Network Working Group R. Coltun Requests for Comments: 2740 Siara Systems Category: Standards Track D. Ferguson Juniper Networks J. Moy Sycamore Networks December 1999
Network Working Group R. Coltun Requests for Comments: 2740 Siara Systems Category: Standards Track D. Ferguson Juniper Networks J. Moy Sycamore Networks December 1999
OSPF for IPv6
IPv6的OSPF
Status of this Memo
本备忘录的状况
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
本文件规定了互联网社区的互联网标准跟踪协议,并要求进行讨论和提出改进建议。有关本协议的标准化状态和状态,请参考当前版本的“互联网官方协议标准”(STD 1)。本备忘录的分发不受限制。
Copyright Notice
版权公告
Copyright (C) The Internet Society (1999). All Rights Reserved.
版权所有(C)互联网协会(1999年)。版权所有。
Abstract
摘要
This document describes the modifications to OSPF to support version 6 of the Internet Protocol (IPv6). The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, etc.) remain unchanged. However, some changes have been necessary, either due to changes in protocol semantics between IPv4 and IPv6, or simply to handle the increased address size of IPv6.
本文档描述了对OSPF的修改,以支持Internet协议(IPv6)版本6。OSPF的基本机制(洪水、DR选举、区域支持、SPF计算等)保持不变。然而,由于IPv4和IPv6之间协议语义的变化,或者仅仅为了处理IPv6地址大小的增加,一些更改是必要的。
Changes between OSPF for IPv4 and this document include the following. Addressing semantics have been removed from OSPF packets and the basic LSAs. New LSAs have been created to carry IPv6 addresses and prefixes. OSPF now runs on a per-link basis, instead of on a per-IP-subnet basis. Flooding scope for LSAs has been generalized. Authentication has been removed from the OSPF protocol itself, instead relying on IPv6's Authentication Header and Encapsulating Security Payload.
用于IPv4的OSPF与本文档之间的更改包括以下内容。从OSPF数据包和基本LSA中删除了寻址语义。已创建新的LSA以承载IPv6地址和前缀。OSPF现在以每条链路为基础运行,而不是以每个IP子网为基础。LSA的泛洪范围已得到推广。身份验证已从OSPF协议本身中删除,而不是依赖IPv6的身份验证头和封装的安全负载。
Most packets in OSPF for IPv6 are almost as compact as those in OSPF for IPv4, even with the larger IPv6 addresses. Most field-XSand packet-size limitations present in OSPF for IPv4 have been relaxed. In addition, option handling has been made more flexible.
用于IPv6的OSPF中的大多数数据包几乎和用于IPv4的OSPF中的数据包一样紧凑,即使具有更大的IPv6地址。对于IPv4,OSPF中存在的大多数字段和数据包大小限制都已放宽。此外,选项处理变得更加灵活。
All of OSPF for IPv4's optional capabilities, including on-demand circuit support, NSSA areas, and the multicast extensions to OSPF (MOSPF) are also supported in OSPF for IPv6.
OSPF for IPv4的所有可选功能,包括按需电路支持、NSSA区域和OSPF的多播扩展(MOSPF),也在OSPF for IPv6中得到支持。
Table of Contents
目录
1 Introduction ........................................... 4 1.1 Terminology ............................................ 4 2 Differences from OSPF for IPv4 ......................... 4 2.1 Protocol processing per-link, not per-subnet ........... 5 2.2 Removal of addressing semantics ........................ 5 2.3 Addition of Flooding scope ............................. 5 2.4 Explicit support for multiple instances per link ....... 6 2.5 Use of link-local addresses ............................ 6 2.6 Authentication changes ................................. 7 2.7 Packet format changes .................................. 7 2.8 LSA format changes ..................................... 8 2.9 Handling unknown LSA types ............................ 10 2.10 Stub area support ..................................... 10 2.11 Identifying neighbors by Router ID .................... 11 3 Implementation details ................................ 11 3.1 Protocol data structures .............................. 12 3.1.1 The Area Data structure ............................... 13 3.1.2 The Interface Data structure .......................... 13 3.1.3 The Neighbor Data Structure ........................... 14 3.2 Protocol Packet Processing ............................ 15 3.2.1 Sending protocol packets .............................. 15 3.2.1.1 Sending Hello packets ................................. 16 3.2.1.2 Sending Database Description Packets .................. 17 3.2.2 Receiving protocol packets ............................ 17 3.2.2.1 Receiving Hello Packets ............................... 19 3.3 The Routing table Structure ........................... 19 3.3.1 Routing table lookup .................................. 20 3.4 Link State Advertisements ............................. 20 3.4.1 The LSA Header ........................................ 21 3.4.2 The link-state database ............................... 22 3.4.3 Originating LSAs ...................................... 22 3.4.3.1 Router-LSAs ........................................... 25 3.4.3.2 Network-LSAs .......................................... 27 3.4.3.3 Inter-Area-Prefix-LSAs ................................ 28 3.4.3.4 Inter-Area-Router-LSAs ................................ 29 3.4.3.5 AS-external-LSAs ...................................... 29 3.4.3.6 Link-LSAs ............................................. 31 3.4.3.7 Intra-Area-Prefix-LSAs ................................ 32 3.5 Flooding .............................................. 35 3.5.1 Receiving Link State Update packets ................... 36 3.5.2 Sending Link State Update packets ..................... 36 3.5.3 Installing LSAs in the database ....................... 38
1 Introduction ........................................... 4 1.1 Terminology ............................................ 4 2 Differences from OSPF for IPv4 ......................... 4 2.1 Protocol processing per-link, not per-subnet ........... 5 2.2 Removal of addressing semantics ........................ 5 2.3 Addition of Flooding scope ............................. 5 2.4 Explicit support for multiple instances per link ....... 6 2.5 Use of link-local addresses ............................ 6 2.6 Authentication changes ................................. 7 2.7 Packet format changes .................................. 7 2.8 LSA format changes ..................................... 8 2.9 Handling unknown LSA types ............................ 10 2.10 Stub area support ..................................... 10 2.11 Identifying neighbors by Router ID .................... 11 3 Implementation details ................................ 11 3.1 Protocol data structures .............................. 12 3.1.1 The Area Data structure ............................... 13 3.1.2 The Interface Data structure .......................... 13 3.1.3 The Neighbor Data Structure ........................... 14 3.2 Protocol Packet Processing ............................ 15 3.2.1 Sending protocol packets .............................. 15 3.2.1.1 Sending Hello packets ................................. 16 3.2.1.2 Sending Database Description Packets .................. 17 3.2.2 Receiving protocol packets ............................ 17 3.2.2.1 Receiving Hello Packets ............................... 19 3.3 The Routing table Structure ........................... 19 3.3.1 Routing table lookup .................................. 20 3.4 Link State Advertisements ............................. 20 3.4.1 The LSA Header ........................................ 21 3.4.2 The link-state database ............................... 22 3.4.3 Originating LSAs ...................................... 22 3.4.3.1 Router-LSAs ........................................... 25 3.4.3.2 Network-LSAs .......................................... 27 3.4.3.3 Inter-Area-Prefix-LSAs ................................ 28 3.4.3.4 Inter-Area-Router-LSAs ................................ 29 3.4.3.5 AS-external-LSAs ...................................... 29 3.4.3.6 Link-LSAs ............................................. 31 3.4.3.7 Intra-Area-Prefix-LSAs ................................ 32 3.5 Flooding .............................................. 35 3.5.1 Receiving Link State Update packets ................... 36 3.5.2 Sending Link State Update packets ..................... 36 3.5.3 Installing LSAs in the database ....................... 38
3.6 Definition of self-originated LSAs .................... 39 3.7 Virtual links ......................................... 39 3.8 Routing table calculation ............................. 39 3.8.1 Calculating the shortest path tree for an area ........ 40 3.8.1.1 The next hop calculation .............................. 41 3.8.2 Calculating the inter-area routes ..................... 42 3.8.3 Examining transit areas' summary-LSAs ................. 42 3.8.4 Calculating AS external routes ........................ 42 3.9 Multiple interfaces to a single link .................. 43 References ............................................ 44 A OSPF data formats ..................................... 46 A.1 Encapsulation of OSPF packets ......................... 46 A.2 The Options field ..................................... 47 A.3 OSPF Packet Formats ................................... 48 A.3.1 The OSPF packet header ................................ 49 A.3.2 The Hello packet ...................................... 50 A.3.3 The Database Description packet ....................... 52 A.3.4 The Link State Request packet ......................... 54 A.3.5 The Link State Update packet .......................... 55 A.3.6 The Link State Acknowledgment packet .................. 56 A.4 LSA formats ........................................... 57 A.4.1 IPv6 Prefix Representation ............................ 58 A.4.1.1 Prefix Options ........................................ 58 A.4.2 The LSA header ........................................ 59 A.4.2.1 LS type ............................................... 60 A.4.3 Router-LSAs ........................................... 61 A.4.4 Network-LSAs .......................................... 64 A.4.5 Inter-Area-Prefix-LSAs ................................ 65 A.4.6 Inter-Area-Router-LSAs ................................ 66 A.4.7 AS-external-LSAs ...................................... 67 A.4.8 Link-LSAs ............................................. 69 A.4.9 Intra-Area-Prefix-LSAs ................................ 71 B Architectural Constants ............................... 73 C Configurable Constants ................................ 73 C.1 Global parameters ..................................... 73 C.2 Area parameters ....................................... 74 C.3 Router interface parameters ........................... 75 C.4 Virtual link parameters ............................... 77 C.5 NBMA network parameters ............................... 77 C.6 Point-to-MultiPoint network parameters ................ 78 C.7 Host route parameters ................................. 78 Security Considerations ............................... 79 Authors' Addresses .................................... 79 Full Copyright Statement .............................. 80
3.6 Definition of self-originated LSAs .................... 39 3.7 Virtual links ......................................... 39 3.8 Routing table calculation ............................. 39 3.8.1 Calculating the shortest path tree for an area ........ 40 3.8.1.1 The next hop calculation .............................. 41 3.8.2 Calculating the inter-area routes ..................... 42 3.8.3 Examining transit areas' summary-LSAs ................. 42 3.8.4 Calculating AS external routes ........................ 42 3.9 Multiple interfaces to a single link .................. 43 References ............................................ 44 A OSPF data formats ..................................... 46 A.1 Encapsulation of OSPF packets ......................... 46 A.2 The Options field ..................................... 47 A.3 OSPF Packet Formats ................................... 48 A.3.1 The OSPF packet header ................................ 49 A.3.2 The Hello packet ...................................... 50 A.3.3 The Database Description packet ....................... 52 A.3.4 The Link State Request packet ......................... 54 A.3.5 The Link State Update packet .......................... 55 A.3.6 The Link State Acknowledgment packet .................. 56 A.4 LSA formats ........................................... 57 A.4.1 IPv6 Prefix Representation ............................ 58 A.4.1.1 Prefix Options ........................................ 58 A.4.2 The LSA header ........................................ 59 A.4.2.1 LS type ............................................... 60 A.4.3 Router-LSAs ........................................... 61 A.4.4 Network-LSAs .......................................... 64 A.4.5 Inter-Area-Prefix-LSAs ................................ 65 A.4.6 Inter-Area-Router-LSAs ................................ 66 A.4.7 AS-external-LSAs ...................................... 67 A.4.8 Link-LSAs ............................................. 69 A.4.9 Intra-Area-Prefix-LSAs ................................ 71 B Architectural Constants ............................... 73 C Configurable Constants ................................ 73 C.1 Global parameters ..................................... 73 C.2 Area parameters ....................................... 74 C.3 Router interface parameters ........................... 75 C.4 Virtual link parameters ............................... 77 C.5 NBMA network parameters ............................... 77 C.6 Point-to-MultiPoint network parameters ................ 78 C.7 Host route parameters ................................. 78 Security Considerations ............................... 79 Authors' Addresses .................................... 79 Full Copyright Statement .............................. 80
This document describes the modifications to OSPF to support version 6 of the Internet Protocol (IPv6). The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, etc.) remain unchanged. However, some changes have been necessary, either due to changes in protocol semantics between IPv4 and IPv6, or simply to handle the increased address size of IPv6.
本文档描述了对OSPF的修改,以支持Internet协议(IPv6)版本6。OSPF的基本机制(洪水、DR选举、区域支持、SPF计算等)保持不变。然而,由于IPv4和IPv6之间协议语义的变化,或者仅仅为了处理IPv6地址大小的增加,一些更改是必要的。
This document is organized as follows. Section 2 describes the differences between OSPF for IPv4 and OSPF for IPv6 in detail. Section 3 provides implementation details for the changes. Appendix A gives the OSPF for IPv6 packet and LSA formats. Appendix B lists the OSPF architectural constants. Appendix C describes configuration parameters.
本文件的组织结构如下。第2节详细描述了用于IPv4的OSPF和用于IPv6的OSPF之间的区别。第3节提供了变更的实施细节。附录A给出了IPv6数据包和LSA格式的OSPF。附录B列出了OSPF体系结构常数。附录C描述了配置参数。
This document attempts to use terms from both the OSPF for IPv4 specification ([Ref1]) and the IPv6 protocol specifications ([Ref14]). This has produced a mixed result. Most of the terms used both by OSPF and IPv6 have roughly the same meaning (e.g., interfaces). However, there are a few conflicts. IPv6 uses "link" similarly to IPv4 OSPF's "subnet" or "network". In this case, we have chosen to use IPv6's "link" terminology. "Link" replaces OSPF's "subnet" and "network" in most places in this document, although OSPF's Network-LSA remains unchanged (and possibly unfortunately, a new Link-LSA has also been created).
本文档试图使用OSPF for IPv4规范([Ref1])和IPv6协议规范([Ref14])中的术语。这产生了好坏参半的结果。OSPF和IPv6使用的大多数术语具有大致相同的含义(例如接口)。然而,也存在一些冲突。IPv6使用的“链路”类似于IPv4 OSPF的“子网”或“网络”。在本例中,我们选择使用IPv6的“链接”术语。虽然OSPF的网络LSA保持不变(可能不幸的是,还创建了一个新的链路LSA),但在本文档的大多数地方,“链路”取代了OSPF的“子网”和“网络”。
The names of some of the OSPF LSAs have also changed. See Section 2.8 for details.
一些OSPF LSA的名称也发生了变化。详见第2.8节。
Most of the algorithms from OSPF for IPv4 [Ref1] have preserved in OSPF for IPv6. However, some changes have been necessary, either due to changes in protocol semantics between IPv4 and IPv6, or simply to handle the increased address size of IPv6.
来自IPv4的OSPF的大多数算法[Ref1]都保存在IPv6的OSPF中。然而,由于IPv4和IPv6之间协议语义的变化,或者仅仅为了处理IPv6地址大小的增加,一些更改是必要的。
The following subsections describe the differences between this document and [Ref1].
以下小节描述了本文件与[参考文献1]之间的差异。
IPv6 uses the term "link" to indicate "a communication facility or medium over which nodes can communicate at the link layer" ([Ref14]). "Interfaces" connect to links. Multiple IP subnets can be assigned to a single link, and two nodes can talk directly over a single link, even if they do not share a common IP subnet (IPv6 prefix).
IPv6使用术语“链路”表示“节点可在链路层通过其进行通信的通信设施或介质”([Ref14])。“接口”连接到链接。可以将多个IP子网分配给单个链路,两个节点可以通过单个链路直接通信,即使它们不共享公共IP子网(IPv6前缀)。
For this reason, OSPF for IPv6 runs per-link instead of the IPv4 behavior of per-IP-subnet. The terms "network" and "subnet" used in the IPv4 OSPF specification ([Ref1]) should generally be relaced by link. Likewise, an OSPF interface now connects to a link instead of an IP subnet, etc.
由于这个原因,IPv6的OSPF在每个链路上运行,而不是在每个IP子网上运行IPv4行为。IPv4 OSPF规范([Ref1])中使用的术语“网络”和“子网”通常应通过链路进行中继。同样,OSPF接口现在连接到链路而不是IP子网等。
This change affects the receiving of OSPF protocol packets, and the contents of Hello Packets and Network-LSAs.
此更改会影响OSPF协议数据包的接收,以及Hello数据包和网络LSA的内容。
In OSPF for IPv6, addressing semantics have been removed from the OSPF protocol packets and the main LSA types, leaving a network-protocol-independent core. In particular:
在用于IPv6的OSPF中,从OSPF协议包和主要LSA类型中删除了寻址语义,留下了独立于网络协议的核心。特别地:
o IPv6 Addresses are not present in OSPF packets, except in LSA payloads carried by the Link State Update Packets. See Section 2.7 for details.
o IPv6地址不存在于OSPF数据包中,链路状态更新数据包携带的LSA有效负载除外。详见第2.7节。
o Router-LSAs and Network-LSAs no longer contain network addresses, but simply express topology information. See Section 2.8 for details.
o 路由器LSA和网络LSA不再包含网络地址,而是简单地表示拓扑信息。详见第2.8节。
o OSPF Router IDs, Area IDs and LSA Link State IDs remain at the IPv4 size of 32-bits. They can no longer be assigned as (IPv6) addresses.
o OSPF路由器ID、区域ID和LSA链路状态ID保持在32位的IPv4大小。它们不能再被分配为(IPv6)地址。
o Neighboring routers are now always identified by Router ID, where previously they had been identified by IP address on broadcast and NBMA "networks".
o 相邻的路由器现在总是由路由器ID标识,而以前它们是由广播和NBMA“网络”上的IP地址标识的。
Flooding scope for LSAs has been generalized and is now explicitly coded in the LSA's LS type field. There are now three separate flooding scopes for LSAs:
LSA的泛洪作用域已被推广,现在在LSA的LS类型字段中显式编码。LSA现在有三个独立的泛洪作用域:
o Link-local scope. LSA is flooded only on the local link, and no further. Used for the new Link-LSA (see Section A.4.8).
o 链接本地范围。LSA仅在本地链路上被淹没,不再被淹没。用于新链路LSA(见第A.4.8节)。
o Area scope. LSA is flooded throughout a single OSPF area only. Used for Router-LSAs, Network-LSAs, Inter-Area-Prefix-LSAs, Inter-Area-Router-LSAs and Intra-Area-Prefix-LSAs.
o 区域范围。LSA仅在一个OSPF区域被淹没。用于路由器LSA、网络LSA、区域间前缀LSA、区域间路由器LSA和区域内前缀LSA。
o AS scope. LSA is flooded throughout the routing domain. Used for AS-external-LSAs.
o 作为范围。LSA被淹没在整个路由域中。用作外部LSA。
OSPF now supports the ability to run multiple OSPF protocol instances on a single link. For example, this may be required on a NAP segment shared between several providers -- providers may be running separate OSPF routing domains that want to remain separate even though they have one or more physical network segments (i.e., links) in common. In OSPF for IPv4 this was supported in a haphazard fashion using the authentication fields in the OSPF for IPv4 header.
OSPF现在支持在单个链路上运行多个OSPF协议实例。例如,在多个提供商之间共享的NAP段上可能需要这样做——提供商可能运行单独的OSPF路由域,这些域希望保持独立,即使它们有一个或多个共同的物理网段(即链路)。在OSPF for IPv4中,使用OSPF for IPv4报头中的身份验证字段以随意的方式支持这一点。
Another use for running multiple OSPF instances is if you want, for one reason or another, to have a single link belong to two or more OSPF areas.
运行多个OSPF实例的另一个用途是,出于这样或那样的原因,如果您希望一条链路属于两个或多个OSPF区域。
Support for multiple protocol instances on a link is accomplished via an "Instance ID" contained in the OSPF packet header and OSPF interface structures. Instance ID solely affects the reception of OSPF packets.
通过OSPF数据包头和OSPF接口结构中包含的“实例ID”实现对链路上多个协议实例的支持。实例ID仅影响OSPF数据包的接收。
IPv6 link-local addresses are for use on a single link, for purposes of neighbor discovery, auto-configuration, etc. IPv6 routers do not forward IPv6 datagrams having link-local source addresses [Ref15]. Link-local unicast addresses are assigned from the IPv6 address range FF80/10.
IPv6链路本地地址用于单个链路,用于邻居发现、自动配置等。IPv6路由器不转发具有链路本地源地址的IPv6数据报[Ref15]。链路本地单播地址从IPv6地址范围FF80/10分配。
OSPF for IPv6 assumes that each router has been assigned link-local unicast addresses on each of the router's attached physical segments. On all OSPF interfaces except virtual links, OSPF packets are sent using the interface's associated link-local unicast address as source. A router learns the link-local addresses of all other routers attached to its links, and uses these addresses as next hop information during packet forwarding.
OSPF for IPv6假定每个路由器已在每个路由器连接的物理段上分配了链路本地单播地址。在除虚拟链路以外的所有OSPF接口上,OSPF数据包使用接口的关联链路本地单播地址作为源发送。路由器学习连接到其链路的所有其他路由器的链路本地地址,并在数据包转发期间使用这些地址作为下一跳信息。
On virtual links, global scope or site-local IP addresses must be used as the source for OSPF protocol packets.
在虚拟链路上,全局作用域或站点本地IP地址必须用作OSPF协议包的源。
Link-local addresses appear in OSPF Link-LSAs (see Section 3.4.3.6). However, link-local addresses are not allowed in other OSPF LSA types. In particular, link-local addresses must not be advertised in inter-area-prefix-LSAs (Section 3.4.3.3), AS-external-LSAs (Section 3.4.3.5) or intra-area-prefix-LSAs (Section 3.4.3.7).
链路本地地址出现在OSPF链路LSA中(见第3.4.3.6节)。但是,在其他OSPF LSA类型中不允许使用链路本地地址。特别是,链路本地地址不得在区域间前缀LSA(第3.4.3.3节)、外部LSA(第3.4.3.5节)或区域内前缀LSA(第3.4.3.7节)中公布。
In OSPF for IPv6, authentication has been removed from OSPF itself. The "AuType" and "Authentication" fields have been removed from the OSPF packet header, and all authentication related fields have been removed from the OSPF area and interface structures.
在用于IPv6的OSPF中,身份验证已从OSPF本身删除。“AuType”和“Authentication”字段已从OSPF数据包头中删除,所有与身份验证相关的字段已从OSPF区域和接口结构中删除。
When running over IPv6, OSPF relies on the IP Authentication Header (see [Ref19]) and the IP Encapsulating Security Payload (see [Ref20]) to ensure integrity and authentication/confidentiality of routing exchanges.
在IPv6上运行时,OSPF依赖IP身份验证头(请参见[Ref19])和IP封装安全负载(请参见[Ref20])来确保路由交换的完整性和身份验证/机密性。
Protection of OSPF packet exchanges against accidental data corruption is provided by the standard IPv6 16-bit one's complement checksum, covering the entire OSPF packet and prepended IPv6 pseudo-header (see Section A.3.1).
标准IPv6 16位1的补码校验和为OSPF数据包交换提供了防止意外数据损坏的保护,覆盖了整个OSPF数据包和前置IPv6伪报头(见第A.3.1节)。
OSPF for IPv6 runs directly over IPv6. Aside from this, all addressing semantics have been removed from the OSPF packet headers, making it essentially "network-protocol-independent". All addressing information is now contained in the various LSA types only.
