.35 (1998)]. See E.180 for definition of the meanings of these tones.
注-所需的音调ID组与建议E.180/Q.35[ITU-T建议E.180/Q.35(1998)]中定义的音调ID组相对应。关于这些音调含义的定义,请参见E.180。
PackageID: cd (0x0006) Version: 1 Extends: tonedet version 1
PackageID:cd(0x0006)版本:1扩展:tonedet版本1
This package defines the basic call progress detection tones. This Package extends the possible values of tone id in the "start tone detected", "end tone detected" and "long tone detected" events.
此软件包定义基本的通话进度检测音调。此软件包扩展了“检测到开始音调”、“检测到结束音调”和“检测到长音调”事件中音调id的可能值。
Additional values -----------------
Additional values -----------------
tone id values are defined for start tone detected, end tone detected and long tone detected with the same values as those in package cg (call progress tones generation package).
音调id值定义为检测到的开始音调、检测到的结束音调和检测到的长音调,其值与包cg(呼叫进度音调生成包)中的值相同。
The required set of tone ids corresponds to Recommendation E.180/Q.35 [ITU-T Recommendation E.180/Q.35 (1998)]. See Recommendation E.180/Q.35 for definition of the meanings of these tones.
所需的一组音调ID对应于建议E.180/Q.35[ITU-T建议E.180/Q.35(1998)]。这些音调含义的定义见建议E.180/Q.35。
none
没有一个
Events are defined as in the call progress tones generator package (cg) for the tones listed in the table of section E.7.3
事件定义为第E.7.3节表中所列音调的呼叫进度音调生成器包(cg)
none
没有一个
none
没有一个
none
没有一个
PackageID: al, 0x0009 Version: 1 Extends: None
PackageID:al,0x0009版本:1扩展:无
This package defines events and signals for an analog line.
该软件包定义模拟线路的事件和信号。
None
没有一个
onhook ------ EventID: on (0x0004)
onhook ------ EventID: on (0x0004)
Detects handset going on hook. Whenever an events descriptor is activated that requests monitoring for an on-hook event and the line is already on-hook, then the MG shall immediately generate an on-hook event.
检测手机挂机。每当激活请求监控挂机事件的事件描述符且线路已挂机时,MG应立即生成挂机事件。
EventDescriptor parameters
EventDescriptor参数
None
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
None
没有一个
offhook ------- EventID: of (0x0005)
offhook ------- EventID: of (0x0005)
Detects handset going off hook. Whenever an events descriptor is activated that requests monitoring for an off-hook event and the line is already off-hook, then the MG shall immediately generate an off-hook event.
检测手机挂机。每当激活请求监控脱钩事件的事件描述符且线路已脱钩时,MG应立即生成脱钩事件。
EventDescriptor parameters
EventDescriptor参数
None
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
None
没有一个
flashhook --------- EventID: fl, 0x0006
flashhook --------- EventID: fl, 0x0006
Detects handset flash. A flash occurs when an onhook is followed by an offhook between a minimum and maximum duration.
检测手机闪光灯。在最小持续时间和最大持续时间之间,先挂接后挂接断开时会发生闪烁。
EventDescriptor parameters
EventDescriptor参数
Minimum duration ---------------- ParameterID: mindur (0x0004)
Minimum duration ---------------- ParameterID: mindur (0x0004)
Type: integer in milliseconds
类型:以毫秒为单位的整数
Default value is provisioned
已设置默认值
Maximum duration ---------------- ParameterID: maxdur (0x0005)
Maximum duration ---------------- ParameterID: maxdur (0x0005)
Type: integer in milliseconds
类型:以毫秒为单位的整数
Default value is provisioned
已设置默认值
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
None
没有一个
ring ---- SignalID: ri, 0x0002
ring ---- SignalID: ri, 0x0002
Applies ringing on the line
在线路上应用振铃
Signal Type: TimeOut
信号类型:超时
Duration: Provisioned
持续时间:已设置
Additional Parameters:
其他参数:
Cadence
抑扬顿挫
------- ParameterID: cad (0x0006)
------- ParameterID: cad (0x0006)
Type: list of integers representing durations of alternating on and off segments, constituting a complete ringing cycle starting with an on. Units in milliseconds.
类型:表示交替接通和断开段持续时间的整数列表,构成从接通开始的完整振铃周期。单位为毫秒。
Default is fixed or provisioned. Restricted function MGs may ignore cadence values they are incapable of generating.
默认值是固定的或已设置的。受限函数MGs可能会忽略它们无法生成的节奏值。
Frequency --------- ParameterID: freq (0x0007)
Frequency --------- ParameterID: freq (0x0007)
Type: integer in Hz
类型:以赫兹为单位的整数
Default is fixed or provisioned. Restricted function MGs may ignore frequency values they are incapable of generating.
默认值是固定的或已设置的。受限函数MGs可能忽略其无法生成的频率值。
None
没有一个
None
没有一个
PackageID: ct (0x000a) Version: 1 Extends: None
PackageID:ct(0x000a)版本:1扩展:无
This package defines events and signals for continuity test. The continuity test includes provision of either a loopback or transceiver functionality.