用于IPv6的OSPF直接在IPv6上运行。除此之外,所有寻址语义都已从OSPF数据包头中删除,使其基本上“与网络协议无关”。所有寻址信息现在仅包含在各种LSA类型中。
In detail, changes in OSPF packet format consist of the following:
具体而言,OSPF数据包格式的更改包括以下内容:
o The OSPF version number has been increased from 2 to 3.
o OSPF版本号已从2增加到3。
o The Options field in Hello Packets and Database description Packet has been expanded to 24-bits.
o Hello数据包和数据库描述数据包中的选项字段已扩展为24位。
o The Authentication and AuType fields have been removed from the OSPF packet header (see Section 2.6).
o 认证和AuType字段已从OSPF数据包头中删除(参见第2.6节)。
o The Hello packet now contains no address information at all, and includes an Interface ID which the originating router has assigned to uniquely identify (among its own interfaces) its interface to the link. This Interface ID becomes the Netowrk-LSA's Link State ID, should the router become Designated-Router on the link.
o Hello数据包现在根本不包含地址信息,并且包含一个接口ID,发起路由器已分配该ID以唯一标识(在其自身接口中)其与链路的接口。如果路由器成为链路上的指定路由器,此接口ID将成为NetowrkLSA的链路状态ID。
o Two option bits, the "R-bit" and the "V6-bit", have been added to the Options field for processing Router-LSAs during the SPF calculation (see Section A.2). If the "R-bit" is clear an OSPF speaker can participate in OSPF topology distribution without being used to forward transit traffic; this can be used in multi-homed hosts that want to participate in the routing protocol. The V6-bit specializes the R-bit; if the V6-bit is clear an OSPF speaker can participate in OSPF topology distribution without being used to forward IPv6 datagrams. If the R-bit is set and the V6-bit is clear, IPv6 datagrams are not forwarded but diagrams belonging to another protocol family may be forwarded.
o 两个选项位“R位”和“V6位”已添加到选项字段中,用于在SPF计算期间处理路由器LSA(参见第A.2节)。如果“R位”是明确的,则OSPF扬声器可以参与OSPF拓扑分布,而不用于转发中转业务;这可用于希望参与路由协议的多宿主主机。V6位专门用于R位;如果清除V6位,则OSPF扬声器可以参与OSPF拓扑分布,而无需转发IPv6数据报。如果设置了R位且清除了V6位,则不会转发IPv6数据报,但可以转发属于另一个协议系列的图。
o TheOSPF packet header now includes an "Instance ID" which allows multiple OSPF protocol instances to be run on a single link (see Section 2.4).
o SPF数据包头现在包括一个“实例ID”,它允许在单个链路上运行多个OSPF协议实例(参见第2.4节)。
All addressing semantics have been removed from the LSA header, and from Router-LSAs and Network-LSAs. These two LSAs now describe the routing domain's topology in a network-protocol-independent manner. New LSAs have been added to distribute IPv6 address information, and data required for next hop resolution. The names of some of IPv4's LSAs have been changed to be more consistent with each other.
所有寻址语义都已从LSA头、路由器LSA和网络LSA中删除。这两个LSA现在以独立于网络协议的方式描述路由域的拓扑。添加了新的LSA以分发IPv6地址信息和下一跳解析所需的数据。IPv4的某些LSA的名称已更改,以便彼此更加一致。
In detail, changes in LSA format consist of the following:
具体而言,LSA格式的更改包括以下内容:
o The Options field has been removed from the LSA header, expanded to 24 bits, and moved into the body of Router-LSAs, Network-LSAs, Inter-Area-Router-LSAs and Link-LSAs. See Section A.2 for details.
o 选项字段已从LSA标头中删除,扩展到24位,并移动到路由器LSA、网络LSA、区域间路由器LSA和链路LSA的主体中。详见第A.2节。
o The LSA Type field has been expanded (into the former Options space) to 16 bits, with the upper three bits encoding flooding scope and the handling of unknown LSA types (see Section 2.9).
o LSA类型字段已扩展(进入前一个选项空间)到16位,上面的三位编码泛洪范围和未知LSA类型的处理(见第2.9节)。
o Addresses in LSAs are now expressed as [prefix, prefix length] instead of [address, mask] (see Section A.4.1). The default route is expressed as a prefix with length 0.
o LSA中的地址现在表示为[前缀,前缀长度],而不是[地址,掩码](见第A.4.1节)。默认路由表示为长度为0的前缀。
o The Router and Network LSAs now have no address information, and are network-protocol-independent.
o 路由器和网络LSA现在没有地址信息,并且与网络协议无关。
o Router interface information may be spread across multiple Router LSAs. Receivers must concatenate all the Router-LSAs originated by a given router when running the SPF calculation.
o 路由器接口信息可以跨多个路由器LSA传播。在运行SPF计算时,接收器必须连接由给定路由器发起的所有路由器LSA。
o A new LSA called the Link-LSA has been introduced. The LSAs have local-link flooding scope; they are never flooded beyond the link that they are associated with. Link-LSAs have three purposes: 1) they provide the router's link-local address to all other routers attached to the link, 2) they inform other routers attached to the link of a list of IPv6 prefixes to associate with the link and 3) they allow the router to assert a collection of Options bits to associate with the Network-LSA that will be originated for the link. See Section A.4.8 for details.
o 引入了一种称为链路LSA的新LSA。LSA具有本地链路泛洪范围;它们永远不会淹没在与它们相关联的链接之外。链路LSA有三个用途:1)它们向连接到链路的所有其他路由器提供路由器的链路本地地址,2)它们通知连接到该链路的其他路由器与该链路关联的IPv6前缀列表,3)它们允许路由器断言一组选项位,以与将为该链路发起的网络LSA关联。详见第A.4.8节。
In IPv4, the router-LSA carries a router's IPv4 interface addresses, the IPv4 equivalent of link-local addresses. These are only used when calculating next hops during the OSPF routing calculation (see Section 16.1.1 of [Ref1]), so they do not need to be flooded past the local link; hence using link-LSAs to distribute these addresses is more efficient. Note that link-local addresses cannot be learned through the reception of Hellos in all cases: on NBMA links next hop routers do not necessarily exchange hellos, but rather learn of each other's existence by way of the Designated Router.
在IPv4中,路由器LSA携带路由器的IPv4接口地址,即与链路本地地址等效的IPv4地址。这些仅在OSPF路由计算期间计算下一跳时使用(见[Ref1]第16.1.1节),因此它们不需要淹没本地链路;因此,使用链路LSA分发这些地址更有效。请注意,在所有情况下,链路本地地址都不能通过接收HELOS来了解:在NBMA链路上,下一跳路由器不一定交换HELOS,而是通过指定的路由器了解彼此的存在。
o The Options field in the Network LSA is set to the logical OR of the Options that each router on the link advertises in its Link-LSA.
o 网络LSA中的选项字段设置为链路上的每个路由器在其链路LSA中播发的选项的逻辑OR。
o Type-3 summary-LSAs have been renamed "Inter-Area-Prefix-LSAs". Type-4 summary LSAs have been renamed "Inter-Area-Router-LSAs".
o 类型3汇总LSA已重命名为“区域间前缀LSA”。类型4汇总LSA已重命名为“区域间路由器LSA”。
o The Link State ID in Inter-Area-Prefix-LSAs, Inter-Area-Router-LSAs and AS-external-LSAs has lost its addressing semantics, and now serves solely to identify individual pieces of the Link State Database. All addresses or Router IDs that were formerly expressed by the Link State ID are now carried in the LSA bodies.
o 区域间前缀LSA、区域间路由器LSA和AS外部LSA中的链路状态ID已失去其寻址语义,现在仅用于标识链路状态数据库的各个部分。以前由链路状态ID表示的所有地址或路由器ID现在都包含在LSA主体中。
o Network-LSAs and Link-LSAs are the only LSAs whose Link State ID carries additional meaning. For these LSAs, the Link State ID is always the Interface ID of the originating router on the link being described. For this reason, Network-LSAs and Link-LSAs are now the only LSAs whose size cannot be limited: a Network-LSA must list all routers connected to the link, and a Link-LSA must list all of a router's addresses on the link.
o 网络LSA和链路LSA是链路状态ID具有附加含义的唯一LSA。对于这些LSA,链路状态ID始终是所描述链路上发起路由器的接口ID。因此,网络LSA和链路LSA现在是唯一的大小不能限制的LSA:网络LSA必须列出连接到链路的所有路由器,链路LSA必须列出链路上路由器的所有地址。
o A new LSA called the Intra-Area-Prefix-LSA has been introduced. This LSA carries all IPv6 prefix information that in IPv4 is included in Router-LSAs and Network-LSAs. See Section A.4.9 for details.
o 引入了一种称为区域内前缀LSA的新LSA。此LSA携带IPv4中包含在路由器LSA和网络LSA中的所有IPv6前缀信息。详见第A.4.9节。
o Inclusion of a forwarding address in AS-external-LSAs is now optional, as is the inclusion of an external route tag (see [Ref5]). In addition, AS-external-LSAs can now reference another LSA, for inclusion of additional route attributes that are outside the scope of the OSPF protocol itself. For example, this can be used to attach BGP path attributes to external routes as proposed in [Ref10].
o 在AS外部LSA中包含转发地址现在是可选的,包括外部路由标记也是可选的(参见[Ref5])。此外,由于外部LSA现在可以引用另一个LSA,因此包含OSPF协议本身范围之外的其他路由属性。例如,这可用于将BGP路径属性附加到[Ref10]中建议的外部路由。
Handling of unknown LSA types has been made more flexible so that, based on LS type, unknown LSA types are either treated as having link-local flooding scope, or are stored and flooded as if they were understood (desirable for things like the proposed External-Attributes-LSA in [Ref10]). This behavior is explicitly coded in the LSA Handling bit of the link state header's LS type field (see Section A.4.2.1).
对未知LSA类型的处理变得更加灵活,因此,基于LS类型,未知LSA类型要么被视为具有链接局部泛洪范围,要么被存储和泛洪,就好像它们被理解一样(对于[Ref10]中提出的外部属性LSA之类的事物是可取的)。该行为在链路状态报头的LS类型字段的LSA处理位中明确编码(见第A.4.2.1节)。
The IPv4 OSPF behavior of simply discarding unknown types is unsupported due to the desire to mix router capabilities on a single link. Discarding unknown types causes problems when the Designated Router supports fewer options than the other routers on the link.
由于希望在单个链路上混合路由器功能,不支持简单丢弃未知类型的IPv4 OSPF行为。当指定路由器支持的选项少于链路上的其他路由器时,丢弃未知类型会导致问题。
In OSPF for IPv4, stub areas were designed to minimize link-state database and routing table sizes for the areas' internal routers. This allows routers with minimal resources to participate in even very large OSPF routing domains.
在IPv4的OSPF中,存根区域被设计为最小化区域内部路由器的链路状态数据库和路由表大小。这允许资源最少的路由器参与甚至非常大的OSPF路由域。
In OSPF for IPv6, the concept of stub areas is retained. In IPv6, of the mandatory LSA types, stub areas carry only router-LSAs, network-LSAs, Inter-Area-Prefix-LSAs, Link-LSAs, and Intra-Area-Prefix-LSAs. This is the IPv6 equivalent of the LSA types carried in IPv4 stub areas: router-LSAs, network-LSAs and type 3 summary-LSAs.
在用于IPv6的OSPF中,存根区域的概念被保留。在IPv6中,在强制LSA类型中,存根区域仅承载路由器LSA、网络LSA、区域间前缀LSA、链路LSA和区域内前缀LSA。这是IPv4存根区域中承载的LSA类型的IPv6等价物:路由器LSA、网络LSA和类型3摘要LSA。
However, unlike in IPv4, IPv6 allows LSAs with unrecognized LS types to be labeled "Store and flood the LSA, as if type understood" (see the U-bit in Section A.4.2.1). Uncontrolled introduction of such LSAs could cause a stub area's link-state database to grow larger than its component routers' capacities.
但是,与IPv4不同,IPv6允许将具有无法识别的LS类型的LSA标记为“存储并泛洪LSA,就像理解类型一样”(请参阅第A.4.2.1节中的U位)。此类LSA的不受控制的引入可能会导致存根区域的链路状态数据库增长超过其组件路由器的容量。
To guard against this, the following rule regarding stub areas has been established: an LSA whose LS type is unrecognized may only be flooded into/throughout a stub area if both a) the LSA has area or link-local flooding scope and b) the LSA has U-bit set to 0. See Section 3.5 for details.
为了防止这种情况,建立了以下关于存根区域的规则:如果LSA具有区域或链路局部泛洪作用域,并且LSA的U位设置为0,则LS类型无法识别的LSA只能泛洪到存根区域中/整个存根区域。详见第3.5节。
In OSPF for IPv6, neighboring routers on a given link are always identified by their OSPF Router ID. This contrasts with the IPv4 behavior where neighbors on point-to-point networks and virtual links are identified by their Router IDs, and neighbors on broadcast, NBMA and Point-to-MultiPoint links are identified by their IPv4 interface addresses.
在用于IPv6的OSPF中,给定链路上的相邻路由器始终由其OSPF路由器ID标识。这与IPv4行为形成对比,在IPv4行为中,点到点网络和虚拟链路上的邻居由其路由器ID标识,而广播、NBMA和点到多点链路上的邻居由其IPv4接口地址标识。
This change affects the reception of OSPF packets (see Section 8.2 of [Ref1]), the lookup of neighbors (Section 10 of [Ref1]) and the reception of Hello Packets (Section 10.5 of [Ref1]).
这一变化影响OSPF数据包的接收(参见[Ref1]第8.2节)、邻居查找(参见[Ref1]第10节)和Hello数据包的接收(参见[Ref1]第10.5节)。
The Router ID of 0.0.0.0 is reserved, and should not be used.
路由器ID 0.0.0.0是保留的,不应使用。
When going from IPv4 to IPv6, the basic OSPF mechanisms remain unchanged from those documented in [Ref1]. These mechanisms are briefly outlined in Section 4 of [Ref1]. Both IPv6 and IPv4 have a link-state database composed of LSAs and synchronized between adjacent routers. Initial synchronization is performed through the Database Exchange process, through the exchange of Database Description, Link State Request and Link State Update packets. Thereafter database synchronization is maintained via flooding, utilizing Link State Update and Link State Acknowledgment packets. Both IPv6 and IPv4 use OSPF Hello Packets to discover and maintain neighbor relationships, and to elect Designated Routers and Backup Designated Routers on broadcast and NBMA links. The decision as to which neighbor relationships become adjacencies, along with the basic ideas behind inter-area routing, importing external information in AS-external-LSAs and the various routing calculations are also the same.
从IPv4到IPv6时,基本OSPF机制与[参考文献1]中记录的机制保持不变。[参考文献1]第4节简要概述了这些机制。IPv6和IPv4都有一个由LSA组成的链路状态数据库,并在相邻路由器之间进行同步。初始同步是通过数据库交换过程,通过交换数据库描述、链路状态请求和链路状态更新数据包来执行的。此后,利用链路状态更新和链路状态确认数据包,通过泛洪保持数据库同步。IPv6和IPv4都使用OSPF Hello数据包来发现和维护邻居关系,并在广播和NBMA链路上选择指定路由器和备份指定路由器。关于哪些邻居关系成为邻接关系的决定,以及区域间路由、将外部信息作为外部LSA导入以及各种路由计算背后的基本思想也是相同的。
In particular, the following IPv4 OSPF functionality described in [Ref1] remains completely unchanged for IPv6:
具体而言,[Ref1]中描述的以下IPv4 OSPF功能对于IPv6保持完全不变:
o Both IPv4 and IPv6 use OSPF packet types described in Section 4.3 of [Ref1], namely: Hello, Database Description, Link State Request, Link State Update and Link State Acknowledgment packets. While in some cases (e.g., Hello packets) their format has changed somewhat, the functions of the various packet types remains the same.
o IPv4和IPv6都使用[Ref1]第4.3节中描述的OSPF数据包类型,即:Hello、数据库描述、链路状态请求、链路状态更新和链路状态确认数据包。虽然在某些情况下(例如,Hello数据包),其格式有所改变,但各种数据包类型的功能保持不变。
o The system requirements for an OSPF implementation remain unchanged, although OSPF for IPv6 requires an IPv6 protocol stack (from the network layer on down) since it runs directly over the IPv6 network layer.
o OSPF实现的系统要求保持不变,尽管OSPF for IPv6需要IPv6协议栈(从网络层向下),因为它直接在IPv6网络层上运行。
o The discovery and maintenance of neighbor relationships, and the selection and establishment of adjacencies remain the same. This includes election of the Designated Router and Backup Designated Router on broadcast and NBMA links. These mechanisms are described in Sections 7, 7.1, 7.2, 7.3, 7.4 and 7.5 of [Ref1].
o 邻居关系的发现和维护以及邻接关系的选择和建立保持不变。这包括在广播和NBMA链路上选择指定路由器和备份指定路由器。这些机制在[参考文献1]的第7、7.1、7.2、7.3、7.4和7.5节中进行了描述。
o The link types (or equivalently, interface types) supported by OSPF remain unchanged, namely: point-to-point, broadcast, NBMA, Point-to-MultiPoint and virtual links.
o OSPF支持的链路类型(或等效的接口类型)保持不变,即:点对点、广播、NBMA、点对多点和虚拟链路。
o The interface state machine, including the list of OSPF interface states and events, and the Designated Router and Backup Designated Router election algorithm, remain unchanged. These are described in Sections 9.1, 9.2, 9.3 and 9.4 of [Ref1].
o 接口状态机(包括OSPF接口状态和事件列表)以及指定路由器和备份指定路由器选择算法保持不变。[参考文献1]第9.1节、第9.2节、第9.3节和第9.4节对此进行了描述。
o The neighbor state machine, including the list of OSPF neighbor states and events, remain unchanged. These are described in Sections 10.1, 10.2, 10.3 and 10.4 of [Ref1].
o 邻居状态机(包括OSPF邻居状态和事件列表)保持不变。[参考文献1]第10.1节、第10.2节、第10.3节和第10.4节对此进行了描述。
o Aging of the link-state database, as well as flushing LSAs from the routing domain through the premature aging process, remains unchanged from the description in Sections 14 and 14.1 of [Ref1].
o 链路状态数据库的老化,以及通过过早老化过程从路由域刷新LSA,与[参考文献1]第14节和第14.1节中的描述保持不变。
However, some OSPF protocol mechanisms have changed, as outlined in Section 2 above. These changes are explained in detail in the following subsections, making references to the appropriate sections of [Ref1].
然而,如上文第2节所述,一些OSPF协议机制已经改变。以下小节详细解释了这些变化,并参考了[参考文献1]的相应章节。
The following subsections provide a recipe for turning an IPv4 OSPF implementation into an IPv6 OSPF implementation.
以下小节提供了将IPv4 OSPF实现转换为IPv6 OSPF实现的方法。
The major OSPF data structures are the same for both IPv4 and IPv6: areas, interfaces, neighbors, the link-state database and the routing table. The top-level data structures for IPv6 remain those listed in Section 5 of [Ref1], with the following modifications:
IPv4和IPv6的主要OSPF数据结构相同:区域、接口、邻居、链路状态数据库和路由表。IPv6的顶级数据结构仍然是[Ref1]第5节中列出的数据结构,但有以下修改:
o All LSAs with known LS type and AS flooding scope appear in the top-level data structure, instead of belonging to a specific area or link. AS-external-LSAs are the only LSAs defined by this specification which have AS flooding scope. LSAs with unknown LS type, U-bit set to 1 (flood even when unrecognized) and AS flooding scope also appear in the top-level data structure.
o 所有具有已知LS类型和AS泛洪范围的LSA都显示在顶级数据结构中,而不属于特定区域或链接。AS外部LSA是本规范定义的唯一具有AS泛洪范围的LSA。具有未知LS类型、U位设置为1(即使无法识别也会泛洪)和AS泛洪作用域的LSA也会出现在顶级数据结构中。
The IPv6 area data structure contains all elements defined for IPv4 areas in Section 6 of [Ref1]. In addition, all LSAs of known type which have area flooding scope are contained in the IPv6 area data structure. This always includes the following LSA types: router-LSAs, network-LSAs, inter-area-prefix-LSAs, inter-area-router-LSAs and intra-area-prefix-LSAs. LSAs with unknown LS type, U-bit set to 1 (flood even when unrecognized) and area scope also appear in the area data structure. IPv6 routers implementing MOSPF add group-membership-LSAs to the area data structure. Type-7-LSAs belong to an NSSA area's data structure.
IPv6区域数据结构包含[Ref1]第6节中为IPv4区域定义的所有元素。此外,具有区域泛洪作用域的所有已知类型的LSA都包含在IPv6区域数据结构中。这始终包括以下LSA类型:路由器LSA、网络LSA、区域间前缀LSA、区域间路由器LSA和区域内前缀LSA。具有未知LS类型、U位设置为1(即使无法识别也会泛洪)和区域范围的LSA也会出现在区域数据结构中。实现MOSPF的IPv6路由器将组成员身份LSA添加到区域数据结构中。7类LSA属于NSSA区域的数据结构。
In OSPF for IPv6, an interface connects a router to a link. The IPv6 interface structure modifies the IPv4 interface structure (as defined in Section 9 of [Ref1]) as follows:
在用于IPv6的OSPF中,接口将路由器连接到链路。IPv6接口结构修改了IPv4接口结构(如[Ref1]第9节所定义),如下所示:
Interface ID Every interface is assigned an Interface ID, which uniquely identifies the interface with the router. For example, some implementations may be able to use the MIB-II IfIndex ([Ref3]) as Interface ID. The Interface ID appears in Hello packets sent out the interface, the link-local-LSA originated by router for the attached link, and the router-LSA originated by the router-LSA for the associated area. It will also serve as the Link State ID for the network-LSA that the router will originate for the link if the router is elected Designated Router.
接口ID为每个接口分配一个接口ID,该ID唯一地标识与路由器的接口。例如,一些实现可能能够使用MIB-II IfIndex([Ref3])作为接口ID。接口ID出现在从接口发送的Hello数据包中,由路由器为连接的链路发起的链路本地LSA,以及由路由器LSA为相关区域发起的路由器LSA。它还将用作网络LSA的链路状态ID,如果路由器被选为指定路由器,则路由器将为链路发起该LSA。
Instance ID Every interface is assigned an Instance ID. This should default to 0, and is only necessary to assign differently on those links that will contain multiple separate communities of OSPF Routers. For example, suppose that there are two communities of routers on a given ethernet segment that you wish to keep separate.
实例ID每个接口都分配了一个实例ID。这应该默认为0,并且只需要在包含多个单独OSPF路由器社区的链接上进行不同的分配。例如,假设在给定的以太网段上有两个路由器社区,您希望将它们分开。
The first community is given an Instance ID of 0, by assigning 0 as the Instance ID of all its routers' interfaces to the ethernet. An Instance ID of 1 is assigned to the other routers' interfaces to the ethernet. The OSPF transmit and receive processing (see Section 3.2) will then keep the two communities separate.
通过将0指定为其所有路由器到以太网接口的实例ID,第一个社区的实例ID为0。实例ID为1分配给其他路由器与以太网的接口。OSPF发送和接收处理(见第3.2节)将使两个社区保持分离。
List of LSAs with link-local scope All LSAs with link-local scope and which were originated/flooded on the link belong to the interface structure which connects to the link. This includes the collection of the link's link-LSAs.
具有链接本地作用域的LSA列表所有具有链接本地作用域且在链接上发起/淹没的LSA都属于连接到链接的接口结构。这包括链接的链接LSA的集合。
List of LSAs with unknown LS type All LSAs with unknown LS type and U-bit set to 0 (if unrecognized, treat the LSA as if it had link-local flooding scope) are kept in the data structure for the interface that received the LSA.
LS类型未知的LSA列表所有LS类型未知且U位设置为0的LSA(如果无法识别,则将LSA视为具有链路本地泛洪作用域)都保存在接收LSA的接口的数据结构中。
IP interface address For IPv6, the IPv6 address appearing in the source of OSPF packets sent out the interface is almost always a link-local address. The one exception is for virtual links, which must use one of the router's own site-local or global IPv6 addresses as IP interface address.
IP接口地址对于IPv6,发送到接口的OSPF数据包源中出现的IPv6地址几乎总是链路本地地址。一个例外是虚拟链路,它必须使用路由器自己的站点本地或全局IPv6地址之一作为IP接口地址。
List of link prefixes A list of IPv6 prefixes can be configured for the attached link. These will be advertised by the router in link-LSAs, so that they can be advertised by the link's Designated Router in intra-area-prefix-LSAs.
链路前缀列表可以为连接的链路配置IPv6前缀列表。这些将由路由器在链路lsa中进行通告,以便它们可以由链路的指定路由器在区域内前缀lsa中进行通告。
In OSPF for IPv6, each router interface has a single metric, representing the cost of sending packets out the interface. In addition, OSPF for IPv6 relies on the IP Authentication Header (see [Ref19]) and the IP Encapsulating Security Payload (see [Ref20]) to ensure integrity and authentication/confidentiality of routing exchanges. For that reason, AuType and Authentication key are not associated with IPv6 OSPF interfaces.
在用于IPv6的OSPF中,每个路由器接口都有一个度量,表示从接口发送数据包的成本。此外,用于IPv6的OSPF依赖于IP身份验证标头(参见[Ref19])和IP封装安全有效负载(参见[Ref20]),以确保路由交换的完整性和身份验证/机密性。因此,AuType和身份验证密钥与IPv6 OSPF接口不关联。
Interface states, events, and the interface state machine remain unchanged from IPv4, and are documented in Sections 9.1, 9.2 and 9.3 of [Ref1] respectively. The Designated Router and Backup Designated Router election algorithm also remains unchanged from the IPv4 election in Section 9.4 of [Ref1].
与IPv4相比,接口状态、事件和接口状态机保持不变,并分别记录在[参考文献1]的第9.1、9.2和9.3节中。与[参考文献1]第9.4节中的IPv4选择相比,指定路由器和备份指定路由器选择算法也保持不变。
The neighbor structure performs the same function in both IPv6 and IPv4. Namely, it collects all information required to form an adjacency between two routers, if an adjacency becomes necessary. Each neighbor structure is bound to a single OSPF interface. The differences between the IPv6 neighbor structure and the neighbor structure defined for IPv4 in Section 10 of [Ref1] are:
邻居结构在IPv6和IPv4中执行相同的功能。也就是说,如果需要邻接,它会收集在两个路由器之间形成邻接所需的所有信息。每个邻居结构都绑定到一个OSPF接口。IPv6邻居结构与[Ref1]第10节中为IPv4定义的邻居结构之间的区别如下:
Neighbor's Interface ID The Interface ID that the neighbor advertises in its Hello Packets must be recorded in the neighbor structure. The router will include the neighbor's Interface ID in the router's router-LSA when either a) advertising a point-to-point link to the neighbor or b) advertising a link to a network where the neighbor has become Designated Router.
邻居的接口ID邻居在其Hello数据包中播发的接口ID必须记录在邻居结构中。当a)宣传到邻居的点到点链路或b)宣传到邻居已成为指定路由器的网络的链路时,路由器将在路由器的路由器LSA中包括邻居的接口ID。
Neighbor IP address Except on virtual links, the neighbor's IP address will be an IPv6 link-local address.
邻居IP地址除了在虚拟链路上,邻居的IP地址将是IPv6链路本地地址。
Neighbor's Designated Router The neighbor's choice of Designated Router is now encoded as a Router ID, instead of as an IP address.
邻居的指定路由器现在,邻居选择的指定路由器编码为路由器ID,而不是IP地址。
Neighbor's Backup Designated Router The neighbor's choice of Designated Router is now encoded as a Router ID, instead of as an IP address.
邻居的备份指定路由器现在,邻居选择的指定路由器编码为路由器ID,而不是IP地址。
Neighbor states, events, and the neighbor state machine remain unchanged from IPv4, and are documented in Sections 10.1, 10.2 and 10.3 of [Ref1] respectively. The decision as to which adjacencies to form also remains unchanged from the IPv4 logic documented in Section 10.4 of [Ref1].
邻居状态、事件和邻居状态机与IPv4保持不变,并分别记录在[参考文献1]的第10.1、10.2和10.3节中。与[参考文献1]第10.4节中记录的IPv4逻辑相比,关于形成哪些邻接的决定也保持不变。
OSPF for IPv6 runs directly over IPv6's network layer. As such, it is encapsulated in one or more IPv6 headers, with the Next Header field of the immediately encapsulating IPv6 header set to the value 89.
用于IPv6的OSPF直接在IPv6的网络层上运行。因此,它被封装在一个或多个IPv6报头中,立即封装IPv6报头的下一个报头字段设置为值89。
As for IPv4, in IPv6 OSPF routing protocol packets are sent along adjacencies only (with the exception of Hello packets, which are used to discover the adjacencies). OSPF packet types and functions are the same in both IPv4 and IPv4, encoded by the
对于IPv4,在IPv6中,OSPF路由协议数据包仅沿邻接发送(用于发现邻接的Hello数据包除外)。在IPv4和IPv4中,OSPF数据包类型和功能相同,由
Type field of the standard OSPF packet header.
标准OSPF数据包头的类型字段。
When an IPv6 router sends an OSPF routing protocol packet, it fills in the fields of the standard OSPF for IPv6 packet header (see Section A.3.1) as follows:
当IPv6路由器发送OSPF路由协议数据包时,它会按如下方式填写IPv6数据包头的标准OSPF字段(参见第A.3.1节):
Version # Set to 3, the version number of the protocol as documented in this specification.
版本#设置为3,即本规范中记录的协议版本号。
Type The type of OSPF packet, such as Link state Update or Hello Packet.
键入OSPF数据包的类型,例如链路状态更新或Hello数据包。
Packet length The length of the entire OSPF packet in bytes, including the standard OSPF packet header.
数据包长度整个OSPF数据包的长度(字节),包括标准OSPF数据包头。
Router ID The identity of the router itself (who is originating the packet).
路由器ID路由器本身的身份(发起数据包的人)。
Area ID The OSPF area that the packet is being sent into.
Area ID数据包发送到的OSPF区域。
Instance ID The OSPF Instance ID associated with the interface that the packet is being sent out of.
实例ID与发送数据包的接口关联的OSPF实例ID。
Checksum The standard IPv6 16-bit one's complement checksum, covering the entire OSPF packet and prepended IPv6 pseudo-header (see Section A.3.1).
校验和标准IPv6 16位1的补码校验和,覆盖整个OSPF数据包和前置IPv6伪报头(见第A.3.1节)。
Selection of OSPF routing protocol packets' IPv6 source and destination addresses is performed identically to the IPv4 logic in Section 8.1 of [Ref1]. The IPv6 destination address is chosen from among the addresses AllSPFRouters, AllDRouters and the Neighbor IP address associated with the other end of the adjacency (which in IPv6, for all links except virtual links, is an IPv6 link-local address).
OSPF路由协议包的IPv6源地址和目标地址的选择与[参考文献1]第8.1节中的IPv4逻辑相同。IPv6目标地址从地址AllSPFRouters、AllDRouters和与邻接另一端关联的邻居IP地址(在IPv6中,对于除虚拟链路以外的所有链路,该地址是IPv6链路本地地址)中选择。
The sending of Link State Request Packets and Link State Acknowledgment Packets remains unchanged from the IPv4 procedures documented in Sections 10.9 and 13.5 of [Ref1] respectively. Sending Hello Packets is documented in Section 3.2.1.1, and the sending of Database Description Packets in Section 3.2.1.2. The sending of Link State Update Packets is documented in Section 3.5.2.
链路状态请求数据包和链路状态确认数据包的发送与[Ref1]第10.9节和第13.5节中分别记录的IPv4程序保持不变。发送Hello数据包见第3.2.1.1节,发送数据库描述数据包见第3.2.1.2节。链路状态更新数据包的发送记录在第3.5.2节中。
IPv6 changes the way OSPF Hello packets are sent in the following ways (compare to Section 9.5 of [Ref1]):
IPv6通过以下方式改变了OSPF Hello数据包的发送方式(与参考文献1第9.5节相比):
o Before the Hello Packet is sent out an interface, the interface's Interface ID must be copied into the Hello Packet.
o 在Hello数据包发送到接口之前,必须将接口的接口ID复制到Hello数据包中。
o The Hello Packet no longer contains an IP network mask, as OSPF for IPv6 runs per-link instead of per-subnet.
o Hello数据包不再包含IP网络掩码,因为IPv6的OSPF是按链路而不是按子网运行的。
o The choice of Designated Router and Backup Designated Router are now indicated within Hellos by their Router IDs, instead of by their IP interface addresses. Advertising the Designated Router (or Backup Designated Router) as 0.0.0.0 indicates that the Designated Router (or Backup Designated Router) has not yet been chosen.
o 指定路由器和备份指定路由器的选择现在由其路由器ID(而不是IP接口地址)在HELOS中指示。将指定路由器(或备份指定路由器)公布为0.0.0.0表示尚未选择指定路由器(或备份指定路由器)。
o The Options field within Hello packets has moved around, getting larger in the process. More options bits are now possible. Those that must be set correctly in Hello packets are: The E-bit is set if and only if the interface attaches to a non-stub area, the N-bit is set if and only if the interface attaches to an NSSA area (see [Ref9]), and the DC- bit is set if and only if the router wishes to suppress the sending of future Hellos over the interface (see [Ref11]). Unrecognized bits in the Hello Packet's Options field should be cleared.
o Hello数据包中的选项字段已经移动,在这个过程中变得越来越大。更多的选项位现在是可能的。在Hello数据包中必须正确设置的是:当且仅当接口连接到非存根区域时,设置E位;当且仅当接口连接到NSSA区域时,设置N位(参见[Ref9]);当且仅当路由器希望抑制未来通过接口发送Hello时,设置DC位(参见[Ref11])。应清除Hello数据包选项字段中无法识别的位。
Sending Hello packets on NBMA networks proceeds for IPv6 in exactly the same way as for IPv4, as documented in Section 9.5.1 of [Ref1].
如参考文献1第9.5.1节所述,在NBMA网络上发送Hello数据包的方式与IPv4完全相同。
The sending of Database Description packets differs from Section 10.8 of [Ref1] in the following ways:
数据库描述数据包的发送与[Ref1]第10.8节的不同之处如下:
o The Options field within Database Description packets has moved around, getting larger in the process. More options bits are now possible. Those that must be set correctly in Database Description packets are: The MC-bit is set if and only if the router is forwarding multicast datagrams according to the MOSPF specification in [Ref7], and the DC-bit is set if and only if the router wishes to suppress the sending of Hellos over the interface (see [Ref11]). Unrecognized bits in the Database Description Packet's Options field should be cleared.
o 数据库描述数据包中的选项字段已经移动,在这个过程中变得越来越大。更多的选项位现在是可能的。数据库描述数据包中必须正确设置的是:当且仅当路由器根据[Ref7]中的MOSPF规范转发多播数据报时,设置MC位;当且仅当路由器希望抑制通过接口发送HELOS时,设置DC位(参见[Ref11])。应清除数据库描述数据包选项字段中无法识别的位。
Whenever an OSPF protocol packet is received by the router it is marked with the interface it was received on. For routers that have virtual links configured, it may not be immediately obvious which interface to associate the packet with. For example, consider the Router RT11 depicted in Figure 6 of [Ref1]. If RT11 receives an OSPF protocol packet on its interface to Network N8, it may want to associate the packet with the interface to Area 2, or with the virtual link to Router RT10 (which is part of the backbone). In the following, we assume that the packet is initially associated with the non-virtual link.
每当路由器接收到OSPF协议包时,它都会用接收到它的接口进行标记。对于配置了虚拟链路的路由器,可能无法立即确定要将数据包与哪个接口关联。例如,考虑[RF1]图6中描述的路由器RT11。如果RT11在其与网络N8的接口上接收到OSPF协议分组,则它可能希望将该分组与到区域2的接口相关联,或者与到路由器RT10(其是主干网的一部分)的虚拟链路相关联。在下文中,我们假设数据包最初与非虚拟链路相关联。
In order for the packet to be passed to OSPF for processing, the following tests must be performed on the encapsulating IPv6 headers:
为了将数据包传递给OSPF进行处理,必须对封装的IPv6报头执行以下测试:
o The packet's IP destination address must be one of the IPv6 unicast addresses associated with the receiving interface (this includes link-local addresses), or one of the IP multicast addresses AllSPFRouters or AllDRouters.
o 数据包的IP目标地址必须是与接收接口相关联的IPv6单播地址之一(包括链路本地地址),或者是IP多播地址AllsFrouters或AllDrooter之一。
o The Next Header field of the immediately encapsulating IPv6 header must specify the OSPF protocol (89).
o 立即封装IPv6报头的下一个报头字段必须指定OSPF协议(89)。
o Any encapsulating IP Authentication Headers (see [Ref19]) and the IP Encapsulating Security Payloads (see [Ref20]) must be processed and/or verified to ensure integrity and authentication/confidentiality of OSPF routing exchanges.
o 必须处理和/或验证任何封装IP认证头(见[Ref19])和IP封装安全有效载荷(见[Ref20]),以确保OSPF路由交换的完整性和认证/机密性。
o Locally originated packets should not be passed on to OSPF. That is, the source IPv6 address should be examined to make sure this is not a multicast packet that the router itself generated.
o 本地发起的数据包不应传递到OSPF。也就是说,应该检查源IPv6地址,以确保这不是路由器本身生成的多播数据包。
After processing the encapsulating IPv6 headers, the OSPF packet header is processed. The fields specified in the header must match those configured for the receiving interface. If they do not, the packet should be discarded:
在处理封装的IPv6报头之后,将处理OSPF数据包报头。标头中指定的字段必须与为接收接口配置的字段匹配。如果没有,则应丢弃数据包:
o The version number field must specify protocol version 3.
o 版本号字段必须指定协议版本3。
o The standard IPv6 16-bit one's complement checksum, covering the entire OSPF packet and prepended IPv6 pseudo-header, must be verified (see Section A.3.1).
o 必须验证覆盖整个OSPF数据包和前置IPv6伪报头的标准IPv6 16位1的补码校验和(见第A.3.1节)。
o The Area ID found in the OSPF header must be verified. If both of the following cases fail, the packet should be discarded. The Area ID specified in the header must either:
o 必须验证在OSPF标头中找到的区域ID。如果以下两种情况均失败,则应丢弃数据包。标头中指定的区域ID必须:
(1) Match the Area ID of the receiving interface. In this case, unlike for IPv4, the IPv6 source address is not restricted to lie on the same IP subnet as the receiving interface. IPv6 OSPF runs per-link, instead of per-IP-subnet.
(1) 匹配接收接口的区域ID。在这种情况下,与IPv4不同,IPv6源地址不限于与接收接口位于同一IP子网上。IPv6 OSPF按链路运行,而不是按IP子网运行。
(2) Indicate the backbone. In this case, the packet has been sent over a virtual link. The receiving router must be an area border router, and the Router ID specified in the packet (the source router) must be the other end of a configured virtual link. The receiving interface must also attach to the virtual link's configured Transit area. If all of these checks succeed, the packet is accepted and is from now on associated with the virtual link (and the backbone area).
(2) 表示主干。在这种情况下,数据包已通过虚拟链路发送。接收路由器必须是区域边界路由器,数据包中指定的路由器ID(源路由器)必须是已配置虚拟链路的另一端。接收接口还必须连接到虚拟链路的配置传输区域。如果所有这些检查都成功,则数据包将被接受,并从现在起与虚拟链路(和主干区域)关联。
o The Instance ID specified in the OSPF header must match the receiving interface's Instance ID.
o OSPF标头中指定的实例ID必须与接收接口的实例ID匹配。
o Packets whose IP destination is AllDRouters should only be accepted if the state of the receiving interface is DR or Backup (see Section 9.1).
o 仅当接收接口的状态为DR或Backup时,才应接受IP目的地为AllDrooters的数据包(见第9.1节)。
After header processing, the packet is further processed according to its OSPF packet type. OSPF packet types and functions are the same for both IPv4 and IPv6.
在报头处理之后,根据其OSPF分组类型进一步处理分组。IPv4和IPv6的OSPF数据包类型和功能相同。
If the packet type is Hello, it should then be further processed by the Hello Protocol. All other packet types are sent/received only on adjacencies. This means that the packet must have been sent by one of the router's active neighbors. The neighbor is identified by the Router ID appearing the the received packet's OSPF header. Packets not matching any active neighbor are discarded.
如果数据包类型是Hello,那么它应该由Hello协议进一步处理。所有其他数据包类型仅在相邻位置发送/接收。这意味着数据包必须由路由器的一个活动邻居发送。邻居由出现在接收到的数据包的OSPF报头上的路由器ID标识。不匹配任何活动邻居的数据包将被丢弃。
The receive processing of Database Description Packets, Link State Request Packets and Link State Acknowledgment Packets remains unchanged from the IPv4 procedures documented in Sections 10.6, 10.7 and 13.7 of [Ref1] respectively. The receiving of Hello Packets is documented in Section 3.2.2.1, and the receiving of Link State Update Packets is documented in Section 3.5.1.
数据库描述数据包、链路状态请求数据包和链路状态确认数据包的接收处理与[Ref1]第10.6、10.7和13.7节中分别记录的IPv4程序保持不变。Hello数据包的接收记录在第3.2.2.1节中,链路状态更新数据包的接收记录在第3.5.1节中。
The receive processing of Hello Packets differs from Section 10.5 of [Ref1] in the following ways:
Hello数据包的接收处理与[Ref1]第10.5节的不同之处如下:
o On all link types (e.g., broadcast, NBMA, point-to- point, etc), neighbors are identified solely by their OSPF Router ID. For all link types except virtual links, the Neighbor IP address is set to the IPv6 source address in the IPv6 header of the received OSPF Hello packet.
o 在所有链路类型(如广播、NBMA、点对点等)上,邻居仅通过其OSPF路由器ID进行标识。对于除虚拟链路以外的所有链路类型,邻居IP地址设置为接收到的OSPF Hello数据包的IPv6报头中的IPv6源地址。
o There is no longer a Network Mask field in the Hello Packet.
o Hello数据包中不再有网络掩码字段。
o The neighbor's choice of Designated Router and Backup Designated Router is now encoded as an OSPF Router ID instead of an IP interface address.
o 邻居选择的指定路由器和备份指定路由器现在编码为OSPF路由器ID,而不是IP接口地址。
The routing table used by OSPF for IPv4 is defined in Section 11 of [Ref1]. For IPv6 there are analogous routing table entries: there are routing table entries for IPv6 address prefixes, and also for AS boundary routers. The latter routing table entries are only used to hold intermediate results during the routing table build process (see Section 3.8).
OSPF用于IPv4的路由表在[Ref1]的第11节中定义。对于IPv6,有类似的路由表条目:有IPv6地址前缀的路由表条目,也有AS边界路由器的路由表条目。后一个路由表条目仅用于在路由表构建过程中保存中间结果(参见第3.8节)。
Also, to hold the intermediate results during the shortest-path calculation for each area, there is a separate routing table for each area holding the following entries:
此外,为了在每个区域的最短路径计算期间保存中间结果,每个区域都有一个单独的路由表,其中包含以下条目:
o An entry for each router in the area. Routers are identified by their OSPF router ID. These routing table entries hold the set of shortest paths through a given area to a given router, which in turn allows calculation of paths to the IPv6 prefixes advertised by that router in Intra-area-prefix-LSAs. If the router is also an area-border router, these entries are also used to calculate paths for inter-area address prefixes. If in addition the router is the other endpoint of a virtual link, the routing table entry describes the cost and viability of the virtual link.
o 区域中每个路由器的条目。路由器由其OSPF路由器ID标识。这些路由表条目包含通过给定区域到给定路由器的最短路径集,从而允许计算到该路由器在区域内前缀LSA中公布的IPv6前缀的路径。如果路由器也是区域边界路由器,则这些条目也用于计算区域间地址前缀的路径。此外,如果路由器是虚拟链路的另一个端点,则路由表条目描述虚拟链路的成本和生存能力。
o An entry for each transit link in the area. Transit links have associated network-LSAs. Both the transit link and the network-LSA are identified by a combination of the Designated Router's Interface ID on the link and the Designated Router's OSPF Router ID. These routing table entries allow later calculation of paths to IP prefixes advertised for the transit link in intra-area-prefix-LSAs.
o 该区域中每个公交线路的入口。传输链路具有关联的网络LSA。传输链路和网络LSA都是通过链路上指定路由器的接口ID和指定路由器的OSPF路由器ID的组合来标识的。这些路由表条目允许以后计算区域内前缀LSA中为传输链路播发的IP前缀的路径。
The fields in the IPv4 OSPF routing table (see Section 11 of [Ref1]) remain valid for IPv6: Optional capabilities (routers only), path type, cost, type 2 cost, link state origin, and for each of the equal cost paths to the destination, the next hop and advertising router.
IPv4 OSPF路由表中的字段(参见[Ref1]第11节)对于IPv6仍然有效:可选功能(仅路由器)、路径类型、成本、类型2成本、链路状态来源,以及对于到目的地、下一跳和广告路由器的每个等成本路径。
For IPv6, the link-state origin field in the routing table entry is the router-LSA or network-LSA that has directly or indirectly produced the routing table entry. For example, if the routing table entry describes a route to an IPv6 prefix, the link state origin is the router-LSA or network-LSA that is listed in the body of the intra-area-prefix-LSA that has produced the route (see Section A.4.9).
对于IPv6,路由表条目中的链路状态原点字段是直接或间接生成路由表条目的路由器LSA或网络LSA。例如,如果路由表条目描述到IPv6前缀的路由,则链路状态原点是已生成路由的区域内前缀LSA正文中列出的路由器LSA或网络LSA(参见第a.4.9节)。
Routing table lookup (i.e., determining the best matching routing table entry during IP forwarding) is the same for IPv6 as for IPv4.