该包定义了连续性测试的事件和信号。连续性测试包括提供环回或收发器功能。
None
没有一个
Completion ---------- EventID: cmp, 0x0005
Completion ---------- EventID: cmp, 0x0005
This event detects test completion of continuity test.
此事件检测连续性测试的测试完成。
EventDescriptor parameters
EventDescriptor参数
None
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
Result ------ ParameterID: res (0x0008)
Result ------ ParameterID: res (0x0008)
Type: Enumeration
类型:枚举
Possible values: success (0x0001), failure (0x0000)
可能的值:成功(0x0001)、失败(0x0000)
Continuity test --------------- SignalID: ct (0x0003)
Continuity test --------------- SignalID: ct (0x0003)
Initiates sending of continuity test tone on the termination to which it is applied.
在应用连续性测试音的终端上启动连续性测试音的发送。
Signal Type: TimeOut
信号类型:超时
Default value is provisioned
已设置默认值
Additional Parameters:
其他参数:
None
没有一个
Respond ------- SignalID: rsp (0x0004)
Respond ------- SignalID: rsp (0x0004)
The signal is used to respond to a continuity test . See section E.10.5 for further explanation.
该信号用于响应连续性测试。更多说明见第E.10.5节。
Signal Type: TimeOut
信号类型:超时
Default duration is provisioned
已设置默认持续时间
Additional Parameters:
其他参数:
None.
没有一个
None
没有一个
When a MGC wants to initiate a continuity test, it sends a command to the MG containing . a signals descriptor with the ct signal, and . an events descriptor containing the cmp event.
当MGC想要启动连续性测试时,它会向MG发送一个命令。带有ct信号的信号描述符,以及。包含cmp事件的事件描述符。
Upon reception of a command containing the ct signal and cmp event, the MG initiates the continuity test tone for the specified termination. If the return tone is detected before the signal times out, the cmp event shall be generated with the value of the result parameter equal to success. In all other cases, the cmp event shall be generated with the value of the result parameter equal to failure.
接收到包含ct信号和cmp事件的命令后,MG启动指定终端的连续性测试音。如果在信号超时之前检测到返回音,则应生成cmp事件,结果参数值等于success。在所有其他情况下,生成cmp事件时,结果参数的值应等于故障。
When a MGC wants the MG to respond to a continuity test, it sends a command to the MG containing a signals descriptor with the rsp signal. Upon reception of a command with the rsp signal, the MG awaits reception of the continuity test tone. When the tone is received before the rsp signal times out, the MG returns the applicable return tone. If the rsp signal times out, the MG removes the detection and the return tone (if that was playing).
当MGC希望MG响应连续性测试时,它向MG发送一个命令,其中包含带有rsp信号的信号描述符。接收到带有rsp信号的命令后,MG等待接收到连续性测试音。当在rsp信号超时之前收到音调时,MG返回适用的返回音调。如果rsp信号超时,MG将删除检测和返回音(如果正在播放)。
When a continuity test is performed on a termination, no echo devices or codecs shall be active on that termination.
在终端上执行连续性测试时,该终端上不得有激活的回波设备或编解码器。
Performing voice path assurance as part of continuity testing is provisioned by bilateral agreement between network operators.
作为连续性测试的一部分执行语音路径保证由网络运营商之间的双边协议规定。
PackageID: nt (0x000b) Version: 1 Extends: None
PackageID:nt(0x000b)版本:1扩展:无
This package defines properties of network terminations independent of network type.
此包定义独立于网络类型的网络终端的属性。
Maximum Jitter Buffer --------------------- PropertyID: jit (0x0007)
Maximum Jitter Buffer --------------------- PropertyID: jit (0x0007)
This property puts a maximum size on the jitter buffer.
此属性为抖动缓冲区设置最大大小。
Type: integer in milliseconds
类型:以毫秒为单位的整数
Possible Values: This property is specified in milliseconds.
可能值:此属性以毫秒为单位指定。
Defined In: LocalControlDescriptor
在中定义:LocalControlDescriptor
Characteristics: read/write
特征:读/写
network failure --------------- EventID: netfail, 0x0005
network failure --------------- EventID: netfail, 0x0005
The termination generates this event upon detection of a failure due to external or internal network reasons.
当检测到由于外部或内部网络原因导致的故障时,终端将生成此事件。
EventDescriptor parameters
EventDescriptor参数
None
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
cause ----- ParameterID: cs (0x0001)
cause ----- ParameterID: cs (0x0001)
Type: String
类型:字符串
Possible values: any text string
可能值:任何文本字符串
This parameter may be included with the failure event to provide diagnostic information on the reason of failure.
此参数可能包含在故障事件中,以提供故障原因的诊断信息。
quality alert ------------- EventID: qualert, 0x0006
quality alert ------------- EventID: qualert, 0x0006
This property allows the MG to indicate a loss of quality of the network connection. The MG may do this by measuring packet loss, interarrival jitter, propogation delay and then indicating this using a percentage of quality loss.
此属性允许MG指示网络连接的质量损失。MG可以通过测量数据包丢失、到达间隔抖动、传播延迟,然后使用质量损失百分比来指示这一点来做到这一点。
EventDescriptor parameters
EventDescriptor参数
Threshold --------- ParameterId: th (0x0001)
Threshold --------- ParameterId: th (0x0001)
Type: integer
类型:整数
Possible Values: threshold for percent of quality loss measured, calculated based on a provisioned method, that could take into consideration packet loss, jitter, and delay for example. Event is triggered when calculation exceeds the threshold.
可能值:测量的质量损失百分比阈值,根据提供的方法计算,可考虑数据包丢失、抖动和延迟等因素。当计算超过阈值时触发事件。
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
Threshold --------- ParameterId: th (0x0001)
Threshold --------- ParameterId: th (0x0001)
Type: integer
类型:整数
Possible Values: percent of quality loss measured, calculated based on a provisioned method, that could take into consideration packet loss, jitter, and delay for example.
可能值:测量的质量损失百分比,根据规定的方法计算,可考虑数据包丢失、抖动和延迟等因素。
none
没有一个
Duration -------- StatisticsID: dur (0x0001)
Duration -------- StatisticsID: dur (0x0001)
Description: Provides duration of time the termination has been in the context.
描述:提供终止在上下文中的持续时间。
Type: Double, in milliseconds
类型:双精度,以毫秒为单位
Octets Sent ----------- StatisticID: os (0x0002)
Octets Sent ----------- StatisticID: os (0x0002)
Type: double
类型:双
Possible Values: any 64 bit integer
可能值:任意64位整数
Octets Received --------------- StatisticID: or (0x0003)
Octets Received --------------- StatisticID: or (0x0003)
Type: double
类型:双
Possible Values: any 64 bit integer
可能值:任意64位整数
none
没有一个
PackageID: rtp (0x000c) Version: 1 Extends: Network Package version 1
PackageID:rtp(0x000c)版本:1扩展:网络包版本1
This package is used to support packet based multimedia data transfer by means of the Real-time Transport Protocol (RTP) [RFC 1889].
该包用于通过实时传输协议(RTP)[RFC 1889]支持基于包的多媒体数据传输。
None
没有一个
Payload Transition EventID: pltrans, 0x0001 This event detects and notifies when there is a transition of the RTP payload format from one format to another.
有效负载转换EventID:pltrans,0x0001当RTP有效负载格式从一种格式转换为另一种格式时,此事件检测并通知。
EventDescriptor parameters
EventDescriptor参数
None
没有一个
ObservedEventsDescriptor parameters
ObservedEventsDescriptor参数
rtppayload ---------- ParameterID: rtppltype, 0x01
rtppayload ---------- ParameterID: rtppltype, 0x01
Type: list of enumerated types.
类型:枚举类型的列表。
Possible values: The encoding method shall be specified by using one or several valid encoding names, as defined in the RTP AV Profile or registered with IANA.
可能值:编码方法应使用RTP AV配置文件中定义的或IANA注册的一个或多个有效编码名称来指定。
None
没有一个
Packets Sent ------------ StatisticID: ps (0x0004)
Packets Sent ------------ StatisticID: ps (0x0004)
Type: double
类型:双
Possible Values: any 64 bit integer
可能值:任意64位整数
Packets Received ---------------- StatisticID: pr (0x0005)
Packets Received ---------------- StatisticID: pr (0x0005)
Type: double
类型:双
Possible Values: any 64 bit integer
可能值:任意64位整数
Packet Loss ----------- StatisticID: pl (0x0006)
Packet Loss ----------- StatisticID: pl (0x0006)
Describes the current rate of packet loss on an RTP stream, as defined in IETF RFC 1889. Packet loss is expressed as percentage value: number of packets lost in the interval between two reception reports, divided by the number of packets expected during that interval.
描述RTP流上的当前数据包丢失率,如IETF RFC 1889中所定义。数据包丢失表示为百分比值:两个接收报告之间间隔内丢失的数据包数除以该间隔内预期的数据包数。
Type: double
类型:双
Possible Values: a 32 bit whole number and a 32 bit fraction.
可能值:32位整数和32位小数。
Jitter ------ StatisticID: jit (0x0007)
Jitter ------ StatisticID: jit (0x0007)
Requests the current value of the interarrival jitter on an RTP stream as defined in IETF RFC 1889. Jitter measures the variation in interarrival time for RTP data packets.
请求IETF RFC 1889中定义的RTP流上的到达间隔抖动的当前值。抖动测量RTP数据包到达间隔时间的变化。
Delay ----- StatisticID:delay (0x0008)
Delay ----- StatisticID:delay (0x0008)
Requests the current value of packet propagation delay expressed in timestamp units. Same as average latency.
请求以时间戳单位表示的数据包传播延迟的当前值。与平均延迟相同。
none
没有一个
PackageID: tdmc (0x000d) Version: 1 Extends: Network Package version 1
PackageID:tdmc(0x000d)版本:1扩展:网络包版本1
This package is used to support TDM circuit terminations.