IPv6的路由表查找(即,在IP转发期间确定最佳匹配的路由表条目)与IPv4相同。
For IPv6, the OSPF LSA header has changed slightly, with the LS type field expanding and the Options field being moved into the body of appropriate LSAs. Also, the formats of some LSAs have changed somewhat (namely router-LSAs, network-LSAs and AS-external-LSAs), while the names of other LSAs have been changed (type 3 and 4 summary-LSAs are now inter-area-prefix-LSAs and inter-area-router-
对于IPv6,OSPF LSA头稍有更改,LS type字段扩展,Options字段移动到相应LSA的主体中。此外,一些LSA的格式有所改变(即路由器LSA、网络LSA和AS外部LSA),而其他LSA的名称也有所改变(类型3和4摘要LSA现在是区域间前缀LSA和区域间路由器)-
LSAs respectively) and additional LSAs have been added (Link-LSAs and Intra-Area-Prefix-LSAs). Type of Service (TOS) has been removed from the OSPFv2 specification [Ref1], and is not encoded within OSPF for IPv6's LSAs.
分别为LSA)和附加LSA(链路LSA和区域内前缀LSA)。服务类型(TOS)已从OSPFv2规范[Ref1]中删除,并且未在用于IPv6 LSA的OSPF中编码。
These changes will be described in detail in the following subsections.
以下小节将详细描述这些更改。
In both IPv4 and IPv6, all OSPF LSAs begin with a standard 20 byte LSA header. However, the contents of this 20 byte header have changed in IPv6. The LS age, Advertising Router, LS Sequence Number, LS checksum and length fields within the LSA header remain unchanged, as documented in Sections 12.1.1, 12.1.5, 12.1.6, 12.1.7 and A.4.1 of [Ref1] respectively. However, the following fields have changed for IPv6:
在IPv4和IPv6中,所有OSPF LSA都以标准的20字节LSA头开始。但是,在IPv6中,此20字节标头的内容已更改。LSA报头中的LS age、广告路由器、LS序列号、LS校验和和长度字段保持不变,如[参考文献1]第12.1.1、12.1.5、12.1.6、12.1.7和A.4.1节所述。但是,IPv6的以下字段已更改:
Options The Options field has been removed from the standard 20 byte LSA header, and into the body of router-LSAs, network-LSAs, inter-area-router-LSAs and link-LSAs. The size of the Options field has increased from 8 to 24 bits, and some of the bit definitions have changed (see Section A.2). In addition a separate PrefixOptions field, 8 bits in length, is attached to each prefix advertised within the body of an LSA.
选项选项字段已从标准的20字节LSA报头中删除,并放入路由器LSA、网络LSA、区域间路由器LSA和链路LSA的主体中。选项字段的大小已从8位增加到24位,一些位定义已更改(见A.2节)。此外,一个单独的前缀选项字段(长度为8位)附加到LSA主体内公布的每个前缀。
LS type The size of the LS type field has increased from 8 to 16 bits, with the top two bits encoding flooding scope and the next bit encoding the handling of unknown LS types. See Section A.4.2.1 for the current coding of the LS type field.
LS type LS type字段的大小已从8位增加到16位,前两位编码泛洪范围,下一位编码未知LS类型的处理。LS类型字段的当前编码见第A.4.2.1节。
Link State ID Link State ID remains at 32 bits in length, but except for network-LSAs and link-LSAs, Link State ID has shed any addressing semantics. For example, an IPv6 router originating multiple AS-external-LSAs could start by assigning the first a Link State ID of 0.0.0.1, the second a Link State ID of 0.0.0.2, and so on. Instead of the IPv4 behavior of encoding the network number within the AS-external-LSA's Link State ID, the IPv6 Link State ID simply serves as a way to differentiate multiple LSAs originated by the same router.
链路状态ID链路状态ID的长度保持在32位,但除了网络LSA和链路LSA之外,链路状态ID已经摆脱了任何寻址语义。例如,发起多个外部LSA的IPv6路由器可以首先为第一个分配链路状态ID 0.0.0.1,为第二个分配链路状态ID 0.0.0.2,依此类推。IPv6链路状态ID不是将网络号编码为外部LSA的链路状态ID的IPv4行为,而是用来区分由同一路由器发起的多个LSA。
For network-LSAs, the Link State ID is set to the Designated Router's Interface ID on the link. When a router originates a Link-LSA for a given link, its Link State ID is set equal to the router's Interface ID on the link.
对于网络LSA,链路状态ID设置为链路上指定路由器的接口ID。当路由器为给定链路发起链路LSA时,其链路状态ID设置为等于路由器在链路上的接口ID。
In IPv6, as in IPv4, individual LSAs are identified by a combination of their LS type, Link State ID and Advertising Router fields. Given two instances of an LSA, the most recent instance is determined by examining the LSAs' LS Sequence Number, using LS checksum and LS age as tiebreakers (see Section 13.1 of [Ref1]).
在IPv6中,与IPv4中一样,单个LSA通过其LS类型、链路状态ID和播发路由器字段的组合来标识。给定一个LSA的两个实例,通过检查LSA的LS序列号,使用LS校验和和和和和和和LS年龄作为分接器来确定最近的实例(见[Ref1]第13.1节)。
In IPv6, the link-state database is split across three separate data structures. LSAs with AS flooding scope are contained within the top-level OSPF data structure (see Section 3.1) as long as either their LS type is known or their U-bit is 1 (flood even when unrecognized); this includes the AS-external-LSAs. LSAs with area flooding scope are contained within the appropriate area structure (see Section 3.1.1) as long as either their LS type is known or their U-bit is 1 (flood even when unrecognized); this includes router-LSAs, network-LSAs, inter-area-prefix-LSAs, inter-area-router-LSAs, and intra-area-prefix-LSAs. LSAs with unknown LS type and U-bit set to 0 and/or link-local flooding scope are contained within the appropriate interface structure (see Section 3.1.2); this includes link-LSAs.
在IPv6中,链路状态数据库分为三个独立的数据结构。具有AS泛洪作用域的LSA包含在顶级OSPF数据结构中(见第3.1节),只要其LS类型已知或其U位为1(即使无法识别也会泛洪);这包括AS外部LSA。具有区域泛洪范围的LSA包含在适当的区域结构内(见第3.1.1节),只要其LS类型已知或其U型钻头为1(即使未识别也会泛洪);这包括路由器LSA、网络LSA、区域间前缀LSA、区域间路由器LSA和区域内前缀LSA。具有未知LS类型和U位设置为0和/或链路局部泛洪范围的LSA包含在适当的接口结构中(见第3.1.2节);这包括链路LSA。
To lookup or install an LSA in the database, you first examine the LS type and the LSA's context (i.e., to which area or link does the LSA belong). This information allows you to find the correct list of LSAs, all of the same LS type, where you then search based on the LSA's Link State ID and Advertising Router.
要在数据库中查找或安装LSA,首先要检查LS类型和LSA的上下文(即LSA属于哪个区域或链接)。此信息允许您找到所有相同LS类型的LSA的正确列表,然后根据LSA的链接状态ID和广告路由器进行搜索。
The process of reoriginating an LSA in IPv6 is the same as in IPv4: the LSA's LS sequence number is incremented, its LS age is set to 0, its LS checksum is calculated, and the LSA is added to the link state database and flooded out the appropriate interfaces.
在IPv6中对LSA重新排序的过程与在IPv4中相同:LSA的LS序列号递增,其LS age设置为0,计算其LS校验和,并将LSA添加到链路状态数据库,并将相应的接口溢出。
To the list of events causing LSAs to be reoriginated, which for IPv4 is given in Section 12.4 of [Ref1], the following events and/or actions are added for IPv6:
[Ref1]第12.4节中给出了导致LSA重新排序的事件列表(对于IPv4),其中针对IPv6添加了以下事件和/或操作:
o The state of one of the router's interfaces changes. The router may need to (re)originate or flush its Link-LSA and one or more router-LSAs and/or intra-area-prefix-LSAs.
o 路由器某个接口的状态发生变化。路由器可能需要(重新)发起或刷新其链路LSA和一个或多个路由器LSA和/或区域内前缀LSA。
o The identity of a link's Designated Router changes. The router may need to (re)originate or flush the link's network-LSA and one or more router-LSAs and/or intra-area-prefix-LSAs.
o 链路的指定路由器的标识将更改。路由器可能需要(重新)发起或刷新链路的网络LSA和一个或多个路由器LSA和/或区域内前缀LSA。
o A neighbor transitions to/from "Full" state. The router may need to (re)originate or flush the link's network-LSA and one or more router-LSAs and/or intra-area-prefix-LSAs.
o 邻居转换到/从“完全”状态。路由器可能需要(重新)发起或刷新链路的网络LSA和一个或多个路由器LSA和/或区域内前缀LSA。
o The Interface ID of a neighbor changes. This may cause a new instance of a router-LSA to be originated for the associated area, and the reorigination of one or more intra-area-prefix-LSAs.
o 邻居的接口ID更改。这可能导致针对相关区域发起路由器LSA的新实例,以及一个或多个区域内前缀LSA的重新排序。
o A new prefix is added to an attached link, or a prefix is deleted (both through configuration). This causes the router to reoriginate its link-LSA for the link, or, if it is the only router attached to the link, causes the router to reoriginate an intra-area-prefix-LSA.
o 将向附加的链接添加新前缀,或删除前缀(通过配置)。这会导致路由器为链路重新确定其链路LSA的顺序,或者,如果它是连接到链路的唯一路由器,则会导致路由器重新确定区域内前缀LSA的顺序。
o A new link-LSA is received, causing the link's collection of prefixes to change. If the router is Designated Router for the link, it originates a new intra-area-prefix-LSA.
o 接收到新的链接LSA,导致链接的前缀集合发生更改。如果路由器被指定为链路的路由器,则它会生成一个新的区域内前缀LSA。
Detailed construction of the seven required IPv6 LSA types is supplied by the following subsections. In order to display example LSAs, the network map in Figure 15 of [Ref1] has been reworked to show IPv6 addressing, resulting in Figure 1. The OSPF cost of each interface is has been displayed in Figure 1. The assignment of IPv6 prefixes to network links is shown in Table 1. A single area address range has been configured for Area 1, so that outside of Area 1 all of its prefixes are covered by a single route to 5f00:0000:c001::/48. The OSPF interface IDs and the link-local addresses for the router interfaces in Figure 1 are given in Table 2.
以下小节提供了七种所需IPv6 LSA类型的详细构造。为了显示示例LSA,[Ref1]的图15中的网络图已被修改以显示IPv6寻址,结果显示图1。每个接口的OSPF成本如图1所示。将IPv6前缀分配给网络链路如表1所示。已为区域1配置了一个单区域地址范围,以便在区域1之外,其所有前缀都由到5f00:0000:c001::/48的单路由覆盖。表2中给出了图1中路由器接口的OSPF接口ID和链路本地地址。
.......................................... . Area 1. . + . . | . . | 3+---+1 . . N1 |--|RT1|-----+ . . | +---+ \ . . | \ ______ . . + \/ \ 1+---+ . * N3 *------|RT4|------ . + /\_______/ +---+ . | / | . . | 3+---+1 / | . . N2 |--|RT2|-----+ 1| . . | +---+ +---+ . . | |RT3|---------------- . + +---+ . . |2 . . | . . +------------+ . . N4 . ..........................................
.......................................... . Area 1. . + . . | . . | 3+---+1 . . N1 |--|RT1|-----+ . . | +---+ \ . . | \ ______ . . + \/ \ 1+---+ . * N3 *------|RT4|------ . + /\_______/ +---+ . | / | . . | 3+---+1 / | . . N2 |--|RT2|-----+ 1| . . | +---+ +---+ . . | |RT3|---------------- . + +---+ . . |2 . . | . . +------------+ . . N4 . ..........................................
Figure 1: Area 1 with IP addresses shown
图1:显示IP地址的区域1
Network IPv6 prefix ----------------------------------- N1 5f00:0000:c001:0200::/56 N2 5f00:0000:c001:0300::/56 N3 5f00:0000:c001:0100::/56 N4 5f00:0000:c001:0400::/56
Network IPv6 prefix ----------------------------------- N1 5f00:0000:c001:0200::/56 N2 5f00:0000:c001:0300::/56 N3 5f00:0000:c001:0100::/56 N4 5f00:0000:c001:0400::/56
Table 1: IPv6 link prefixes for sample network
表1:示例网络的IPv6链路前缀
Router interface Interface ID link-local address ------------------------------------------------------- RT1 to N1 1 fe80:0001::RT1 to N3 2 fe80:0002::RT1 RT2 to N2 1 fe80:0001::RT2 to N3 2 fe80:0002::RT2 RT3 to N3 1 fe80:0001::RT3 to N4 2 fe80:0002::RT3 RT4 to N3 1 fe80:0001::RT4
Router interface Interface ID link-local address ------------------------------------------------------- RT1 to N1 1 fe80:0001::RT1 to N3 2 fe80:0002::RT1 RT2 to N2 1 fe80:0001::RT2 to N3 2 fe80:0002::RT2 RT3 to N3 1 fe80:0001::RT3 to N4 2 fe80:0002::RT3 RT4 to N3 1 fe80:0001::RT4
Table 2: OSPF Interface IDs and link-local addresses
表2:OSPF接口ID和链路本地地址
The LS type of a router-LSA is set to the value 0x2001. Router-LSAs have area flooding scope. A router may originate one or more router-LSAs for a given area. Each router-LSA contains an integral number of interface descriptions; taken together, the collection of router-LSAs originated by the router for an area describes the collected states of all the router's interfaces to the area. When multiple router-LSAs are used, they are distinguished by their Link State ID fields.
路由器LSA的LS类型设置为值0x2001。路由器LSA具有区域泛洪范围。路由器可以为给定区域发起一个或多个路由器lsa。每个路由器LSA包含整数个接口描述;总之,由路由器为某个区域发起的路由器LSA集合描述了该区域所有路由器接口的集合状态。当使用多个路由器LSA时,它们通过其链路状态ID字段进行区分。
The Options field in the router-LSA should be coded as follows. The V6-bit should be set. The E-bit should be clear if and only if the attached area is an OSPF stub area. The MC-bit should be set if and only if the router is running MOSPF (see [Ref8]). The N-bit should be set if and only if the attached area is an OSPF NSSA area. The R-bit should be set. The DC-bit should be set if and only if the router can correctly process the DoNotAge bit when it appears in the LS age field of LSAs (see [Ref11]). All unrecognized bits in the Options field should be cleared
路由器LSA中的选项字段应编码如下。应设置V6位。当且仅当连接区域为OSPF存根区域时,E位应为清除。当且仅当路由器运行MOSPF时,才应设置MC位(参见[Ref8])。当且仅当连接区域是OSPF NSSA区域时,才应设置N位。应设置R位。当且仅当路由器能够正确处理出现在LSA的LS age字段中的DoNotAge位时,才应设置DC位(参见[Ref11])。应清除选项字段中所有未识别的位
To the left of the Options field, the router capability bits V, E and B should be coded according to Section 12.4.1 of [Ref1]. Bit W should be coded according to [Ref8].
在选项字段左侧,应根据[参考1]第12.4.1节对路由器能力位V、E和B进行编码。位W应根据[参考文献8]进行编码。
Each of the router's interfaces to the area are then described by appending "link descriptions" to the router-LSA. Each link description is 16 bytes long, consisting of 5 fields: (link) Type, Metric, Interface ID, Neighbor Interface ID and Neighbor Router ID (see Section A.4.3). Interfaces in state "Down" or "Loopback" are not described (although looped back interfaces can contribute prefixes to Intra-Area-Prefix-LSAs). Nor are interfaces without any full adjacencies described. All other interfaces to the area add zero, one or more link descriptions, the number and content of which depend on the interface type. Within each link description, the Metric field is always set the interface's output cost and the Interface ID field is set to the interface's OSPF Interface ID.
然后,通过向路由器LSA添加“链路描述”来描述该区域的每个路由器接口。每个链路描述长度为16字节,由5个字段组成:(链路)类型、度量、接口ID、邻居接口ID和邻居路由器ID(见第A.4.3节)。未描述处于“关闭”或“环回”状态的接口(尽管环回接口可以为区域内前缀LSA提供前缀)。也没有描述没有任何完全邻接的接口。该区域的所有其他接口添加零个、一个或多个链接描述,链接描述的数量和内容取决于接口类型。在每个链路描述中,度量字段始终设置为接口的输出成本,接口ID字段设置为接口的OSPF接口ID。
Point-to-point interfaces If the neighboring router is fully adjacent, add a Type 1 link description (point-to-point). The Neighbor Interface ID field is set to the Interface ID advertised by the neighbor in its Hello packets, and the Neighbor Router ID field is set to the neighbor's Router ID.
点对点接口如果相邻路由器完全相邻,则添加类型1链路描述(点对点)。邻居接口ID字段设置为邻居在其Hello数据包中公布的接口ID,邻居路由器ID字段设置为邻居的路由器ID。
Broadcast and NBMA interfaces If the router is fully adjacent to the link's Designated Router, or if the router itself is Designated Router and is fully adjacent to at least one other router, add a single Type 2 link description (transit network). The Neighbor Interface ID field is set to the Interface ID advertised by the Designated Router in its Hello packets, and the Neighbor Router ID field is set to the Designated Router's Router ID.
广播和NBMA接口如果路由器与链路的指定路由器完全相邻,或者如果路由器本身是指定路由器且与至少一个其他路由器完全相邻,则添加单个类型2链路描述(传输网络)。邻居接口ID字段设置为指定路由器在其Hello数据包中公布的接口ID,邻居路由器ID字段设置为指定路由器的路由器ID。
Virtual links If the neighboring router is fully adjacent, add a Type 4 link description (virtual). The Neighbor Interface ID field is set to the Interface ID advertised by the neighbor in its Hello packets, and the Neighbor Router ID field is set to the neighbor's Router ID. Note that the output cost of a virtual link is calculated during the routing table calculation (see Section 3.7).
虚拟链路如果相邻路由器完全相邻,请添加类型4链路描述(虚拟)。邻居接口ID字段设置为邻居在其Hello数据包中公布的接口ID,邻居路由器ID字段设置为邻居的路由器ID。请注意,虚拟链路的输出成本是在路由表计算期间计算的(见第3.7节)。
Point-to-MultiPoint interfaces For each fully adjacent neighbor associated with the interface, add a separate Type 1 link description (point-to-point) with Neighbor Interface ID field set to the Interface ID advertised by the neighbor in its Hello packets, and Neighbor Router ID field set to the neighbor's Router ID.
点对多点接口对于与接口关联的每个完全相邻的邻居,添加单独的类型1链路描述(点对点),邻居接口ID字段设置为邻居在其Hello数据包中公布的接口ID,邻居路由器ID字段设置为邻居的路由器ID。
As an example, consider the router-LSA that router RT3 would originate for Area 1 in Figure 1. Only a single interface must be described, namely that which connects to the transit network N3. It assumes that RT4 has been elected Designated Router of Network N3.
作为一个例子,考虑路由器RT3将在图1中为区域1发起的路由器LSA。必须只描述一个接口,即连接到公交网络N3的接口。它假设RT4已被选为网络N3的指定路由器。
; RT3's router-LSA for Area 1
; 区域1的RT3路由器LSA
LS age = 0 ;newly (re)originated LS type = 0x2001 ;router-LSA Link State ID = 0 ;first fragment Advertising Router = 192.1.1.3 ;RT3's Router ID bit E = 0 ;not an AS boundary router bit B = 1 ;area border router Options = (V6-bit|E-bit|R-bit) Type = 2 ;connects to N3 Metric = 1 ;cost to N3 Interface ID = 1 ;RT3's Interface ID on N3 Neighbor Interface ID = 1 ;RT4's Interface ID on N3 Neighbor Router ID = 192.1.1.4 ; RT4's Router ID
LS age = 0 ;newly (re)originated LS type = 0x2001 ;router-LSA Link State ID = 0 ;first fragment Advertising Router = 192.1.1.3 ;RT3's Router ID bit E = 0 ;not an AS boundary router bit B = 1 ;area border router Options = (V6-bit|E-bit|R-bit) Type = 2 ;connects to N3 Metric = 1 ;cost to N3 Interface ID = 1 ;RT3's Interface ID on N3 Neighbor Interface ID = 1 ;RT4's Interface ID on N3 Neighbor Router ID = 192.1.1.4 ; RT4's Router ID
If for example another router was added to Network N4, RT3 would have to advertise a second link description for its connection to (the now transit) network N4. This could be accomplished by reoriginating the above router-LSA, this time with two link descriptions. Or, a
例如,如果将另一个路由器添加到网络N4,RT3将不得不公布其连接到(现在传输的)网络N4的第二条链路描述。这可以通过重新排列上述路由器LSA来实现,这次有两个链路描述。或者,一个
separate router-LSA could be originated with a separate Link State ID (e.g., using a Link State ID of 1) to describe the connection to N4.
可以使用单独的链路状态ID(例如,使用链路状态ID 1)来发起单独的路由器LSA,以描述到N4的连接。
Host routes no longer appear in the router-LSA, but are instead included in intra-area-prefix-LSAs.
主机路由不再出现在路由器LSA中,而是包含在区域内前缀LSA中。
The LS type of a network-LSA is set to the value 0x2002. Network-LSAs have area flooding scope. A network-LSA is originated for every broadcast or NBMA link having two or more attached routers, by the link's Designated Router. The network-LSA lists all routers attached to the link.
网络LSA的LS类型设置为值0x2002。网络LSA具有区域泛洪范围。网络LSA由链路的指定路由器为具有两个或多个连接路由器的每个广播或NBMA链路发起。网络LSA列出连接到链路的所有路由器。
The procedure for originating network-LSAs in IPv6 is the same as the IPv4 procedure documented in Section 12.4.2 of [Ref1], with the following exceptions:
IPv6中发起网络LSA的程序与[Ref1]第12.4.2节中记录的IPv4程序相同,但以下情况除外:
o An IPv6 network-LSA's Link State ID is set to the Interface ID of the Designated Router on the link.
o IPv6网络LSA的链路状态ID设置为链路上指定路由器的接口ID。
o IPv6 network-LSAs do not contain a Network Mask. All addressing information formerly contained in the IPv4 network-LSA has now been consigned to intra-Area-Prefix-LSAs.
o IPv6网络LSA不包含网络掩码。以前包含在IPv4网络LSA中的所有寻址信息现在都已委托给区域内前缀LSA。
o The Options field in the network-LSA is set to the logical OR of the Options fields contained within the link's associated link-LSAs. In this way, the network link exhibits a capability when at least one of the link's routers requests that the capability be asserted.
o 网络LSA中的选项字段设置为链接的关联链接LSA中包含的选项字段的逻辑OR。这样,当链路的路由器中的至少一个请求断言该能力时,网络链路展示该能力。
As an example, assuming that Router RT4 has been elected Designated Router of Network N3 in Figure 1, the following network-LSA is originated:
例如,假设路由器RT4被选为图1中网络N3的指定路由器,则产生以下网络LSA:
; Network-LSA for Network N3
; 网络N3的网络LSA
LS age = 0 ;newly (re)originated LS type = 0x2002 ;network-LSA Link State ID = 1 ;RT4's Interface ID on N3 Advertising Router = 192.1.1.4 ;RT4's Router ID Options = (V6-bit|E-bit|R-bit) Attached Router = 192.1.1.4 ;Router ID Attached Router = 192.1.1.1 ;Router ID Attached Router = 192.1.1.2 ;Router ID Attached Router = 192.1.1.3 ;Router ID
LS age = 0 ;newly (re)originated LS type = 0x2002 ;network-LSA Link State ID = 1 ;RT4's Interface ID on N3 Advertising Router = 192.1.1.4 ;RT4's Router ID Options = (V6-bit|E-bit|R-bit) Attached Router = 192.1.1.4 ;Router ID Attached Router = 192.1.1.1 ;Router ID Attached Router = 192.1.1.2 ;Router ID Attached Router = 192.1.1.3 ;Router ID
The LS type of an inter-area-prefix-LSA is set to the value 0x2003. Inter-area-prefix-LSAs have area flooding scope. In IPv4, inter-area-prefix-LSAs were called type 3 summary-LSAs. Each inter-area-prefix-LSA describes a prefix external to the area, yet internal to the Autonomous System.
区域间前缀LSA的LS类型设置为值0x2003。区域间前缀LSA具有区域泛洪范围。在IPv4中,区域间前缀LSA称为类型3摘要LSA。每个区域间前缀LSA描述区域外部但自治系统内部的前缀。
The procedure for originating inter-area-prefix-LSAs in IPv6 is the same as the IPv4 procedure documented in Sections 12.4.3 and 12.4.3.1 of [Ref1], with the following exceptions:
IPv6中发起区域间前缀LSA的程序与[Ref1]第12.4.3节和第12.4.3.1节中记录的IPv4程序相同,但以下情况除外:
o The Link State ID of an inter-area-prefix-LSA has lost all of its addressing semantics, and instead simply serves to distinguish multiple inter-area-prefix-LSAs that are originated by the same router.
o 区域间前缀LSA的链路状态ID已丢失其所有寻址语义,而只是用于区分由同一路由器发起的多个区域间前缀LSA。
o The prefix is described by the PrefixLength, PrefixOptions and Address Prefix fields embedded within the LSA body. Network Mask is no longer specified.
o 前缀由嵌入在LSA正文中的前缀长度、前缀选项和地址前缀字段描述。不再指定网络掩码。
o The NU-bit in the PrefixOptions field should be clear. The coding of the MC-bit depends upon whether, and if so how, MOSPF is operating in the routing domain (see [Ref8]).
o PrefixOptions字段中的NU位应为空。MC位的编码取决于MOSPF是否以及如何在路由域中运行(参见[Ref8])。
o Link-local addresses must never be advertised in inter-area-prefix-LSAs.
o 决不能在区域间前缀LSA中公布链路本地地址。
As an example, the following shows the inter-area-prefix-LSA that Router RT4 originates into the OSPF backbone area, condensing all of Area 1's prefixes into the single prefix 5f00:0000:c001::/48. The cost is set to 4, which is the maximum cost to all of the prefix' individual components. The prefix is padded out to an even number of 32-bit words, so that it consumes 64-bits of space instead of 48 bits.
例如,以下显示路由器RT4发起到OSPF主干区域的区域间前缀LSA,将区域1的所有前缀压缩为单个前缀5f00:0000:c001::/48。成本设置为4,这是所有前缀的单个组件的最大成本。前缀被填充为偶数的32位字,因此它占用64位空间,而不是48位空间。
; Inter-area-prefix-LSA for Area 1 addresses ; originated by Router RT4 into the backbone
; 区域1地址的区域间前缀LSA;由路由器RT4发起进入主干网
LS age = 0 ;newly (re)originated LS type = 0x2003 ;inter-area-prefix-LSA Advertising Router = 192.1.1.4 ;RT4's ID Metric = 4 ;maximum to components PrefixLength = 48 PrefixOptions = 0 Address Prefix = 5f00:0000:c001 ;padded to 64-bits
LS age = 0 ;newly (re)originated LS type = 0x2003 ;inter-area-prefix-LSA Advertising Router = 192.1.1.4 ;RT4's ID Metric = 4 ;maximum to components PrefixLength = 48 PrefixOptions = 0 Address Prefix = 5f00:0000:c001 ;padded to 64-bits
The LS type of an inter-area-router-LSA is set to the value 0x2004. Inter-area-router-LSAs have area flooding scope. In IPv4, inter-area-router-LSAs were called type 4 summary-LSAs. Each inter-area-router-LSA describes a path to a destination OSPF router (an ASBR) that is external to the area, yet internal to the Autonomous System.
区域间路由器LSA的LS类型设置为值0x2004。区域间路由器LSA具有区域泛洪范围。在IPv4中,区域间路由器LSA称为类型4摘要LSA。每个区域间路由器LSA描述到目标OSPF路由器(ASBR)的路径,该目标OSPF路由器(ASBR)在该区域外部,但在自治系统内部。
The procedure for originating inter-area-router-LSAs in IPv6 is the same as the IPv4 procedure documented in Section 12.4.3 of [Ref1], with the following exceptions:
IPv6中发起区域间路由器LSA的程序与[Ref1]第12.4.3节中记录的IPv4程序相同,但以下情况除外:
o The Link State ID of an inter-area-router-LSA is no longer the destination router's OSPF Router ID, but instead simply serves to distinguish multiple inter-area-router-LSAs that are originated by the same router. The destination router's Router ID is now found in the body of the LSA.
o 区域间路由器LSA的链路状态ID不再是目的地路由器的OSPF路由器ID,而是仅仅用于区分由同一路由器发起的多个区域间路由器LSA。目标路由器的路由器ID现在可以在LSA的主体中找到。
o The Options field in an inter-area-router-LSA should be set equal to the Options field contained in the destination router's own router-LSA. The Options field thus describes the capabilities supported by the destination router.
o 区域间路由器LSA中的选项字段应设置为与目标路由器自身的路由器LSA中包含的选项字段相等。因此,选项字段描述了目标路由器支持的功能。
As an example, consider the OSPF Autonomous System depicted in Figure 6 of [Ref1]. Router RT4 would originate into Area 1 the following inter-area-router-LSA for destination router RT7.
作为一个例子,考虑[FRF1]图6中描述的OSPF自治系统。路由器RT4将起源于区域1,目的地路由器RT7的以下区域间路由器LSA。
; inter-area-router-LSA for AS boundary router RT7 ; originated by Router RT4 into Area 1
; AS边界路由器RT7的区域间路由器LSA;由路由器RT4发起进入区域1
LS age = 0 ;newly (re)originated LS type = 0x2004 ;inter-area-router-LSA Advertising Router = 192.1.1.4 ;RT4's ID Options = (V6-bit|E-bit|R-bit) ;RT7's capabilities Metric = 14 ;cost to RT7 Destination Router ID = Router RT7's ID
LS age = 0 ;newly (re)originated LS type = 0x2004 ;inter-area-router-LSA Advertising Router = 192.1.1.4 ;RT4's ID Options = (V6-bit|E-bit|R-bit) ;RT7's capabilities Metric = 14 ;cost to RT7 Destination Router ID = Router RT7's ID
The LS type of an AS-external-LSA is set to the value 0x4005. AS-external-LSAs have AS flooding scope. Each AS-external-LSA describes a path to a prefix external to the Autonomous System.
AS外部LSA的LS类型设置为值0x4005。外部LSA具有AS泛洪范围。每个AS-external LSA描述到自治系统外部前缀的路径。
The procedure for originating AS-external-LSAs in IPv6 is the same as the IPv4 procedure documented in Section 12.4.4 of [Ref1], with the following exceptions:
IPv6中作为外部LSA发起的过程与[Ref1]第12.4.4节中记录的IPv4过程相同,但以下例外:
o The Link State ID of an AS-external-LSA has lost all of its addressing semantics, and instead simply serves to distinguish multiple AS-external-LSAs that are originated by the same router.
o AS外部LSA的链路状态ID已丢失其所有寻址语义,而只是用于区分由同一路由器发起的多个AS外部LSA。
o The prefix is described by the PrefixLength, PrefixOptions and Address Prefix fields embedded within the LSA body. Network Mask is no longer specified.
o 前缀由嵌入在LSA正文中的前缀长度、前缀选项和地址前缀字段描述。不再指定网络掩码。
o The NU-bit in the PrefixOptions field should be clear. The coding of the MC-bit depends upon whether, and if so how, MOSPF is operating in the routing domain (see [Ref8]).
o PrefixOptions字段中的NU位应为空。MC位的编码取决于MOSPF是否以及如何在路由域中运行(参见[Ref8])。
o Link-local addresses can never be advertised in AS-external-LSAs.
o 链接本地地址永远不能作为外部LSA在中播发。
o The forwarding address is present in the AS-external-LSA if and only if the AS-external-LSA's bit F is set.
o 当且仅当设置了AS外部LSA的位F时,AS外部LSA中存在转发地址。
o The external route tag is present in the AS-external-LSA if and only if the AS-external-LSA's bit T is set.
o 当且仅当AS外部LSA的位T被设置时,外部路由标记才会出现在AS外部LSA中。
o The capability for an AS-external-LSA to reference another LSA has been included, by inclusion of the Referenced LS Type field and the optional Referenced Link State ID field (the latter present if and only if Referenced LS Type is non-zero). This capability is for future use; for now Referenced LS Type should be set to 0 and received non-zero values for this field should be ignored.
o 通过包含引用的LS类型字段和可选的引用链接状态ID字段(当且仅当引用的LS类型为非零时,后者才存在),AS外部LSA引用另一个LSA的能力已经包括在内。这种能力是为了将来使用;目前,引用的LS类型应设置为0,并且应忽略此字段接收到的非零值。
As an example, consider the OSPF Autonomous System depicted in Figure 6 of [Ref1]. Assume that RT7 has learned its route to N12 via BGP, and that it wishes to advertise a Type 2 metric into the AS. Further assume the the IPv6 prefix for N12 is the value 5f00:0000:0a00::/40. RT7 would then originate the following AS-external-LSA for the external network N12. Note that within the AS-external-LSA, N12's prefix occupies 64 bits of space, to maintain 32-bit alignment.
作为一个例子,考虑[FRF1]图6中描述的OSPF自治系统。假设RT7已经学会了通过BGP到N12的路由,并且它希望在AS中公布类型2度量。进一步假设N12的IPv6前缀为值5f00:0000:0a00::/40。RT7随后将发起以下作为外部网络N12的外部LSA。请注意,在AS外部LSA中,N12的前缀占用64位空间,以保持32位对齐。
; AS-external-LSA for Network N12, ; originated by Router RT7
; 作为网络N12的外部LSA;由路由器RT7发起
LS age = 0 ;newly (re)originated LS type = 0x4005 ;AS-external-LSA Link State ID = 123 ;or something else Advertising Router = Router RT7's ID bit E = 1 ;Type 2 metric bit F = 0 ;no forwarding address bit T = 1 ;external route tag included Metric = 2 PrefixLength = 40 PrefixOptions = 0
LS age = 0 ;newly (re)originated LS type = 0x4005 ;AS-external-LSA Link State ID = 123 ;or something else Advertising Router = Router RT7's ID bit E = 1 ;Type 2 metric bit F = 0 ;no forwarding address bit T = 1 ;external route tag included Metric = 2 PrefixLength = 40 PrefixOptions = 0
Referenced LS Type = 0 ;no Referenced Link State ID Address Prefix = 5f00:0000:0a00 ;padded to 64-bits External Route Tag = as per BGP/OSPF interaction
Referenced LS Type = 0 ;no Referenced Link State ID Address Prefix = 5f00:0000:0a00 ;padded to 64-bits External Route Tag = as per BGP/OSPF interaction
The LS type of a Link-LSA is set to the value 0x0008. Link-LSAs have link-local flooding scope. A router originates a separate Link-LSA for each attached link that supports 2 or more (including the originating router itself) routers.
链路LSA的LS类型设置为值0x0008。链路LSA具有链路本地泛洪范围。路由器为每个连接的链路发起一个单独的链路LSA,该链路支持2个或多个(包括发起路由器本身)路由器。
Link-LSAs have three purposes: 1) they provide the router's link-local address to all other routers attached to the link and 2) they inform other routers attached to the link of a list of IPv6 prefixes to associate with the link and 3) they allow the router to assert a collection of Options bits in the Network-LSA that will be originated for the link.
链路LSA有三个用途:1)它们向连接到链路的所有其他路由器提供路由器的链路本地地址;2)它们通知连接到链路的其他路由器要与链路关联的IPv6前缀列表;3)它们允许路由器断言网络LSA中的选项位集合,这些选项位将为链路发起链接
A Link-LSA for a given Link L is built in the following fashion:
给定链路L的链路LSA以以下方式构建:
o The Link State ID is set to the router's Interface ID on Link L.
o 链路状态ID设置为链路L上路由器的接口ID。
o The Router Priority of the router's interface to Link L is inserted into the Link-LSA.
o 路由器与链路L的接口的路由器优先级插入链路LSA。
o The Link-LSA's Options field is set to those bits that the router wishes set in Link L's Network LSA.
o 链路LSA的选项字段设置为路由器希望在链路L的网络LSA中设置的位。
o The router inserts its link-local address on Link L into the Link-LSA. This information will be used when the other routers on Link L do their next hop calculations (see Section 3.8.1.1).
o 路由器将其链路L上的链路本地地址插入链路LSA。当链路L上的其他路由器进行下一跳计算时,将使用此信息(见第3.8.1.1节)。
o Each IPv6 address prefix that has been configured into the router for Link L is added to the Link-LSA, by specifying values for PrefixLength, PrefixOptions, and Address Prefix fields.
o 通过指定PrefixLength、PrefixOptions和address prefix字段的值,为链路L在路由器中配置的每个IPv6地址前缀都会添加到链路LSA。
After building a Link-LSA for a given link, the router installs the link-LSA into the associate interface data structure and floods the Link-LSA onto the link. All other routers on the link will receive the Link-LSA, but it will go no further.
在为给定链路构建链路LSA后,路由器将链路LSA安装到关联接口数据结构中,并将链路LSA洪泛到链路上。链路上的所有其他路由器将接收链路LSA,但它将不再继续。
As an example, consider the Link-LSA that RT3 will build for N3 in Figure 1. Suppose that the prefix 5f00:0000:c001:0100::/56 has been configured within RT3 for N3. This will give rise to the following Link-LSA, which RT3 will flood onto N3, but nowhere else. Note that not all routers on N3 need be configured with the prefix; those not configured will learn the prefix when receiving RT3's Link-LSA.
作为一个例子,考虑RT3将在图1中为N3构建的链路LSA。假设已在RT3中为N3配置前缀5f00:0000:c001:0100::/56。这将产生以下链路LSA,RT3将淹没N3,而不是其他任何地方。注意,并非N3上的所有路由器都需要配置前缀;那些未配置的将在接收RT3的链路LSA时学习前缀。
; RT3's Link-LSA for N3
; N3的RT3链路LSA
LS age = 0 ;newly (re)originated LS type = 0x0008 ;Link-LSA Link State ID = 1 ;RT3's Interface ID on N3 Advertising Router = 192.1.1.3 ;RT3's Router ID Rtr Pri = 1 ;RT3's N3 Router Priority Options = (V6-bit|E-bit|R-bit) Link-local Interface Address = fe80:0001::RT3 # prefixes = 1 PrefixLength = 56 PrefixOptions = 0 Address Prefix = 5f00:0000:c001:0100 ;pad to 64-bits
LS age = 0 ;newly (re)originated LS type = 0x0008 ;Link-LSA Link State ID = 1 ;RT3's Interface ID on N3 Advertising Router = 192.1.1.3 ;RT3's Router ID Rtr Pri = 1 ;RT3's N3 Router Priority Options = (V6-bit|E-bit|R-bit) Link-local Interface Address = fe80:0001::RT3 # prefixes = 1 PrefixLength = 56 PrefixOptions = 0 Address Prefix = 5f00:0000:c001:0100 ;pad to 64-bits
The LS type of an intra-area-prefix-LSA is set to the value 0x2009. Intra-area-prefix-LSAs have area flooding scope. An intra-area-prefix-LSA has one of two functions. It associates a list of IPv6 address prefixes with a transit network link by referencing a network- LSA, or associates a list of IPv6 address prefixes with a router by referencing a router-LSA. A stub link's prefixes are associated with its attached router.
区域内前缀LSA的LS类型设置为值0x2009。区域内前缀LSA具有区域泛洪范围。区域内前缀LSA具有两种功能之一。它通过引用网络LSA将IPv6地址前缀列表与传输网络链路相关联,或者通过引用路由器LSA将IPv6地址前缀列表与路由器相关联。存根链接的前缀与其连接的路由器相关联。
A router may originate multiple intra-area-prefix-LSAs for a given area, distinguished by their Link State ID fields. Each intra-area-prefix-LSA contains an integral number of prefix descriptions.
路由器可以为给定区域发起多个区域内前缀lsa,通过它们的链路状态ID字段来区分。每个区域内前缀LSA包含整数个前缀描述。
A link's Designated Router originates one or more intra-area-prefix-LSAs to advertise the link's prefixes throughout the area. For a link L, L's Designated Router builds an intra-area-prefix-LSA in the following fashion:
链路的指定路由器发起一个或多个区域内前缀LSA,以在整个区域内公布链路的前缀。对于链路L,L的指定路由器以以下方式构建区域内前缀LSA:
o In order to indicate that the prefixes are to be associated with the Link L, the fields Referenced LS type, Referenced Link State ID, and Referenced
o 为了指示前缀将与链接L关联,字段引用了LS type、引用的链接状态ID和REFERED
Advertising Router are set to the corresponding fields in Link L's network-LSA (namely LS type, Link State ID, and Advertising Router respectively). This means that Referenced LS Type is set to 0x2002, Referenced Link State ID is set to the Designated Router's Interface ID on Link L, and Referenced Advertising Router is set to the Designated Router's Router ID.
广告路由器设置到链路L的网络LSA中的相应字段(即LS类型、链路状态ID和广告路由器)。这意味着引用的LS类型设置为0x2002,引用的链路状态ID设置为链路L上指定路由器的接口ID,引用的广告路由器设置为指定路由器的路由器ID。
o Each Link-LSA associated with Link L is examined (these are in the Designated Router's interface structure for Link L). If the Link-LSA's Advertising Router is fully adjacent to the Designated Router, the list of prefixes in the Link-LSA is copied into the
o 检查与链路L相关联的每个链路LSA(它们位于链路L的指定路由器接口结构中)。如果链路LSA的广告路由器与指定路由器完全相邻,则链路LSA中的前缀列表将复制到
intra-area-prefix-LSA that is being built. Prefixes having the NU-bit and/or LA-bit set in their Options field should not be copied, nor should link-local addresses be copied. Each prefix is described by the PrefixLength, PrefixOptions, and Address Prefix fields. Multiple prefixes having the same PrefixLength and Address Prefix are considered to be duplicates; in this case their Prefix Options fields should be merged by logically OR'ing the fields together, and a single resulting prefix should be copied into the intra-area-prefix-LSA. The Metric field for all prefixes is set to 0.
正在生成的区域内前缀LSA。不应复制在其选项字段中设置了NU位和/或LA位的前缀,也不应复制链接本地地址。每个前缀由前缀长度、前缀选项和地址前缀字段描述。具有相同前缀长度和地址前缀的多个前缀被认为是重复的;在这种情况下,应通过逻辑或将字段合并在一起来合并它们的前缀选项字段,并且应将单个结果前缀复制到区域内前缀LSA中。所有前缀的度量字段都设置为0。
o The "# prefixes" field is set to the number of prefixes that the router has copied into the LSA. If necessary, the list of prefixes can be spread across multiple intra-area-prefix-LSAs in order to keep the LSA size small.
o “#前缀”字段设置为路由器复制到LSA中的前缀数量。如有必要,前缀列表可以分布在多个区域内前缀LSA上,以保持LSA大小较小。
A router builds an intra-area-prefix-LSA to advertise its own prefixes, and those of its attached stub links. A Router RTX would build its intra-area-prefix-LSA in the following fashion:
路由器构建一个区域内前缀LSA来公布它自己的前缀和它连接的存根链接的前缀。路由器RTX将以以下方式构建其区域内前缀LSA:
o In order to indicate that the prefixes are to be associated with the Router RTX itself, RTX sets Referenced LS type to 0x2001, Referenced Link State ID to 0, and Referenced Advertising Router to RTX's own Router ID.
o 为了指示前缀将与路由器RTX本身相关联,RTX将引用的LS type设置为0x2001,将引用的链路状态ID设置为0,将引用的广告路由器设置为RTX自己的路由器ID。
o Router RTX examines its list of interfaces to the area. If the interface is in state Down, its prefixes are not included. If the interface has been reported in RTX's router-LSA as a Type 2 link description (link to transit network), its prefixes are not included (they will be included in the intra-area-prefix-LSA for the link instead). If the interface type is Point-to-MultiPoint, or the interface is in state Loopback, or the interface connects to a point-to-point link which has not been assigned a prefix, then the site-local and global scope IPv6 addresses associated with the interface (if any) are copied into the intra-area-prefix-LSA, setting the LA-bit in the PrefixOptions field, and setting the PrefixLength to 128 and the Metric to 0. Otherwise, the list of site-local and global prefixes configured in RTX for the link are copied into the intra-area-prefix-LSA by specifying the PrefixLength, PrefixOptions, and Address Prefix fields. The Metric field for each of these prefixes is set to the interface's output cost.
o 路由器RTX检查其与该区域的接口列表。如果接口处于关闭状态,则不包括其前缀。如果该接口在RTX的路由器LSA中报告为2类链路描述(链路到传输网络),则不包括其前缀(它们将包含在链路的区域内前缀LSA中)。如果接口类型为点对多点,或接口处于状态环回,或接口连接到未分配前缀的点对点链路,则与接口关联的站点本地和全局范围IPv6地址(如果有)将复制到区域内前缀LSA中,在PrefixOptions字段中设置LA位,并将PrefixLength设置为128,公制设置为0。否则,通过指定前缀长度、前缀选项和地址前缀字段,将在RTX中为链路配置的站点本地和全局前缀列表复制到区域内前缀LSA中。每个前缀的度量字段都设置为接口的输出成本。
o RTX adds the IPv6 prefixes for any directly attached hosts belonging to the area (see Section C.7) to the intra-area-prefix-LSA.
o RTX将属于该区域的任何直接连接主机的IPv6前缀(参见第C.7节)添加到区域内前缀LSA。
o If RTX has one or more virtual links configured through the area, it includes one of its site-local or global scope IPv6 interface addresses in the LSA (if it hasn't already), setting the LA-bit in the PrefixOptions field, and setting the PrefixLength to 128 and the Metric to 0. This information will be used later in the routing calculation so that the two ends of the virtual link can discover each other's IPv6 addresses.
o 如果RTX通过该区域配置了一个或多个虚拟链路,则它在LSA中包括其一个站点本地或全局范围IPv6接口地址(如果还没有),在PrefixOptions字段中设置LA位,并将PrefixLength设置为128,度量设置为0。该信息将在稍后的路由计算中使用,以便虚拟链路的两端可以发现彼此的IPv6地址。
o The "# prefixes" field is set to the number of prefixes that the router has copied into the LSA. If necessary, the list of prefixes can be spread across multiple intra-area-prefix-LSAs in order to keep the LSA size small.
o “#前缀”字段设置为路由器复制到LSA中的前缀数量。如有必要,前缀列表可以分布在多个区域内前缀LSA上,以保持LSA大小较小。
For example, the intra-area-prefix-LSA originated by RT4 for Network N3 (assuming that RT4 is N3's Designated Router), and the intra-area-prefix-LSA originated into Area 1 by Router RT3 for its own prefixes, are pictured below.