该软件包用于支持TDM电路终端。
Echo Cancellation ----------------- PropertyID: ec (0x0008)
Echo Cancellation ----------------- PropertyID: ec (0x0008)
By default, the telephony gateways always perform echo cancellation. However, it is necessary, for some calls, to turn off these operations.
默认情况下,电话网关始终执行回音消除。但是,对于某些呼叫,有必要关闭这些操作。
Type: boolean
类型:布尔型
Possible Values: "on" (when the echo cancellation is requested) and "off" (when it is turned off.) The default is "on".
可能的值:“开”(请求回声消除时)和“关”(关闭时)。默认值为“开”。
Defined In: LocalControlDescriptor
在中定义:LocalControlDescriptor
Characteristics: read/write
特征:读/写
Gain Control ------------ PropertyID: gain (0x000a)
Gain Control ------------ PropertyID: gain (0x000a)
Gain control, or usage of of signal level adaptation and noise level reduction is used to adapt the level of the signal. However, it is necessary, for example for modem calls, to turn off this function.
增益控制,或使用信号电平自适应和噪声电平降低来自适应信号电平。但是,必须关闭此功能,例如,对于调制解调器呼叫。
Type: enumeration (integer)
类型:枚举(整数)
Possible Values: The gain control parameter may either be specified as "automatic" (0xffffffff), or as an explicit number of decibels of gain (any other integer value). The default is provisioned in the MG.
可能值:增益控制参数可以指定为“自动”(0xffffffff),也可以指定为增益分贝的明确数字(任何其他整数值)。默认值在MG中设置。
Defined In: LocalControlDescriptor
在中定义:LocalControlDescriptor
Characteristics: read/write
特征:读/写
none
没有一个
none
没有一个
None
没有一个
None
没有一个
APPENDIX A EXAMPLE CALL FLOWS (INFORMATIVE)
附录A调用流示例(信息性)
All Megaco implementors must read the normative part of this document carefully before implementing from it. No one should use the examples in this section as stand-alone explanations of how to create protocol messages.
所有Megaco实施者在实施本文件之前,必须仔细阅读本文件的规范部分。任何人都不应使用本节中的示例作为如何创建协议消息的独立解释。
The examples in this section use SDP for encoding of the Local and Remote stream descriptors. SDP is defined in RFC 2327. If there is any discrepancy between the SDP in the examples, and RFC 2327, the RFC should be consulted for correctness. Audio profiles used are those defined in RFC 1890, and others registered with IANA. For example, G.711 A-law is called PCMA in the SDP, and is assigned profile 0. G.723 is profile 4, and H263 is profile 34. See also
本节中的示例使用SDP对本地和远程流描述符进行编码。SDP在RFC 2327中定义。如果示例中的SDP与RFC 2327之间存在任何差异,应咨询RFC以确定其正确性。使用的音频配置文件是RFC1890中定义的音频配置文件,以及IANA注册的其他音频配置文件。例如,G.711 A-law在SDP中称为PCMA,并被分配为配置文件0。G.723为剖面4,H263为剖面34。另见
http://www.iana.org/numbers.htm#R
http://www.iana.org/numbers.htm#R
This example scenario illustrates the use of the elements of the protocol to set up a Residential Gateway to Residential Gateway call over an IP-based network. For simplicity, this example assumes that both Residential Gateways involved in the call are controlled by the same Media Gateway Controller.
此示例场景演示了如何使用协议元素通过基于IP的网络建立住宅网关到住宅网关的呼叫。为简单起见,本示例假设呼叫中涉及的两个住宅网关均由同一媒体网关控制器控制。
A.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior
A.1.1 为空闲行为编程住宅GW模拟线路终端
The following illustrates the API invocations from the Media Gateway Controller and Media Gateways to get the Terminations in this scenario programmed for idle behavior. Both the originating and terminating Media Gateways have idle AnalogLine Terminations programmed to look for call initiation events (i.e.-offhook) by using the Modify Command with the appropriate parameters. The null Context is used to indicate that the Terminations are not yet involved in a Context. The ROOT termination is used to indicate the entire MG instead of a termination within the MG.
以下说明了媒体网关控制器和媒体网关的API调用,以便在此场景中为空闲行为编程终止。发起和终止媒体网关都有空闲模拟线终端,通过使用带有适当参数的Modify命令,对其进行编程,以查找呼叫启动事件(即离线)。空上下文用于指示上下文中尚未涉及终止。根终端用于指示整个MG,而不是MG内的终端。
In this example, MG1 has the IP address 124.124.124.222, MG2 is 125.125.125.111, and the MGC is 123.123.123.4. The default Megaco port is 55555 for all three.
在此示例中,MG1的IP地址为124.124.124.222,MG2的IP地址为125.125.125.111,MGC的IP地址为123.123.123.4。这三个端口的默认Megaco端口均为55555。
1. An MG registers with an MGC using the ServiceChange command:
1. MG使用ServiceChange命令向MGC注册:
MG1 to MGC: MEGACO/1 [124.124.124.222] Transaction = 9998 { Context = - { ServiceChange = ROOT {Services { Method=Restart, ServiceChangeAddress=55555, Profile=ResGW/1} }
MG1 to MGC: MEGACO/1 [124.124.124.222] Transaction = 9998 { Context = - { ServiceChange = ROOT {Services { Method=Restart, ServiceChangeAddress=55555, Profile=ResGW/1} }
} }
} }
2. The MGC sends a reply:
2. MGC发送回复:
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Reply = 9998 { Context = - {ServiceChange = ROOT { Services {ServiceChangeAddress=55555, Profile=ResGW/1} } } }
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Reply = 9998 { Context = - {ServiceChange = ROOT { Services {ServiceChangeAddress=55555, Profile=ResGW/1} } } }
3. The MGC programs a Termination in the NULL context. The terminationId is A4444, the streamId is 1, the requestId in the Events descriptor is 2222. The mId is the identifier of the sender of this message, in this case, it is the IP address and port [123.123.123.4]:55555. Mode for this stream is set to SendReceive. "al" is the analog line supervision package.
3. MGC在空上下文中编程终止。terminationId为A4444,streamId为1,事件描述符中的requestId为2222。mId是该消息发送者的标识符,在本例中,它是IP地址和端口[123.123.123.4]:55555。此流的模式设置为SendReceive。“al”是模拟线路监控包。
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 9999 { Context = - { Modify = A4444 { Media { Stream = 1 { LocalControl { Mode = SendReceive, ds0/gain=2, ; in dB, ds0/ec=G165 }, Local { v=0 c=IN IP4 $
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 9999 { Context = - { Modify = A4444 { Media { Stream = 1 { LocalControl { Mode = SendReceive, ds0/gain=2, ; in dB, ds0/ec=G165 }, Local { v=0 c=IN IP4 $
m=audio $ RTP/AVP 0 a=fmtp:PCMU VAD=X-NNVAD ; special voice activity ; detection algorithm } } }, Events = 2222 {al/of} } } }
m=audio $ RTP/AVP 0 a=fmtp:PCMU VAD=X-NNVAD ; special voice activity ; detection algorithm } } }, Events = 2222 {al/of} } } }
The dialplan script could have been loaded into the MG previously. Its function would be to wait for the OffHook, turn on dialtone and start collecting DTMF digits. However in this example, we use the digit map, which is put into place after the offhook is detected (step 5 below).
dialplan脚本以前可能已加载到MG中。它的功能是等待摘机,打开拨号音并开始收集DTMF数字。然而,在本例中,我们使用数字映射,它是在检测到摘机后放置到位的(下面的步骤5)。
Note that the embedded EventsDescriptor could have been used to combine steps 3 and 4 with steps 8 and 9, eliminating steps 6 and 7.
请注意,嵌入式EventsDescriptor可用于将步骤3和4与步骤8和9结合起来,从而消除步骤6和7。
4. The MG1 accepts the Modify with this reply:
4. MG1通过以下回复接受修改:
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 9999 { Context = - {Modify = A4444} }
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 9999 { Context = - {Modify = A4444} }
5. A similar exchange happens between MG2 and the MGC, resulting in an idle Termination called A5555.
5. MG2和MGC之间发生类似的交换,导致称为A5555的空闲终端。
The following builds upon the previously shown conditions. It illustrates the transactions from the Media Gateway Controller and originating Media Gateway (MG1) to get the originating Termination (A4444) through the stages of digit collection required to initiate a connection to the terminating Media Gateway (MG2).
以下内容以前面显示的条件为基础。它说明了来自媒体网关控制器和始发媒体网关(MG1)的事务,以使始发终端(A4444)通过启动与终端媒体网关(MG2)的连接所需的数字收集阶段。
6. MG1 detects an offhook event from User 1 and reports it to the Media Gateway Controller via the Notify Command.
6. MG1检测到来自用户1的摘机事件,并通过Notify命令将其报告给媒体网关控制器。
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Transaction = 10000 { Context = - { Notify = A4444 {ObservedEvents =2222 { 19990729T22000000:al/of}}
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Transaction = 10000 { Context = - { Notify = A4444 {ObservedEvents =2222 { 19990729T22000000:al/of}}
} }
} }
7. And the Notify is acknowledged.
7. 通知已确认。
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Reply = 10000 { Context = - {Notify = A4444} }
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Reply = 10000 { Context = - {Notify = A4444} }
8. The MGC Modifies the termination to play dial tone, to look for digits according to Dialplan0 and to look for the on-hook event now. MGC to MG1:
8. MGC修改终端以播放拨号音,根据Dialplan0查找数字,并立即查找挂机事件。MGC至MG1:
MEGACO/1 [123.123.123.4]:55555 Transaction = 10001 { Context = - { Modify = A4444 { Events = 2223 { al/on, dd/ce {DigitMap=Dialplan0} }, Signals {cg/dt}, DigitMap= Dialplan0{ (0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)} } } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 10001 { Context = - { Modify = A4444 { Events = 2223 { al/on, dd/ce {DigitMap=Dialplan0} }, Signals {cg/dt}, DigitMap= Dialplan0{ (0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)} } } }
9. And the Modify is acknowledged.
9. 并确认修改。
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 10001 { Context = - {Modify = A4444} }
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 10001 { Context = - {Modify = A4444} }
10. Next, digits are accumulated by MG1 as they are dialed by User 1. Dialtone is stopped upon detection of the first digit. When an appropriate match is made of collected digits against the currently programmed Dialplan for A4444, another Notify is sent to the Media Gateway Controller.