例如,由RT4为网络N3发起的区域内前缀LSA(假设RT4是N3的指定路由器)和由路由器RT3为其自身前缀发起的区域内前缀LSA如下图所示。
; Intra-area-prefix-LSA ; for network link N3
; 区域内前缀LSA;用于网络链路N3
LS age = 0 ;newly (re)originated LS type = 0x2009 ;Intra-area-prefix-LSA Link State ID = 5 ;or something Advertising Router = 192.1.1.4 ;RT4's Router ID # prefixes = 1 Referenced LS type = 0x2002 ;network-LSA reference Referenced Link State ID = 1 Referenced Advertising Router = 192.1.1.4 PrefixLength = 56 ;N3's prefix PrefixOptions = 0 Metric = 0 Address Prefix = 5f00:0000:c001:0100 ;pad
LS age = 0 ;newly (re)originated LS type = 0x2009 ;Intra-area-prefix-LSA Link State ID = 5 ;or something Advertising Router = 192.1.1.4 ;RT4's Router ID # prefixes = 1 Referenced LS type = 0x2002 ;network-LSA reference Referenced Link State ID = 1 Referenced Advertising Router = 192.1.1.4 PrefixLength = 56 ;N3's prefix PrefixOptions = 0 Metric = 0 Address Prefix = 5f00:0000:c001:0100 ;pad
; RT3's Intra-area-prefix-LSA ; for its own prefixes
; RT3的区域内前缀LSA;它自己的前缀
LS age = 0 ;newly (re)originated LS type = 0x2009 ;Intra-area-prefix-LSA Link State ID = 177 ;or something Advertising Router = 192.1.1.3 ;RT3's Router ID # prefixes = 1 Referenced LS type = 0x2001 ;router-LSA reference Referenced Link State ID = 0 Referenced Advertising Router = 192.1.1.3 PrefixLength = 56 ;N4's prefix
LS age = 0 ;newly (re)originated LS type = 0x2009 ;Intra-area-prefix-LSA Link State ID = 177 ;or something Advertising Router = 192.1.1.3 ;RT3's Router ID # prefixes = 1 Referenced LS type = 0x2001 ;router-LSA reference Referenced Link State ID = 0 Referenced Advertising Router = 192.1.1.3 PrefixLength = 56 ;N4's prefix
PrefixOptions = 0 Metric = 2 ;N4 interface cost Address Prefix = 5f00:0000:c001:0400 ;pad
PrefixOptions = 0 Metric = 2 ;N4 interface cost Address Prefix = 5f00:0000:c001:0400 ;pad
When network conditions change, it may be necessary for a router to move prefixes from one intra-area-prefix-LSA to another. For example, if the router is Designated Router for a link but the link has no other attached routers, the link's prefixes are advertised in an intra-area-prefix-LSA referring to the Designated Router's router-LSA. When additional routers appear on the link, a network-LSA is originated for the link and the link's prefixes are moved to an intra-area-prefix-LSA referring to the network-LSA.
当网络条件改变时,路由器可能需要将前缀从一个区域内前缀LSA移动到另一个区域内前缀LSA。例如,如果路由器被指定为链路的路由器,但是链路没有其他连接的路由器,则链路的前缀在参考指定路由器的路由器LSA的区域内前缀LSA中通告。当链路上出现其他路由器时,为链路发起网络LSA,并且链路的前缀被移动到参考网络LSA的区域内前缀LSA。
Note that in the intra-area-prefix-LSA, the "Referenced Advertising Router" is always equal to the router that is originating the intra-area-prefix-LSA (i.e., the LSA's Advertising Router). The reason that the Referenced Advertising Router field appears is that, even though it is currently redundant, it may not be in the future. We may sometime want to use the same LSA format to advertise address prefixes for other protocol suites. In that event, the Designated Router may not be running the other protocol suite, and so another of the link's routers may need to send out the prefix-LSA. In that case, "Referenced Advertising Router" and "Advertising Router" would be different.
注意,在区域内前缀LSA中,“参考广告路由器”始终等于发起区域内前缀LSA的路由器(即,LSA的广告路由器)。出现“参考广告路由器”字段的原因是,尽管它当前是冗余的,但将来可能不会。有时,我们可能希望使用相同的LSA格式为其他协议套件公布地址前缀。在这种情况下,指定的路由器可能没有运行其他协议套件,因此链路的另一个路由器可能需要发送前缀LSA。在这种情况下,“参考广告路由器”和“广告路由器”将是不同的。
Most of the flooding algorithm remains unchanged from the IPv4 flooding mechanisms described in Section 13 of [Ref1]. In particular, the processes for determining which LSA instance is newer (Section 13.1 of [Ref1]), responding to updates of self-originated LSAs (Section 13.4 of [Ref1]), sending Link State Acknowledgment packets (Section 13.5 of [Ref1]), retransmitting LSAs (Section 13.6 of [Ref1]) and receiving Link State Acknowledgment packets (Section 13.7 of [Ref1]) are exactly the same for IPv6 and IPv4.
与[参考文献1]第13节中描述的IPv4洪泛机制相比,大多数洪泛算法保持不变。具体而言,用于确定哪个LSA实例较新(参考文献1的第13.1节)、响应自发式LSA的更新(参考文献1的第13.4节)、发送链路状态确认包(参考文献1的第13.5节)、重传LSA(参考文献1的第13.6节)和接收链路状态确认包(参考文献1的第13.7节)的过程[Ref1])对于IPv6和IPv4完全相同。
However, the addition of flooding scope and handling options for unrecognized LSA types (see Section A.4.2.1) has caused some changes in the OSPF flooding algorithm: the reception of Link State Updates (Section 13 in [Ref1]) and the sending of Link State Updates (Section 13.3 of [Ref1]) must take into account the LSA's scope and U-bit setting. Also, installation of LSAs into the OSPF database (Section 13.2 of [Ref1]) causes different events in IPv6, due to the reorganization of LSA types and contents in IPv6. These changes are described in detail below.
然而,为无法识别的LSA类型添加泛洪范围和处理选项(见第A.4.2.1节)导致了OSPF泛洪算法的一些变化:链路状态更新的接收(参考文献1中的第13节)和链路状态更新的发送(参考文献1中的第13.3节)必须考虑LSA的范围和U位设置。此外,由于IPv6中LSA类型和内容的重组,将LSA安装到OSPF数据库(参考文献1第13.2节)会导致IPv6中发生不同的事件。下面详细描述这些更改。
The encoding of flooding scope in the LS type and the need to process unknown LS types causes modifications to the processing of received Link State Update packets. As in IPv4, each LSA in a received Link State Update packet is examined. In IPv4, eight steps are executed for each LSA, as described in Section 13 of [Ref1]. For IPv6, all the steps are the same, except that Steps 2 and 3 are modified as follows:
LS类型中泛洪作用域的编码和处理未知LS类型的需要导致对接收到的链路状态更新数据包的处理进行修改。与IPv4中一样,将检查接收到的链路状态更新数据包中的每个LSA。在IPv4中,每个LSA执行八个步骤,如参考文献1第13节所述。对于IPv6,所有步骤都相同,只是步骤2和3修改如下:
(2) Examine the LSA's LS type. If the LS type is unknown, the area has been configured as a stub area, and either the LSA's flooding scope is set to "AS flooding scope" or the U-bit of the LS type is set to 1 (flood even when unrecognized), then discard the LSA and get the next one from the Link State Update Packet. This generalizes the IPv4 behavior where AS-external-LSAs are not flooded into/throughout stub areas.
(2) 检查LSA的LS类型。如果LS类型未知,则该区域已配置为存根区域,并且LSA的泛洪作用域设置为“as泛洪作用域”,或者LS类型的U位设置为1(即使无法识别也会泛洪),然后丢弃LSA并从链路状态更新包中获取下一个LSA。这概括了IPv4的行为,在这种情况下,AS外部LSA不会涌入/贯穿存根区域。
(3) Else if the flooding scope of the LSA is set to "reserved", discard the LSA and get the next one from the Link State Update Packet.
(3) 否则,如果LSA的泛洪范围设置为“保留”,则丢弃LSA并从链路状态更新数据包中获取下一个LSA。
Steps 5b (sending Link State Update packets) and 5d (installing LSAs in the link state database) in Section 13 of [Ref1] are also somewhat different for IPv6, as described in Sections 3.5.2 and 3.5.3 below.
[Ref1]第13节中的步骤5b(发送链路状态更新包)和5d(在链路状态数据库中安装LSA)对于IPv6也有些不同,如下面第3.5.2节和第3.5.3节所述。
The sending of Link State Update packets is described in Section 13.3 of [Ref1]. For IPv4 and IPv6, the steps for sending a Link State Update packet are the same (steps 1 through 5 of Section 13.3 in [Ref1]). However, the list of eligible interfaces out which to flood the LSA is different. For IPv6, the eligible interfaces are selected based on the following factors:
[参考文献1]第13.3节描述了链路状态更新数据包的发送。对于IPv4和IPv6,发送链路状态更新数据包的步骤是相同的(参考文献1第13.3节的步骤1至5)。但是,用于向LSA发送洪水的合格接口列表是不同的。对于IPv6,根据以下因素选择符合条件的接口:
o The LSA's flooding scope.
o LSA的泛洪范围。
o For LSAs with area or link-local flooding scoping, the particular area or interface that the LSA is associated with.
o 对于具有区域或链路局部泛洪范围的LSA,LSA关联的特定区域或接口。
o Whether the LSA has a recognized LS type.
o LSA是否具有可识别的LS类型。
o The setting of the U-bit in the LS type. If the U-bit is set to 0, unrecognized LS types are treated as having link-local scope. If set to 1, unrecognized LS types are stored and flooded as if they were recognized.
o LS类型中U位的设置。如果U位设置为0,则无法识别的LS类型将被视为具有链接本地作用域。如果设置为1,则将存储未识别的LS类型并将其淹没,就像它们已被识别一样。
Choosing the set of eligible interfaces then breaks into the following cases:
选择一组符合条件的接口,然后分为以下几种情况:
Case 1 The LSA's LS type is recognized. In this case, the set of eligible interfaces is set depending on the flooding scope encoded in the LS type. If the flooding scope is "AS flooding scope", the eligible interfaces are all router interfaces excepting virtual links. In addition, AS-external-LSAs are not flooded out interfaces connecting to stub areas. If the flooding scope is "area flooding scope", the set of eligible interfaces are those interfaces connecting to the LSA's associated area. If the flooding scope is "link-local flooding scope", then there is a single eligible interface, the one connecting to the LSA's associated link (which, when the LSA is received in a Link State Update packet, is also the interface the LSA was received on).
案例1 LSA的LS类型被识别。在这种情况下,根据LS类型中编码的泛洪作用域设置合格接口集。如果泛洪范围为“AS泛洪范围”,则符合条件的接口是除虚拟链路之外的所有路由器接口。此外,由于外部LSA没有被淹没,因此接口连接到存根区域。如果泛洪范围为“区域泛洪范围”,则合格接口集为连接到LSA相关区域的接口。如果泛洪作用域是“链路本地泛洪作用域”,则存在单个合格接口,该接口连接到LSA的关联链路(当在链路状态更新包中接收LSA时,该链路也是接收LSA的接口)。
Case 2 The LS type is unrecognized, and the U-bit in the LS Type is set to 0 (treat the LSA as if it had link-local flooding scope). In this case there is a single eligible interface, namely, the interface on which the LSA was received.
情况2 LS类型无法识别,并且LS类型中的U位设置为0(将LSA视为具有链路局部泛洪作用域)。在这种情况下,只有一个合格的接口,即接收LSA的接口。
Case 3 The LS type is unrecognized, and the U-bit in the LS Type is set to 1 (store and flood the LSA, as if type understood). In this case, select the eligible interfaces based on the encoded flooding scope as in Case 1 above. However, in this case interfaces attached to stub areas are always excluded.
情况3 LS类型无法识别,并且LS类型中的U位设置为1(存储并泛洪LSA,就像理解类型一样)。在这种情况下,根据编码的泛洪范围选择符合条件的接口,如上面的案例1所示。但是,在这种情况下,始终排除连接到存根区域的接口。
A further decision must sometimes be made before adding an LSA to a given neighbor's link-state retransmission list (Step 1d in Section 13.3 of [Ref1]). If the LS type is recognized by the router, but not by the neighbor (as can be determined by examining the Options field that the neighbor advertised in its Database Description packet) and the LSA's U-bit is set to 0, then the LSA should be added to the neighbor's link-state retransmission list if and only if that neighbor is the Designated Router or Backup Designated Router for the attached link. The LS types described in detail by this memo, namely router-LSAs (LS type 0x2001), network-LSAs (0x2002), Inter-Area-Prefix-LSAs (0x2003), Inter-Area-Router-LSAs (0x2004), AS-External-LSAs (0x4005), Link-LSAs (0x0008) and Intra-Area-Prefix-LSAs (0x2009) are assumed to be understood by all routers. However, as an example the group-membership-LSA (0x2006) is understood only by MOSPF routers and since it has its U-bit set to 0, it should only be forwarded to a non-MOSPF neighbor (determined by examining the MC-bit in the neighbor's Database Description packets' Options field) when the neighbor is Designated Router or Backup Designated Router for the
在将LSA添加到给定邻居的链路状态重传列表之前,有时必须做出进一步的决定(参考文献1第13.3节中的步骤1d)。如果LS类型由路由器识别,而不是由邻居识别(可通过检查邻居在其数据库描述数据包中公布的选项字段确定),并且LSA的U位设置为0,然后,LSA应添加到邻居的链路状态重传列表中,当且仅当该邻居是连接链路的指定路由器或备份指定路由器时。本备忘录详细描述的LS类型,即路由器LSA(LS类型0x2001)、网络LSA(0x2002)、区域间前缀LSA(0x2003)、区域间路由器LSA(0x2004)、外部LSA(0x4005)、链路LSA(0x0008)和区域内前缀LSA(0x2009),假定所有路由器都能理解。然而,作为一个示例,组成员LSA(0x2006)仅由MOSPF路由器理解,并且由于其U位设置为0,因此应仅将其转发给非MOSPF邻居(通过检查邻居的数据库描述数据包的选项字段中的MC位确定)当邻居是指定路由器或备份指定路由器时
attached link.
附加链接。
The previous paragraph solves a problem in IPv4 OSPF extensions such as MOSPF, which require that the Designated Router support the extension in order to have the new LSA types flooded across broadcast and NBMA networks (see Section 10.2 of [Ref8]).
上一段解决了IPv4 OSPF扩展(如MOSPF)中的一个问题,该扩展要求指定的路由器支持该扩展,以便在广播和NBMA网络中淹没新的LSA类型(见参考文献8第10.2节)。
There are three separate places to store LSAs, depending on their flooding scope. LSAs with AS flooding scope are stored in the global OSPF data structure (see Section 3.1) as long as their LS type is known or their U-bit is 1. LSAs with area flooding scope are stored in the appropriate area data structure (see Section 3.1.1) as long as their LS type is known or their U-bit is 1. LSAs with link-local flooding scope, and those LSAs with unknown LS type and U-bit set to 0 (treat the LSA as if it had link-local flooding scope) are stored in the appropriate interface structure.
根据LSA的泛洪范围,有三个单独的位置可存储LSA。具有AS泛洪作用域的LSA存储在全局OSPF数据结构中(见第3.1节),只要其LS类型已知或其U位为1。具有区域泛洪范围的LSA存储在适当的区域数据结构中(见第3.1.1节),只要其LS类型已知或其U位为1。具有链路局部泛洪作用域的LSA,以及那些具有未知LS类型且U位设置为0(将LSA视为具有链路局部泛洪作用域)的LSA存储在适当的接口结构中。
When storing the LSA into the link-state database, a check must be made to see whether the LSA's contents have changed. Changes in contents are indicated exactly as in Section 13.2 of [Ref1]. When an LSA's contents have been changed, the following parts of the routing table must be recalculated, based on the LSA's LS type:
将LSA存储到链接状态数据库时,必须检查LSA的内容是否已更改。内容的变化如[参考文献1]第13.2节所示。更改LSA的内容后,必须根据LSA的LS类型重新计算路由表的以下部分:
Router-LSAs, Network-LSAs, Intra-Area-Prefix-LSAs and Link-LSAs The entire routing table is recalculated, starting with the shortest path calculation for each area (see Section 3.8).
路由器LSA、网络LSA、区域内前缀LSA和链路LSA重新计算整个路由表,从每个区域的最短路径计算开始(见第3.8节)。
Inter-Area-Prefix-LSAs and Inter-Area-Router-LSAs The best route to the destination described by the LSA must be recalculated (see Section 16.5 in [Ref1]). If this destination is an AS boundary router, it may also be necessary to re-examine all the AS-external-LSAs.
必须重新计算区域间前缀LSA和区域间路由器LSA到LSA所述目的地的最佳路由(见[参考文献1]第16.5节)。如果此目的地是AS边界路由器,则可能还需要重新检查所有AS外部LSA。
AS-external-LSAs The best route to the destination described by the AS-external-LSA must be recalculated (see Section 16.6 in [Ref1]).
作为外部LSA,必须重新计算到达AS外部LSA所述目的地的最佳路线(见参考文献1第16.6节)。
As in IPv4, any old instance of the LSA must be removed from the database when the new LSA is installed. This old instance must also be removed from all neighbors' Link state retransmission lists.
与IPv4中一样,在安装新LSA时,必须从数据库中删除LSA的任何旧实例。还必须从所有邻居的链路状态重传列表中删除此旧实例。
In IPv6 the definition of a self-originated LSA has been simplified from the IPv4 definition appearing in Sections 13.4 and 14.1 of [Ref1]. For IPv6, self-originated LSAs are those LSAs whose Advertising Router is equal to the router's own Router ID.
在IPv6中,自创LSA的定义已从[Ref1]第13.4节和第14.1节中的IPv4定义简化。对于IPv6,自创LSA是指其广告路由器等于路由器自身路由器ID的LSA。
OSPF virtual links for IPv4 are described in Section 15 of [Ref1]. Virtual links are the same in IPv6, with the following exceptions:
IPv4的OSPF虚拟链路在[参考文献1]的第15节中进行了描述。IPv6中的虚拟链路相同,但有以下例外:
o LSAs having AS flooding scope are never flooded over virtual adjacencies, nor are LSAs with AS flooding scope summarized over virtual adjacencies during the Database Exchange process. This is a generalization of the IPv4 treatment of AS-external-LSAs.
o 在数据库交换过程中,具有AS泛洪作用域的LSA不会淹没在虚拟邻接上,也不会在虚拟邻接上汇总具有AS泛洪作用域的LSA。这是IPv4对AS外部LSA处理的概括。
o The IPv6 interface address of a virtual link must be an IPv6 address having site-local or global scope, instead of the link-local addresses used by other interface types. This address is used as the IPv6 source for OSPF protocol packets sent over the virtual link.
o 虚拟链路的IPv6接口地址必须是具有站点本地或全局作用域的IPv6地址,而不是其他接口类型使用的链路本地地址。此地址用作通过虚拟链路发送的OSPF协议数据包的IPv6源。
o Likewise, the virtual neighbor's IPv6 address is an IPv6 address with site-local or global scope. To enable the discovery of a virtual neighbor's IPv6 address during the routing calculation, the neighbor advertises its virtual link's IPv6 interface address in an Intra-Area-Prefix-LSA originated for the virtual link's transit area (see Sections 3.4.3.7 and 3.8.1).
o 同样,虚拟邻居的IPv6地址是具有站点本地或全局作用域的IPv6地址。为了能够在路由计算期间发现虚拟邻居的IPv6地址,邻居在为虚拟链路的传输区域发起的区域内前缀LSA中播发其虚拟链路的IPv6接口地址(参见第3.4.3.7和3.8.1节)。
o Like all other IPv6 OSPF interfaces, virtual links are assigned unique (within the router) Interface IDs. These are advertised in Hellos sent over the virtual link, and in the router's router-LSAs.
o 与所有其他IPv6 OSPF接口一样,虚拟链路被分配唯一的(在路由器内)接口ID。这些都在通过虚拟链路发送的HELOS和路由器的路由器LSA中公布。
The IPv6 OSPF routing calculation proceeds along the same lines as the IPv4 OSPF routing calculation, following the five steps specified by Section 16 of [Ref1]. High level differences between the IPv6 and IPv4 calculations include:
IPv6 OSPF路由计算按照与IPv4 OSPF路由计算相同的路线进行,遵循[参考文献1]第16节规定的五个步骤。IPv6和IPv4计算之间的高级别差异包括:
o Prefix information has been removed from router-LSAs, and now is advertised in intra-area-prefix-LSAs. Whenever [Ref1] specifies that stub networks within router-LSAs be examined, IPv6 will instead examine prefixes within intra-area-prefix-LSAs.
o 前缀信息已从路由器LSA中删除,现在在区域内前缀LSA中播发。每当[Ref1]指定检查路由器LSA内的存根网络时,IPv6将改为检查区域内前缀LSA内的前缀。
o Type 3 and 4 summary-LSAs have been renamed inter-area-prefix-LSAs and inter-area-router-LSAs (respectively).
o 类型3和类型4摘要LSA已分别重命名为区域间前缀LSA和区域间路由器LSA。
o Addressing information is no longer encoded in Link State IDs, and must instead be found within the body of LSAs.
o 寻址信息不再编码在链路状态ID中,而是必须在LSA主体中找到。
o In IPv6, a router can originate multiple router-LSAs within a single area, distinguished by Link State ID. These router-LSAs must be treated as a single aggregate by the area's shortest path calculation (see Section 3.8.1).
o 在IPv6中,路由器可以在单个区域内发起多个路由器LSA,通过链路状态ID进行区分。这些路由器LSA必须通过该区域的最短路径计算作为单个聚合处理(见第3.8.1节)。
For each area, routing table entries have been created for the area's routers and transit links, in order to store the results of the area's shortest-path tree calculation (see Section 3.8.1). These entries are then used when processing intra-area-prefix-LSAs, inter-area-prefix-LSAs and inter-area-router-LSAs, as described in Section 3.8.2.