10. 接下来,MG1在用户1拨号时累积数字。当检测到第一个数字时,拨号音停止。当收集的数字与A4444当前编程的拨号计划进行适当匹配时,会向媒体网关控制器发送另一个通知。
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Transaction = 10002 { Context = - { Notify = A4444 {ObservedEvents =2223 {
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Transaction = 10002 { Context = - { Notify = A4444 {ObservedEvents =2223 {
19990729T22010001:dd/ce{ds="916135551212",Meth=FM}}} } }
19990729T22010001:dd/ce{ds="916135551212",Meth=FM}}} } }
11. And the Notify is acknowledged.
11. 通知已确认。
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Reply = 10002 { Context = - {Notify = A4444} }
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Reply = 10002 { Context = - {Notify = A4444} }
12. The controller then analyses the digits and determines that a connection needs to be made from MG1 to MG2. Both the TDM termination A4444, and an RTP termination are added to a new context in MG1. Mode is ReceiveOnly since Remote descriptor values are not yet specified. Preferred codecs are in the MGC's preferred order of choice.
12. 然后,控制器分析这些数字并确定需要从MG1连接到MG2。TDM终端A4444和RTP终端都添加到MG1中的新上下文中。由于尚未指定远程描述符值,因此仅接收模式。首选编解码器按照MGC的首选顺序选择。
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 10003 { Context = $ { Add = A4444, Add = $ { Media { Stream = 1 { LocalControl { Mode = ReceiveOnly,
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 10003 { Context = $ { Add = A4444, Add = $ { Media { Stream = 1 { LocalControl { Mode = ReceiveOnly,
nt/jit=40, ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 v=0 c=IN IP4 $ m=audio $ RTP/AVP 0 } } } } } }
nt/jit=40, ; in ms }, Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 v=0 c=IN IP4 $ m=audio $ RTP/AVP 0 } } } } } }
NOTE - The MGC states its preferred parameter values as a series of sdp blocks in Local. The MG fills in the Local Descriptor in the Reply.
注-MGC将其首选参数值表示为本地的一系列sdp块。MG在应答中填充本地描述符。
13. MG1 acknowledges the new Termination and fills in the Local IP address and UDP port. It also makes a choice for the codec based on the MGC preferences in Local. MG1 sets the RTP port to 2222. MEGACO/1 [124.124.124.222]:55555 Reply = 10003 { Context = 2000 { Add = A4444, Add=A4445{ Media { Stream = 1 { Local { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 a=recvonly } ; RTP profile for G.723 is 4 } } } } }
13. MG1确认新的终止,并填写本地IP地址和UDP端口。它还根据本地的MGC首选项选择编解码器。MG1将RTP端口设置为2222。MEGACO/1[124.124.222]:55555 Reply=10003{Context=2000{Add=A4444,Add=A4445{Media{Stream=1{Local{v=0c=inIP4124.124.222M=audio2222RTP/AVP4A=ptime:30A=recvoly};G.723的RTP配置文件为4}}
14. The MGC will now associate A5555 with a new Context on MG2, and establish an RTP Stream (i.e, A5556 will be assigned), SendReceive connection through to the originating user, User 1. The MGC also sets ring on A5555.
14. MGC现在将A5555与MG2上的新上下文关联,并建立RTP流(即,将分配A5556),通过发送接收连接到发起用户user 1。MGC还在A5555上设置环。
MGC to MG2: MEGACO/1 [123.123.123.4]:55555 Transaction = 50003 { Context = $ { Add = A5555 { Media { Stream = 1 { LocalControl {Mode = SendReceive} }}, Events=1234{al/of} Signals {al/ri} }, Add = $ {Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 ; in ms },
MGC to MG2: MEGACO/1 [123.123.123.4]:55555 Transaction = 50003 { Context = $ { Add = A5555 { Media { Stream = 1 { LocalControl {Mode = SendReceive} }}, Events=1234{al/of} Signals {al/ri} }, Add = $ {Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 ; in ms },
Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } ; RTP profile for G.723 is 4 } } } } }
Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } ; RTP profile for G.723 is 4 } } } } }
15. This is acknowledged. The stream port number is different from the control port number. In this case it is 1111 (in the SDP).