对于每个区域,已为该区域的路由器和传输链路创建路由表条目,以存储该区域最短路径树计算的结果(见第3.8.1节)。然后在处理区域内前缀LSA、区域间前缀LSA和区域间路由器LSA时使用这些条目,如第3.8.2节所述。
Events generated as a result of routing table changes (Section 16.7 of [Ref1]), and the equal-cost multipath logic (Section 16.8 of [Ref1]) are identical for both IPv4 and IPv6.
由于路由表更改(参考文献[1]第16.7节)和等成本多路径逻辑(参考文献[1]第16.8节)而生成的事件对于IPv4和IPv6都是相同的。
The IPv4 shortest path calculation is contained in Section 16.1 of [Ref1]. The graph used by the shortest-path tree calculation is identical for both IPv4 and IPv6. The graph's vertices are routers and transit links, represented by router-LSAs and network-LSAs respectively. A router is identified by its OSPF Router ID, while a transit link is identified by its Designated Router's Interface ID and OSPF Router ID. Both routers and transit links have associated routing table entries within the area (see Section 3.3).
IPv4最短路径计算包含在[参考文献1]的第16.1节中。最短路径树计算所使用的图形对于IPv4和IPv6都是相同的。图的顶点是路由器和传输链路,分别由路由器LSA和网络LSA表示。路由器由其OSPF路由器ID标识,而传输链路由其指定路由器的接口ID和OSPF路由器ID标识。路由器和传输链路在区域内都有相关的路由表条目(见第3.3节)。
Section 16.1 of [Ref1] splits up the shortest path calculations into two stages. First the Dijkstra calculation is performed, and then the stub links are added onto the tree as leaves. The IPv6 calculation maintains this split.
[参考文献1]第16.1节将最短路径计算分为两个阶段。首先执行Dijkstra计算,然后将存根链接作为树叶添加到树上。IPv6计算将维护此拆分。
The Dijkstra calculation for IPv6 is identical to that specified for IPv4, with the following exceptions (referencing the steps from the Dijkstra calculation as described in Section 16.1 of [Ref1]):
IPv6的Dijkstra计算与IPv4的Dijkstra计算相同,但有以下例外(参考[Ref1]第16.1节中描述的Dijkstra计算步骤):
o The Vertex ID for a router is the OSPF Router ID. The Vertex ID for a transit network is a combination of the Interface ID and OSPF Router ID of the network's Designated Router.
o 路由器的顶点ID是OSPF路由器ID。传输网络的顶点ID是网络指定路由器的接口ID和OSPF路由器ID的组合。
o In Step 2, when a router Vertex V has just been added to the shortest path tree, there may be multiple LSAs associated with the router. All Router-LSAs with Advertising Router set to V's OSPF Router ID must processed as an aggregate, treating them as fragments of a single large router-LSA. The Options field and the router type bits (bits W, V, E and B) should always be taken from "fragment" with the smallest Link State ID.
o 在步骤2中,当路由器顶点V刚刚添加到最短路径树时,可能有多个LSA与路由器关联。所有将广告路由器设置为V的OSPF路由器ID的路由器LSA必须作为聚合处理,将其视为单个大型路由器LSA的片段。选项字段和路由器类型位(位W、V、E和B)应始终取自具有最小链路状态ID的“片段”。
o Step 2a is not needed in IPv6, as there are no longer stub network links in router-LSAs.
o IPv6中不需要步骤2a,因为路由器LSA中不再有存根网络链路。
o In Step 2b, if W is a router, there may again be multiple LSAs associated with the router. All Router-LSAs with Advertising Router set to W's OSPF Router ID must processed as an aggregate, treating them as fragments of a single large router-LSA.
o 在步骤2b中,如果W是路由器,则可能再次存在与路由器相关联的多个lsa。所有将广告路由器设置为W的OSPF路由器ID的路由器LSA必须作为聚合处理,将其视为单个大型路由器LSA的片段。
o In Step 4, there are now per-area routing table entries for each of an area's routers, instead of just the area border routers. These entries subsume all the functionality of IPv4's area border router routing table entries, including the maintenance of virtual links. When the router added to the area routing table in this step is the other end of a virtual link, the virtual neighbor's IP address is set as follows: The collection of intra-area-prefix-LSAs originated by the virtual neighbor is examined, with the virtual neighbor's IP address being set to the first prefix encountered having the "LA-bit" set.
o 在步骤4中,现在每个区域的路由器都有每个区域的路由表条目,而不仅仅是区域边界路由器。这些条目包含IPv4的区域边界路由器路由表条目的所有功能,包括虚拟链路的维护。当在该步骤中添加到区域路由表的路由器是虚拟链路的另一端时,虚拟邻居的IP地址设置如下:检查由虚拟邻居发起的区域内前缀LSA的集合,虚拟邻居的IP地址设置为遇到的具有“LA位”设置的第一个前缀。
o Routing table entries for transit networks, which are no longer associated with IP networks, are also modified in Step 4.
o 公交网络的路由表条目(不再与IP网络关联)也将在步骤4中修改。
The next stage of the shortest path calculation proceeds similarly to the two steps of the second stage of Section 16.1 in [Ref1]. However, instead of examining the stub links within router-LSAs, the list of the area's intra-area-prefix-LSAs is examined. A prefix advertisement whose "NU-bit" is set should not be included in the routing calculation. The cost of any advertised prefix is the sum of the prefix' advertised metric plus the cost to the transit vertex (either router or transit network) identified by intra-area-prefix-LSA's Referenced LS type, Referenced Link State ID and Referenced Advertising Router fields. This latter cost is stored in the transit vertex' routing table entry for the area.
最短路径计算的下一阶段类似于[参考文献1]第16.1节第二阶段的两个步骤。但是,不检查路由器lsa内的存根链路,而是检查区域内前缀lsa的列表。路由计算中不应包括设置了“NU位”的前缀播发。任何播发前缀的成本是前缀的播发度量加上由区域内前缀LSA的参考LS类型、参考链路状态ID和参考播发路由器字段标识的传输顶点(路由器或传输网络)的成本之和。后一种成本存储在该区域的transit vertex的路由表条目中。
In IPv6, the calculation of the next hop's IPv6 address (which will be a link-local address) proceeds along the same lines as the IPv4 next hop calculation (see Section 16.1.1 of [Ref1]). The only difference is in calculating the next hop IPv6 address for a router
在IPv6中,下一个跃点的IPv6地址(将是链路本地地址)的计算与IPv4下一个跃点的计算沿着相同的路线进行(参见[Ref1]第16.1.1节)。唯一的区别是计算路由器的下一跳IPv6地址
(call it Router X) which shares a link with the calculating router. In this case the calculating router assigns the next hop IPv6 address to be the link-local interface address contained in Router X's Link-LSA (see Section A.4.8) for the link. This procedure is necessary since on some links, such as NBMA links, the two routers need not be neighbors, and therefore might not be exchanging OSPF Hellos.
(称之为路由器X),它与计算路由器共享一条链路。在这种情况下,计算路由器将下一跳IPv6地址指定为包含在路由器X的链路LSA(参见第A.4.8节)中的链路本地接口地址。此过程是必要的,因为在某些链路上,例如NBMA链路,两个路由器不需要是邻居,因此可能不会交换OSPF HELLO。
Calculation of inter-area routes for IPv6 proceeds along the same lines as the IPv4 calculation in Section 16.2 of [Ref1], with the following modifications:
IPv6区域间路由的计算与[Ref1]第16.2节中的IPv4计算相同,但有以下修改:
o The names of the Type 3 summary-LSAs and Type 4 summary-LSAs have been changed to inter-area-prefix-LSAs and inter-area-router-LSAs respectively.
o 类型3摘要LSA和类型4摘要LSA的名称已分别更改为区域间前缀LSA和区域间路由器LSA。
o The Link State ID of the above LSA types no longer encodes the network or router described by the LSA. Instead, an address prefix is contained in the body of an inter-area-prefix-LSA, and a described router's OSPF Router ID is carried in the body of an inter-area- router-LSA.
o 上述LSA类型的链路状态ID不再编码LSA描述的网络或路由器。相反,在区域间前缀LSA的主体中包含地址前缀,并且在区域间路由器LSA的主体中携带所述路由器的OSPF路由器ID。
o Prefixes having the "NU-bit" set in their Prefix Options field should be ignored by the inter-area route calculation.
o 区域间路由计算应忽略前缀选项字段中设置了“NU位”的前缀。
When a single inter-area-prefix-LSA or inter-area-router-LSA has changed, the incremental calculations outlined in Section 16.5 of [Ref1] can be performed instead of recalculating the entire routing table.
当单个区域间前缀LSA或区域间路由器LSA发生变化时,可以执行[Ref1]第16.5节中概述的增量计算,而不是重新计算整个路由表。
Examination of transit areas' summary-LSAs in IPv6 proceeds along the same lines as the IPv4 calculation in Section 16.3 of [Ref1], modified in the same way as the IPv6 inter-area route calculation in Section 3.8.2.
IPv6中过渡区的LSA汇总检查按照与[Ref1]第16.3节中IPv4计算相同的路线进行,修改方式与第3.8.2节中IPv6区域间路由计算相同。
The IPv6 AS external route calculation proceeds along the same lines as the IPv4 calculation in Section 16.4 of [Ref1], with the following exceptions:
IPv6作为外部路由的计算过程与[Ref1]第16.4节中的IPv4计算过程相同,但以下情况除外:
o The Link State ID of the AS-external-LSA types no longer encodes the network described by the LSA. Instead, an address prefix is contained in the body of an AS- external-LSA.
o AS外部LSA类型的链路状态ID不再编码LSA描述的网络。相反,地址前缀包含在AS-external LSA的主体中。
o The default route is described by AS-external-LSAs which advertise zero length prefixes.
o 默认路由由外部LSA描述,该LSA播发零长度前缀。
o Instead of comparing the AS-external-LSA's Forwarding address field to 0.0.0.0 to see whether a forwarding address has been used, bit F of the external-LSA is examined. A forwarding address is in use if and only if bit F is set.
o 不是将AS外部LSA的转发地址字段与0.0.0.0进行比较以查看是否使用了转发地址,而是检查外部LSA的位F。当且仅当设置了位F时,才使用转发地址。
o Prefixes having the "NU-bit" set in their Prefix Options field should be ignored by the inter-area route calculation.
o 区域间路由计算应忽略前缀选项字段中设置了“NU位”的前缀。
When a single AS-external-LSA has changed, the incremental calculations outlined in Section 16.6 of [Ref1] can be performed instead of recalculating the entire routing table.
当单个AS外部LSA发生变化时,可以执行[Ref1]第16.6节中概述的增量计算,而不是重新计算整个路由表。
In OSPF for IPv6, a router may have multiple interfaces to a single link. All interfaces are involved in the reception and transmission of data traffic, however only a single interface sends and receives OSPF control traffic. In more detail:
在用于IPv6的OSPF中,路由器可能有多个到单个链路的接口。所有接口都涉及数据流量的接收和传输,但是只有一个接口发送和接收OSPF控制流量。更详细地说:
o Each of the multiple interfaces are assigned different Interface IDs. In this way the router can automatically detect when multiple interfaces attach to the same link, when receiving Hellos from its own Router ID but with an Interface ID other than the receiving interface's.
o 多个接口中的每一个都分配了不同的接口ID。通过这种方式,路由器可以自动检测多个接口何时连接到同一链路,何时从自己的路由器ID接收Hello,但接口ID不是接收接口的。
o The router turns off the sending and receiving of OSPF packets (that is, control traffic) on all but one of the interfaces to the link. The choice of interface to send and receive control traffic is implementation dependent; as one example, the interface with the highest Interface ID could be chosen. If the router is elected DR, it will be this interface's Interface ID that will be used as the network-LSA's Link State ID.
o 路由器关闭除一个链路接口外所有接口上的OSPF数据包(即控制流量)的发送和接收。发送和接收控制流量的接口选择取决于实现;例如,可以选择具有最高接口ID的接口。如果路由器被选为DR,则该接口的接口ID将用作网络LSA的链路状态ID。
o All the multiple interfaces to the link will however appear in the router-LSA. In addition, a Link-LSA will be generated for each of the multiple interfaces. In this way, all interfaces will be included in OSPF's routing calculations.
o 但是,链接的所有多个接口将出现在路由器LSA中。此外,将为多个接口中的每个接口生成链路LSA。这样,所有接口都将包含在OSPF的路由计算中。
o If the interface which is responsible for sending and receiving control traffic fails, another will have to take over, reforming all neighbor adjacencies from scratch. This failure can be detected by the router itself, when the other interfaces to the same link cease to hear the router's own Hellos.
o 如果负责发送和接收控制通信量的接口出现故障,则必须由另一个接口接管,从头开始改造所有相邻接口。当同一链路的其他接口停止听到路由器自己的hello时,路由器本身可以检测到该故障。
References
工具书类
[Ref1] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[参考文献1]莫伊,J.,“OSPF版本2”,STD 54,RFC 23281998年4月。
[Ref2] McKenzie, A., "ISO Transport Protocol specification ISO DP 8073", RFC 905, April 1984.
[参考文献2]McKenzie,A.,“ISO传输协议规范ISO DP 8073”,RFC 905,1984年4月。
[Ref3] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB using SMIv2", RFC 2233, November 1997.
[参考文献3]McCloghrie,K.和F.Kastenholz,“使用SMIv2的接口组MIB”,RFC 2233,1997年11月。
[Ref4] Fuller, V., Li, T, Yu, J. and K. Varadhan, "Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy", RFC 1519, September 1993.
[Ref4]Fuller,V.,Li,T,Yu,J.和K.Varadhan,“无类域间路由(CIDR):地址分配和聚合策略”,RFC 1519,1993年9月。
[Ref5] Varadhan, K., Hares, S. and Y. Rekhter, "BGP4/IDRP for IP--- OSPF Interaction", RFC 1745, December 1994
[Ref5] Varadhan, K., Hares, S. and Y. Rekhter, "BGP4/IDRP for IP--- OSPF Interaction", RFC 1745, December 1994
[Ref6] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC 1700, October 1994.
[参考文献6]Reynolds,J.和J.Postel,“分配的数字”,标准2,RFC 1700,1994年10月。
[Ref7] deSouza, O. and M. Rodrigues, "Guidelines for Running OSPF Over Frame Relay Networks", RFC 1586, March 1994.
[参考文献7]deSouza,O.和M.Rodrigues,“在帧中继网络上运行OSPF的指南”,RFC 1586,1994年3月。
[Ref8] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March 1994.
[参考文献8]莫伊,J.,“OSPF的多播扩展”,RFC1584,1994年3月。
[Ref9] Coltun, R. and V. Fuller, "The OSPF NSSA Option", RFC 1587, March 1994.
[参考文献9]Coltun,R.和V.Fuller,“OSPF NSSA方案”,RFC 1587,1994年3月。
[Ref10] Ferguson, D., "The OSPF External Attributes LSA", unpublished.
[Ref10]Ferguson,D.,“OSPF外部属性LSA”,未出版。
[Ref11] Moy, J., "Extending OSPF to Support Demand Circuits", RFC 1793, April 1995.
[参考文献11]莫伊,J.“扩展OSPF以支持需求电路”,RFC 1793,1995年4月。
[Ref12] Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191, November 1990.
[Ref12]Mogul,J.和S.Deering,“MTU发现路径”,RFC191990年11月。
[Ref13] Rekhter, Y. and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC 1771, March 1995.
[参考文献13]Rekhter,Y.和T.Li,“边境网关协议4(BGP-4)”,RFC 17711995年3月。
[Ref14] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[参考14]Deering,S.和R.Hinden,“互联网协议,第6版(IPv6)规范”,RFC 2460,1998年12月。
[Ref15] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 2373, July 1998.
[参考文献15]Hinden,R.和S.Deering,“IP版本6寻址体系结构”,RFC 23731998年7月。
[Ref16] Conta, A. and S. Deering, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification" RFC 2463, December 1998.
[Ref16]Conta,A.和S.Deering,“互联网协议版本6(IPv6)规范的互联网控制消息协议(ICMPv6)”RFC 2463,1998年12月。
[Ref17] Narten, T., Nordmark, E. and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998.
[参考文献17]Narten,T.,Nordmark,E.和W.Simpson,“IP版本6(IPv6)的邻居发现”,RFC 2461,1998年12月。
[Ref18] McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for IP version 6", RFC 1981, August 1996.
[参考文献18]McCann,J.,Deering,S.和J.Mogul,“IP版本6的路径MTU发现”,RFC 1981,1996年8月。
[Ref19] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.
[Ref19]Kent,S.和R.Atkinson,“IP认证头”,RFC 2402,1998年11月。
[Ref20] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998.
[参考文献20]Kent,S.和R.Atkinson,“IP封装安全有效载荷(ESP)”,RFC 2406,1998年11月。
A. OSPF data formats
A.OSPF数据格式
This appendix describes the format of OSPF protocol packets and OSPF LSAs. The OSPF protocol runs directly over the IPv6 network layer. Before any data formats are described, the details of the OSPF encapsulation are explained.
本附录描述了OSPF协议包和OSPF LSA的格式。OSPF协议直接在IPv6网络层上运行。在描述任何数据格式之前,将解释OSPF封装的细节。
Next the OSPF Options field is described. This field describes various capabilities that may or may not be supported by pieces of the OSPF routing domain. The OSPF Options field is contained in OSPF Hello packets, Database Description packets and in OSPF LSAs.
接下来描述OSPF选项字段。此字段描述OSPF路由域的各个部分可能支持也可能不支持的各种功能。OSPF选项字段包含在OSPF Hello数据包、数据库描述数据包和OSPF LSA中。
OSPF packet formats are detailed in Section A.3.
OSPF数据包格式详见第A.3节。
A description of OSPF LSAs appears in Section A.4. This section describes how IPv6 address prefixes are represented within LSAs, details the standard LSA header, and then provides formats for each of the specific LSA types.
OSPF LSA的说明见第A.4节。本节介绍如何在LSA中表示IPv6地址前缀,详细说明标准LSA标头,然后提供每个特定LSA类型的格式。
OSPF runs directly over the IPv6's network layer. OSPF packets are therefore encapsulated solely by IPv6 and local data-link headers.
OSPF直接在IPv6的网络层上运行。因此,OSPF数据包仅由IPv6和本地数据链路头进行封装。
OSPF does not define a way to fragment its protocol packets, and depends on IPv6 fragmentation when transmitting packets larger than the link MTU. If necessary, the length of OSPF packets can be up to 65,535 bytes. The OSPF packet types that are likely to be large (Database Description Packets, Link State Request, Link State Update, and Link State Acknowledgment packets) can usually be split into several separate protocol packets, without loss of functionality. This is recommended; IPv6 fragmentation should be avoided whenever possible. Using this reasoning, an attempt should be made to limit the sizes of OSPF packets sent over virtual links to 1280 bytes unless Path MTU Discovery is being performed [Ref14].
OSPF没有定义对其协议数据包进行分段的方法,并且在传输大于链路MTU的数据包时依赖于IPv6分段。如有必要,OSPF数据包的长度可高达65535字节。可能较大的OSPF数据包类型(数据库描述数据包、链路状态请求、链路状态更新和链路状态确认数据包)通常可以拆分为多个单独的协议数据包,而不会丢失功能。这是建议的;应尽可能避免IPv6碎片。根据这一推理,应尝试将通过虚拟链路发送的OSPF数据包的大小限制为1280字节,除非正在执行路径MTU发现[Ref14]。
The other important features of OSPF's IPv6 encapsulation are:
OSPF IPv6封装的其他重要功能包括:
o Use of IPv6 multicast. Some OSPF messages are multicast, when sent over broadcast networks. Two distinct IP multicast addresses are used. Packets sent to these multicast addresses should never be forwarded; they are meant to travel a single hop only. As such, the multicast addresses have been chosen with link-local scope, and packets sent to these addresses should have their IPv6 Hop Limit set to 1.
o IPv6多播的使用。当通过广播网络发送时,一些OSPF消息是多播的。使用两个不同的IP多播地址。发送到这些多播地址的数据包不应该被转发;他们只能跳一步。因此,已使用链路本地作用域选择多播地址,发送到这些地址的数据包的IPv6跃点限制应设置为1。
AllSPFRouters This multicast address has been assigned the value FF02::5. All routers running OSPF should be prepared to receive packets sent to this address. Hello packets are always sent to this destination. Also, certain OSPF protocol packets are sent to this address during the flooding procedure.
此多播地址的所有SPFROUTERS已分配值FF02::5。所有运行OSPF的路由器都应该准备好接收发送到此地址的数据包。Hello数据包始终发送到此目的地。此外,在泛洪过程中,某些OSPF协议包被发送到此地址。
AllDRouters This multicast address has been assigned the value FF02::6. Both the Designated Router and Backup Designated Router must be prepared to receive packets destined to this address. Certain OSPF protocol packets are sent to this address during the flooding procedure.
此多播地址已分配值FF02::6。指定路由器和备份指定路由器都必须准备好接收发送到此地址的数据包。在泛洪过程中,某些OSPF协议数据包被发送到此地址。
o OSPF is IP protocol 89. This number should be inserted in the Next Header field of the encapsulating IPv6 header.
o OSPF是IP协议89。此编号应插入到封装IPv6标头的下一个标头字段中。
The 24-bit OSPF Options field is present in OSPF Hello packets, Database Description packets and certain LSAs (router-LSAs, network-LSAs, inter-area-router-LSAs and link-LSAs). The Options field enables OSPF routers to support (or not support) optional capabilities, and to communicate their capability level to other OSPF routers. Through this mechanism routers of differing capabilities can be mixed within an OSPF routing domain.
24位OSPF选项字段出现在OSPF Hello数据包、数据库描述数据包和某些LSA(路由器LSA、网络LSA、区域间路由器LSA和链路LSA)中。选项字段使OSPF路由器能够支持(或不支持)可选功能,并将其功能级别与其他OSPF路由器进行通信。通过这种机制,不同功能的路由器可以在OSPF路由域中混合使用。
An option mismatch between routers can cause a variety of behaviors, depending on the particular option. Some option mismatches prevent neighbor relationships from forming (e.g., the E-bit below); these mismatches are discovered through the sending and receiving of Hello packets. Some option mismatches prevent particular LSA types from being flooded across adjacencies (e.g., the MC-bit below); these are discovered through the sending and receiving of Database Description packets. Some option mismatches prevent routers from being included in one or more of the various routing calculations because of their reduced functionality (again the MC-bit is an example); these mismatches are discovered by examining LSAs.
路由器之间的选项不匹配可能导致多种行为,具体取决于特定的选项。某些选项不匹配会阻止邻居关系的形成(例如,下面的e位);这些不匹配是通过发送和接收Hello数据包发现的。某些选项不匹配会防止特定LSA类型在相邻位置(例如,下面的MC位)被淹没;这些是通过发送和接收数据库描述数据包发现的。一些选项不匹配会阻止路由器被包括在一个或多个不同的路由计算中,因为它们的功能降低(MC位也是一个例子);这些不匹配是通过检查LSA发现的。
Six bits of the OSPF Options field have been assigned. Each bit is described briefly below. Routers should reset (i.e. clear) unrecognized bits in the Options field when sending Hello packets or Database Description packets and when originating LSAs. Conversely, routers encountering unrecognized Option bits in received Hello Packets, Database Description packets or LSAs should ignore the capability and process the packet/LSA normally.