15. 这是公认的。流端口号与控制端口号不同。在这种情况下,它是1111(在SDP中)。
MG2 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 50003 { Context = 5000 { Add = A5555{} Add = A5556{ Media { Stream = 1 { Local { v=0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723 is 4 }
MG2 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 50003 { Context = 5000 { Add = A5555{} Add = A5556{ Media { Stream = 1 { Local { v=0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723 is 4 }
} } }
} } }
16. The above IPAddr and UDPport need to be given to MG1 now.
16. 以上IPAddr和UDPport需要立即提供给MG1。
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 10005 { Context = 2000 { Modify = A4444 {
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 10005 { Context = 2000 { Modify = A4444 {
Signals {cg/rt} }, Modify = A4445 { Media { Stream = 1 { Remote { v=0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723 is 4 } } } }
Signals {cg/rt} }, Modify = A4445 { Media { Stream = 1 { Remote { v=0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 } } ; RTP profile for G723 is 4 } } } }
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 10005 { Context = 2000 {Modify = A4444, Modify = A4445} }
MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 10005 { Context = 2000 {Modify = A4444, Modify = A4445} }
17. The two gateways are now connected and User 1 hears the RingBack. The MG2 now waits until User2 picks up the receiver and then the two-way call is established.
17. 两个网关现在已连接,用户1将听到回音。MG2现在等待,直到User2拿起接收器,然后建立双向呼叫。
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Transaction = 50005 { Context = 5000 { Notify = A5555 {ObservedEvents =1234 { 19990729T22020002:al/of}} } }
MEGACO/1 [125.125.125.111]:55555 Transaction = 50005 { Context = 5000 { Notify = A5555 {ObservedEvents =1234 { 19990729T22020002:al/of}} } }
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Reply = 50005 { Context = - {Notify = A5555}
MEGACO/1 [123.123.123.4]:55555 Reply = 50005 { Context = - {Notify = A5555}
}
}
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Transaction = 50006 {
MEGACO/1 [123.123.123.4]:55555 Transaction = 50006 {
Context = 5000 { Modify = A5555 { Events = 1235 {al/on}, Signals { } ; to turn off ringing } } }
Context = 5000 { Modify = A5555 { Events = 1235 {al/on}, Signals { } ; to turn off ringing } } }
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Reply = 50006 { Context = 5000 {Modify = A4445} }
MEGACO/1 [125.125.125.111]:55555 Reply = 50006 { Context = 5000 {Modify = A4445} }
18. Change mode on MG1 to SendReceive, and stop the ringback.
18. 将MG1上的模式更改为SendReceive,并停止回铃。
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 10006 { Context = 2000 { Modify = A4445 { Media { Stream = 1 { LocalControl { Mode=SendReceive } } } }, Modify = A4444 { Signals { } } } }
MGC to MG1: MEGACO/1 [123.123.123.4]:55555 Transaction = 10006 { Context = 2000 { Modify = A4445 { Media { Stream = 1 { LocalControl { Mode=SendReceive } } } }, Modify = A4444 { Signals { } } } }
from MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 10006 { Context = 2000 {Modify = A4445, Modify = A4444}}
from MG1 to MGC: MEGACO/1 [124.124.124.222]:55555 Reply = 10006 { Context = 2000 {Modify = A4445, Modify = A4444}}
19. The MGC decides to Audit the RTP termination on MG2.
19. MGC决定审核MG2上的RTP终止。
MEGACO/1 [123.123.123.4]:55555 Transaction = 50007 { Context = - {AuditValue = A5556{ Audit{Media, DigitMap, Events, Signals, Packages, Statistics }}
MEGACO/1 [123.123.123.4]:55555 Transaction = 50007 { Context = - {AuditValue = A5556{ Audit{Media, DigitMap, Events, Signals, Packages, Statistics }}
} }
} }
20. The MG2 replies. An RTP termination has no events nor signals, so these are left out in the reply .
20. MG2回答道。RTP终端既没有事件也没有信号,因此在应答中忽略了这些事件和信号。
MEGACO/1 [125.125.125.111]:55555 Reply = 50007 { Context = - { AuditValue = A5556 { Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 }, Local { v=0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } } }, Packages {nt-1, rtp-1}, Statistics { rtp/ps=1200, ; packets sent nt/os=62300, ; octets sent rtp/pr=700, ; packets received nt/or=45100, ; octets received rtp/pl=0.2, ; % packet loss rtp/jit=20, rtp/delay=40 } ; avg latency } } }
MEGACO/1 [125.125.125.111]:55555 Reply = 50007 { Context = - { AuditValue = A5556 { Media { Stream = 1 { LocalControl { Mode = SendReceive, nt/jit=40 }, Local { v=0 c=IN IP4 125.125.125.111 m=audio 1111 RTP/AVP 4 a=ptime:30 }, Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222 RTP/AVP 4 a=ptime:30 } } }, Packages {nt-1, rtp-1}, Statistics { rtp/ps=1200, ; packets sent nt/os=62300, ; octets sent rtp/pr=700, ; packets received nt/or=45100, ; octets received rtp/pl=0.2, ; % packet loss rtp/jit=20, rtp/delay=40 } ; avg latency } } }
21. When the MGC receives an onhook signal from one of the MGs, it brings down the call. In this example, the user at MG2 hangs up first.
21. 当MGC接收到来自其中一个MG的挂接信号时,它关闭呼叫。在本例中,MG2的用户首先挂断。
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Transaction = 50008 { Context = 5000 { Notify = A5555 {ObservedEvents =1235 {
MEGACO/1 [125.125.125.111]:55555 Transaction = 50008 { Context = 5000 { Notify = A5555 {ObservedEvents =1235 {
19990729T24020002:al/on} }
19990729T24020002:al/on} }
} }
} }
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Reply = 50008 { Context = - {Notify = A5555} }
MEGACO/1 [123.123.123.4]:55555 Reply = 50008 { Context = - {Notify = A5555} }
22. The MGC now sends both MGs a Subtract to take down the call. Only the subtracts to MG2 are shown here. Each termination has its own set of statistics that it gathers. An MGC may not need to request both to be returned. A5555 is a physical termination, and A5556 is an RTP termination.
22. MGC现在向两个MG发送一个减法以记下呼叫。此处仅显示MG2的减法。每个终端都有自己收集的统计数据集。MGC可能不需要同时请求返回这两个文件。A5555是物理终端,A5556是RTP终端。
From MGC to MG2:
从MGC到MG2:
MEGACO/1 [123.123.123.4]:55555 Transaction = 50009 { Context = 5000 { Subtract = A5555 {Audit{Statistics}}, Subtract = A5556 {Audit{Statistics}} } }
MEGACO/1 [123.123.123.4]:55555 Transaction = 50009 { Context = 5000 { Subtract = A5555 {Audit{Statistics}}, Subtract = A5556 {Audit{Statistics}} } }
From MG2 to MGC:
从MG2到MGC:
MEGACO/1 [125.125.125.111]:55555 Reply = 50009 { Context = 5000 { Subtract = A5555 { Statistics { nt/os=45123, ; Octets Sent nt/dur=40 ; in seconds } }, Subtract = A5556 { Statistics { rtp/ps=1245, ; packets sent nt/os=62345, ; octets sent rtp/pr=780, ; packets received nt/or=45123, ; octets received rtp/pl=10, ; % packets lost rtp/jit=27,
MEGACO/1 [125.125.125.111]:55555 Reply = 50009 { Context = 5000 { Subtract = A5555 { Statistics { nt/os=45123, ; Octets Sent nt/dur=40 ; in seconds } }, Subtract = A5556 { Statistics { rtp/ps=1245, ; packets sent nt/os=62345, ; octets sent rtp/pr=780, ; packets received nt/or=45123, ; octets received rtp/pl=10, ; % packets lost rtp/jit=27,
rtp/delay=48 ; average latency } } } }
rtp/delay=48 ; average latency } } } }
23. The MGC now sets up both MG1 and MG2 to be ready to detect the next off-hook event. See step 1. Note that this could be the default state of a termination in the null context, and if this were the case, no message need be sent from the MGC to the MG. Once a termination returns to the null context, it goes back to the default termination values for that termination.
23. MGC现在将MG1和MG2都设置为准备检测下一个脱钩事件。见第1步。注意,这可能是null上下文中终止的默认状态,如果是这种情况,则不需要从MGC向MG发送消息。一旦终止返回空上下文,它将返回该终止的默认终止值。
Authors' Addresses
作者地址
Fernando Cuervo Nortel Networks P.O. Box 3511, Station C Ottawa, ON K1Y 4H7 Canada E-mail: fcuervo@nortelnetworks.com
加拿大渥太华C站Fernando Cuervo Nortel Networks邮政信箱3511,邮编K1Y 4H7电子邮件:fcuervo@nortelnetworks.com
Nancy Greene Nortel Networks P.O. Box 3511, Station C Ottawa, ON K1Y 4H7 Canada E-mail: ngreene@nortelnetworks.com
Nancy Greene Nortel Networks加拿大渥太华C站3511信箱,K1Y 4H7电子邮件:ngreene@nortelnetworks.com
Christian Huitema Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399 USA E-mail: huitema@microsoft.com
Christian Huitema Microsoft Corporation One Microsoft Way Redmond,WA 98052-6399美国电子邮件:huitema@microsoft.com
Abdallah Rayhan Nortel Networks P.O. Box 3511, Station C Ottawa, ON K1Y 4H7 Canada E-mail: arayhan@nortelnetworks.com
Abdallah Rayhan Nortel Networks渥太华C站3511信箱,邮编:K1Y 4H7加拿大电子邮件:arayhan@nortelnetworks.com
Brian Rosen Marconi 1000 FORE Drive Warrendale, PA 15086 USA E-mail: brian.rosen@marconi.com
布莱恩·罗森·马可尼美国宾夕法尼亚州沃伦代尔大道1000号邮编:15086电子邮件:布莱恩。rosen@marconi.com
John Segers Lucent Technologies, Room HE 303 Dept. Forward Looking Work P.O. Box 18, 1270 AA Huizen The Netherlands E-mail: jsegers@lucent.com
John Segers-Lucent Technologies,HE 303室,部门前瞻性工作邮箱18,1270 AA荷兰惠仁电子邮件:jsegers@lucent.com
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (2000). All Rights Reserved.
版权所有(C)互联网协会(2000年)。版权所有。
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.
本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。
The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.
上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。