OSPF选项字段的六位已分配。下面简要描述每个位。在发送Hello数据包或数据库描述数据包以及发起LSA时,路由器应重置(即清除)选项字段中未识别的位。相反,在收到的Hello数据包、数据库描述数据包或LSA中遇到无法识别的选项位的路由器应忽略该功能,并正常处理数据包/LSA。
1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+--+--+--+--+--+ | | | | | | | | | | | | | | | | | |DC| R| N|MC| E|V6| -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+--+--+--+--+--+
1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+--+--+--+--+--+ | | | | | | | | | | | | | | | | | |DC| R| N|MC| E|V6| -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+--+--+--+--+--+
The Options field
选项字段
V6-bit If this bit is clear, the router/link should be excluded from IPv6 routing calculations. See Section 3.8 of this memo.
V6位如果清除此位,则应将路由器/链路排除在IPv6路由计算之外。见本备忘录第3.8节。
E-bit This bit describes the way AS-external-LSAs are flooded, as described in Sections 3.6, 9.5, 10.8 and 12.1.2 of [Ref1].
E位该位描述了外部LSA被淹没的方式,如参考文献1第3.6、9.5、10.8和12.1.2节所述。
MC-bit This bit describes whether IP multicast datagrams are forwarded according to the specifications in [Ref7].
MC位该位描述IP多播数据报是否根据[Ref7]中的规范转发。
N-bit This bit describes the handling of Type-7 LSAs, as specified in [Ref8].
N位该位描述了[Ref8]中规定的7型LSA的处理。
R-bit This bit (the `Router' bit) indicates whether the originator is an active router. If the router bit is clear routes which transit the advertising node cannot be computed. Clearing the router bit would be appropriate for a multi-homed host that wants to participate in routing, but does not want to forward non-locally addressed packets.
R位该位(“路由器”位)表示发起者是否为活动路由器。如果路由器位清除,则无法计算通过广告节点的路由。清除路由器位适用于希望参与路由但不希望转发非本地寻址数据包的多宿主机。
DC-bit This bit describes the router's handling of demand circuits, as specified in [Ref10].
DC位该位描述了路由器对需求电路的处理,如参考文献10所述。
There are five distinct OSPF packet types. All OSPF packet types begin with a standard 16 byte header. This header is described first. Each packet type is then described in a succeeding section. In these sections each packet's division into fields is displayed, and then the field definitions are enumerated.
有五种不同的OSPF数据包类型。所有OSPF数据包类型都以标准的16字节报头开始。首先描述该标题。然后在接下来的一节中描述每种分组类型。在这些部分中,将显示每个数据包的字段划分,然后枚举字段定义。
All OSPF packet types (other than the OSPF Hello packets) deal with lists of LSAs. For example, Link State Update packets implement the flooding of LSAs throughout the OSPF routing domain. The format of LSAs is described in Section A.4.
所有OSPF数据包类型(OSPF Hello数据包除外)都处理LSA列表。例如,链路状态更新包在整个OSPF路由域中实现LSA的泛洪。LSA的格式见第A.4节。
The receive processing of OSPF packets is detailed in Section 3.2.2. The sending of OSPF packets is explained in Section 3.2.1.
OSPF数据包的接收处理详见第3.2.2节。第3.2.1节解释了OSPF数据包的发送。
Every OSPF packet starts with a standard 16 byte header. Together with the encapsulating IPv6 headers, the OSPF header contains all the information necessary to determine whether the packet should be accepted for further processing. This determination is described in Section 3.2.2 of this memo.
每个OSPF数据包都以一个标准的16字节报头开始。OSPF报头与封装的IPv6报头一起包含确定是否应接受该数据包进行进一步处理所需的所有信息。本备忘录第3.2.2节描述了该决定。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Version # | Type | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Version # | Type | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Version # The OSPF version number. This specification documents version 3 of the OSPF protocol.
版本#OSPF版本号。本规范记录了OSPF协议的第3版。
Type The OSPF packet types are as follows. See Sections A.3.2 through A.3.6 for details.
类型OSPF数据包类型如下所示。详见第A.3.2至A.3.6节。
Type Description --------------------------------- 1 Hello 2 Database Description 3 Link State Request 4 Link State Update 5 Link State Acknowledgment
Type Description --------------------------------- 1 Hello 2 Database Description 3 Link State Request 4 Link State Update 5 Link State Acknowledgment
Packet length The length of the OSPF protocol packet in bytes. This length includes the standard OSPF header.
数据包长度OSPF协议数据包的长度,以字节为单位。此长度包括标准OSPF标头。
Router ID The Router ID of the packet's source.
路由器ID数据包源的路由器ID。
Area ID A 32 bit number identifying the area that this packet belongs to. All OSPF packets are associated with a single area. Most travel a single hop only. Packets travelling over a virtual link are labelled with the backbone Area ID of 0.
区域ID标识此数据包所属区域的32位数字。所有OSPF数据包都与单个区域相关联。大多数旅行只有一个单跳。在虚拟链路上传输的数据包被标记为主干区域ID为0。
Checksum OSPF uses the standard checksum calculation for IPv6 applications: The 16-bit one's complement of the one's complement sum of the entire contents of the packet, starting with the OSPF packet header, and prepending a "pseudo-header" of IPv6 header fields, as specified in [Ref14, section 8.1]. The "Upper-Layer Packet Length" in the pseudo-header is set to value of the OSPF packet header's length field. The Next Header value used in the pseudo-header is 89. If the packet's length is not an integral number of 16-bit words, the packet is padded with a byte of zero before checksumming. Before computing the checksum, the checksum field in the OSPF packet header is set to 0.
校验和OSPF使用IPv6应用程序的标准校验和计算:数据包全部内容的16位1的补码,从OSPF数据包头开始,并在IPv6报头字段的“伪报头”之前,如[参考14,第8.1节]所述。伪报头中的“上层分组长度”设置为OSPF分组报头的长度字段的值。伪报头中使用的下一个报头值是89。如果数据包的长度不是16位字的整数,则在校验和之前用零字节填充数据包。在计算校验和之前,OSPF数据包头中的校验和字段设置为0。
Instance ID Enables multiple instances of OSPF to be run over a single link. Each protocol instance would be assigned a separate Instance ID; the Instance ID has local link significance only. Received packets whose Instance ID is not equal to the receiving interface's Instance ID are discarded.
实例ID允许在单个链路上运行多个OSPF实例。每个协议实例将被分配一个单独的实例ID;实例ID仅具有本地链接重要性。实例ID不等于接收接口实例ID的接收数据包将被丢弃。
0 These fields are reserved. They must be 0.
0这些字段是保留的。它们必须是0。
Hello packets are OSPF packet type 1. These packets are sent periodically on all interfaces (including virtual links) in order to establish and maintain neighbor relationships. In addition, Hello Packets are multicast on those links having a multicast or broadcast capability, enabling dynamic discovery of neighboring routers.
Hello数据包是OSPF数据包类型1。这些数据包在所有接口(包括虚拟链路)上定期发送,以便建立和维护邻居关系。此外,Hello数据包在具有多播或广播功能的链路上进行多播,从而能够动态发现相邻路由器。
All routers connected to a common link must agree on certain parameters (HelloInterval and RouterDeadInterval). These parameters are included in Hello packets, so that differences can inhibit the forming of neighbor relationships. The Hello packet also contains fields used in Designated Router election (Designated Router ID and Backup Designated Router ID), and fields used to detect bi-directionality (the Router IDs of all neighbors whose Hellos have been recently received).
连接到公共链路的所有路由器必须在某些参数(HelloInterval和RouterDeadInterval)上达成一致。这些参数包含在Hello数据包中,因此差异可以抑制邻居关系的形成。Hello数据包还包含指定路由器选择中使用的字段(指定路由器ID和备份指定路由器ID),以及用于检测双向性的字段(最近收到Hello的所有邻居的路由器ID)。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 1 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Rtr Pri | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HelloInterval | RouterDeadInterval | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Designated Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Backup Designated Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 1 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Rtr Pri | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HelloInterval | RouterDeadInterval | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Designated Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Backup Designated Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Interface ID 32-bit number uniquely identifying this interface among the collection of this router's interfaces. For example, in some implementations it may be possible to use the MIB-II IfIndex ([Ref3]).
接口ID 32位数字,在路由器接口集合中唯一标识此接口。例如,在某些实现中,可以使用MIB-II IfIndex([Ref3])。
Rtr Pri This router's Router Priority. Used in (Backup) Designated Router election. If set to 0, the router will be ineligible to become (Backup) Designated Router.
Rtr Pri此路由器的路由器优先级。用于(备份)指定路由器选择。如果设置为0,路由器将没有资格成为(备份)指定路由器。
Options The optional capabilities supported by the router, as documented in Section A.2.
选项路由器支持的可选功能,如第A.2节所述。
HelloInterval The number of seconds between this router's Hello packets.
HelloInterval此路由器的Hello数据包之间的秒数。
RouterDeadInterval The number of seconds before declaring a silent router down.
RouterReadInterval声明静默路由器关闭前的秒数。
Designated Router ID The identity of the Designated Router for this network, in the view of the sending router. The Designated Router is identified by its Router ID. Set to 0.0.0.0 if there is no Designated Router.
指定路由器ID在发送路由器的视图中,此网络的指定路由器的标识。指定的路由器由其路由器ID标识。如果没有指定的路由器,则设置为0.0.0.0。
Backup Designated Router ID The identity of the Backup Designated Router for this network, in the view of the sending router. The Backup Designated Router is identified by its IP Router ID. Set to 0.0.0.0 if there is no Backup Designated Router.
备份指定路由器ID发送路由器视图中此网络的备份指定路由器的标识。备份指定路由器由其IP路由器ID标识。如果没有备份指定路由器,则设置为0.0.0.0。
Neighbor ID The Router IDs of each router from whom valid Hello packets have been seen recently on the network. Recently means in the last RouterDeadInterval seconds.
邻居ID最近在网络上看到有效Hello数据包的每个路由器的路由器ID。最近表示在最后一个RouterDeadInterval秒内。
Database Description packets are OSPF packet type 2. These packets are exchanged when an adjacency is being initialized. They describe the contents of the link-state database. Multiple packets may be used to describe the database. For this purpose a poll-response procedure is used. One of the routers is designated to be the master, the other the slave. The master sends Database Description packets (polls) which are acknowledged by Database Description packets sent by the slave (responses). The responses are linked to the polls via the packets' DD sequence numbers.
数据库描述数据包为OSPF数据包类型2。当邻接被初始化时,这些数据包被交换。它们描述链接状态数据库的内容。可以使用多个数据包来描述数据库。为此,使用了轮询响应程序。其中一个路由器被指定为主路由器,另一个路由器被指定为从路由器。主服务器发送数据库描述数据包(轮询),由从服务器发送的数据库描述数据包(响应)确认。响应通过数据包的DD序列号链接到轮询。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 2 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface MTU | 0 |0|0|0|0|0|I|M|MS +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DD sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- An LSA Header -+ | | +- -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 2 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface MTU | 0 |0|0|0|0|0|I|M|MS +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DD sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- An LSA Header -+ | | +- -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
The format of the Database Description packet is very similar to both the Link State Request and Link State Acknowledgment packets. The main part of all three is a list of items, each item describing a piece of the link-state database. The sending of Database Description Packets is documented in Section 10.8 of [Ref1]. The reception of Database Description packets is documented in Section 10.6 of [Ref1].
数据库描述数据包的格式与链路状态请求和链路状态确认数据包非常相似。这三个项目的主要部分是一个项目列表,每个项目描述链接状态数据库的一部分。[参考文献1]第10.8节记录了数据库描述数据包的发送。[参考文献1]第10.6节记录了数据库描述数据包的接收。
Options The optional capabilities supported by the router, as documented in Section A.2.
选项路由器支持的可选功能,如第A.2节所述。
Interface MTU The size in bytes of the largest IPv6 datagram that can be sent out the associated interface, without fragmentation. The MTUs of common Internet link types can be found in Table 7-1 of [Ref12]. Interface MTU should be set to 0 in Database Description packets sent over virtual links.
接口MTU最大IPv6数据报的字节大小,可发送到相关接口,无碎片。常见互联网链路类型的MTU见[参考12]表7-1。在通过虚拟链接发送的数据库描述数据包中,接口MTU应设置为0。
I-bit The Init bit. When set to 1, this packet is the first in the sequence of Database Description Packets.
我一点一点的。当设置为1时,此数据包是数据库描述数据包序列中的第一个数据包。
M-bit The More bit. When set to 1, it indicates that more Database Description Packets are to follow.
M-一点一点。当设置为1时,表示将遵循更多的数据库描述数据包。
MS-bit The Master/Slave bit. When set to 1, it indicates that the router is the master during the Database Exchange process. Otherwise, the router is the slave.
MS位为主/从位。当设置为1时,表示在数据库交换过程中路由器是主路由器。否则,路由器就是从机。
DD sequence number Used to sequence the collection of Database Description Packets. The initial value (indicated by the Init bit being set) should be unique. The DD sequence number then increments until the complete database description has been sent.
用于对数据库描述数据包集合进行排序的DD序列号。初始值(由设置的初始位指示)应该是唯一的。然后,DD序列号递增,直到发送完整的数据库描述。
The rest of the packet consists of a (possibly partial) list of the link-state database's pieces. Each LSA in the database is described by its LSA header. The LSA header is documented in Section A.4.1. It contains all the information required to uniquely identify both the LSA and the LSA's current instance.
数据包的其余部分由链路状态数据库片段的(可能是部分)列表组成。数据库中的每个LSA都由其LSA头描述。LSA标题记录在第A.4.1节中。它包含唯一标识LSA和LSA当前实例所需的所有信息。
Link State Request packets are OSPF packet type 3. After exchanging Database Description packets with a neighboring router, a router may find that parts of its link-state database are out-of-date. The Link State Request packet is used to request the pieces of the neighbor's database that are more up-to-date. Multiple Link State Request packets may need to be used.
链路状态请求数据包为OSPF数据包类型3。在与相邻路由器交换数据库描述数据包后,路由器可能会发现其链路状态数据库的某些部分已过时。链路状态请求数据包用于请求邻居数据库中更新的数据块。可能需要使用多个链路状态请求数据包。
A router that sends a Link State Request packet has in mind the precise instance of the database pieces it is requesting. Each instance is defined by its LS sequence number, LS checksum, and LS age, although these fields are not specified in the Link State Request Packet itself. The router may receive even more recent instances in response.
发送链路状态请求数据包的路由器会记住它所请求的数据库片段的精确实例。每个实例由其LS序列号、LS校验和和和LS年龄定义,尽管这些字段未在链路状态请求数据包本身中指定。路由器可能会收到更多最近的实例作为响应。
The sending of Link State Request packets is documented in Section 10.9 of [Ref1]. The reception of Link State Request packets is documented in Section 10.7 of [Ref1].
链路状态请求数据包的发送记录在[参考文献1]第10.9节中。[参考文献1]第10.7节记录了链路状态请求数据包的接收。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 3 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | LS type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 3 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | LS type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Each LSA requested is specified by its LS type, Link State ID, and Advertising Router. This uniquely identifies the LSA, but not its instance. Link State Request packets are understood to be requests for the most recent instance (whatever that might be).
请求的每个LSA由其LS类型、链路状态ID和播发路由器指定。这唯一标识LSA,但不标识其实例。链路状态请求包被理解为最近实例的请求(不管是什么)。
Link State Update packets are OSPF packet type 4. These packets implement the flooding of LSAs. Each Link State Update packet carries a collection of LSAs one hop further from their origin. Several LSAs may be included in a single packet.
链路状态更新数据包为OSPF数据包类型4。这些数据包实现LSA的泛洪。每个链路状态更新数据包携带一个LSA集合,该集合距离其源站更远一跳。在单个分组中可以包括多个lsa。
Link State Update packets are multicast on those physical networks that support multicast/broadcast. In order to make the flooding procedure reliable, flooded LSAs are acknowledged in Link State Acknowledgment packets. If retransmission of certain LSAs is necessary, the retransmitted LSAs are always carried by unicast Link State Update packets. For more information on the reliable flooding of LSAs, consult Section 3.5.
链路状态更新数据包是支持多播/广播的物理网络上的多播。为了使泛洪过程可靠,在链路状态确认包中确认泛洪LSA。如果需要重新传输某些LSA,则重新传输的LSA始终由单播链路状态更新包携带。有关LSA可靠泛洪的更多信息,请参阅第3.5节。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 4 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # LSAs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- +-+ | LSAs | +- +-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 4 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # LSAs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- +-+ | LSAs | +- +-+ | ... |
# LSAs The number of LSAs included in this update.
#LSA此更新中包含的LSA数。
The body of the Link State Update packet consists of a list of LSAs. Each LSA begins with a common 20 byte header, described in Section A.4.2. Detailed formats of the different types of LSAs are described in Section A.4.
链路状态更新包的主体由LSA列表组成。每个LSA以一个公共的20字节报头开始,如第a.4.2节所述。不同类型LSA的详细格式见第A.4节。
Link State Acknowledgment Packets are OSPF packet type 5. To make the flooding of LSAs reliable, flooded LSAs are explicitly acknowledged. This acknowledgment is accomplished through the sending and receiving of Link State Acknowledgment packets. The sending of Link State Acknowledgement packets is documented in Section 13.5 of [Ref1]. The reception of Link State Acknowledgement packets is documented in Section 13.7 of [Ref1].
链路状态确认数据包为OSPF数据包类型5。为了使LSA的泛洪可靠,明确确认泛洪LSA。此确认通过发送和接收链路状态确认数据包来完成。[参考文献1]第13.5节记录了链路状态确认数据包的发送。链路状态确认数据包的接收记录在[参考文献1]第13.7节中。
Multiple LSAs can be acknowledged in a single Link State Acknowledgment packet. Depending on the state of the sending interface and the sender of the corresponding Link State Update packet, a Link State Acknowledgment packet is sent either to the multicast address AllSPFRouters, to the multicast address AllDRouters, or as a unicast (see Section 13.5 of [Ref1] for details).
在单个链路状态确认数据包中可以确认多个LSA。根据发送接口的状态和相应链路状态更新数据包的发送方,链路状态确认数据包被发送到多播地址AllsFrouters、多播地址AllDrooters或作为单播(详情参见[参考文献1]第13.5节)。
The format of this packet is similar to that of the Data Description packet. The body of both packets is simply a list of LSA headers.
此数据包的格式与数据描述数据包的格式相似。两个数据包的主体只是一个LSA头的列表。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 5 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- An LSA Header -+ | | +- -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 3 | 5 | Packet length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Area ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum | Instance ID | 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- An LSA Header -+ | | +- -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Each acknowledged LSA is described by its LSA header. The LSA header is documented in Section A.4.2. It contains all the information required to uniquely identify both the LSA and the LSA's current instance.
每个已确认的LSA由其LSA头描述。LSA标题记录在第A.4.2节中。它包含唯一标识LSA和LSA当前实例所需的所有信息。
This memo defines seven distinct types of LSAs. Each LSA begins with a standard 20 byte LSA header. This header is explained in Section A.4.2. Succeeding sections then diagram the separate LSA types.
本备忘录定义了七种不同类型的LSA。每个LSA都以一个标准的20字节LSA头开始。该标题在第A.4.2节中解释。接下来的部分将分别绘制LSA类型图。
Each LSA describes a piece of the OSPF routing domain. Every router originates a router-LSA. A network-LSA is advertised for each link by its Designated Router. A router's link-local addresses are advertised to its neighbors in link-LSAs. IPv6 prefixes are advertised in intra-area-prefix-LSAs, inter-area-prefix-LSAs and AS-external-LSAs. Location of specific routers can be advertised across area boundaries in inter-area-router-LSAs. All LSAs are then flooded throughout the OSPF routing domain. The flooding algorithm is reliable, ensuring that all routers have the same collection of LSAs. (See Section 3.5 for more information concerning the flooding algorithm). This collection of LSAs is called the link-state database.
每个LSA描述OSPF路由域的一部分。每个路由器产生一个路由器LSA。网络LSA由其指定的路由器为每条链路发布广告。路由器的链路本地地址在链路LSA中通告给它的邻居。IPv6前缀在区域内前缀LSA、区域间前缀LSA和外部LSA中发布。特定路由器的位置可以在区域间路由器LSA中跨区域边界公布。然后,所有LSA在整个OSPF路由域中被淹没。泛洪算法是可靠的,确保所有路由器具有相同的LSA集合。(有关泛洪算法的更多信息,请参见第3.5节)。此LSA集合称为链接状态数据库。
From the link state database, each router constructs a shortest path tree with itself as root. This yields a routing table (see Section 11 of [Ref1]). For the details of the routing table build process, see Section 3.8.
从链路状态数据库中,每个路由器构建一个以自身为根的最短路径树。这就产生了一个路由表(见[Ref1]第11节)。有关路由表生成过程的详细信息,请参阅第3.8节。
IPv6 addresses are bit strings of length 128. IPv6 routing algorithms, and OSPF for IPv6 in particular, advertise IPv6 address prefixes. IPv6 address prefixes are bit strings whose length ranges between 0 and 128 bits (inclusive).
IPv6地址是长度为128的位字符串。IPv6路由算法,特别是IPv6的OSPF,会公布IPv6地址前缀。IPv6地址前缀是长度范围在0到128位(含)之间的位字符串。
Within OSPF, IPv6 address prefixes are always represented by a combination of three fields: PrefixLength, PrefixOptions, and Address Prefix. PrefixLength is the length in bits of the prefix. PrefixOptions is an 8-bit field describing various capabilities associated with the prefix (see Section A.4.2). Address Prefix is an encoding of the prefix itself as an even multiple of 32-bit words, padding with zero bits as necessary; this encoding consumes (PrefixLength + 31) / 32) 32-bit words.
在OSPF中,IPv6地址前缀始终由三个字段的组合表示:前缀长度、前缀选项和地址前缀。PrefixLength是前缀的长度(以位为单位)。PrefixOptions是一个8位字段,描述与前缀相关的各种功能(参见第A.4.2节)。地址前缀是将前缀本身编码为32位字的偶数倍,根据需要填充零位;这种编码消耗(前缀长度+31)/32)32位字。
The default route is represented by a prefix of length 0.
默认路由由长度为0的前缀表示。
Examples of IPv6 Prefix representation in OSPF can be found in Sections A.4.5, A.4.7, A.4.8 and A.4.9.
OSPF中IPv6前缀表示的示例见第A.4.5、A.4.7、A.4.8和A.4.9节。
Each prefix is advertised along with an 8-bit field of capabilities. These serve as input to the various routing calculations, allowing, for example, certain prefixes to be ignored in some cases, or to be marked as not readvertisable in others.
每个前缀与8位功能字段一起发布。它们用作各种路由计算的输入,例如,允许在某些情况下忽略某些前缀,或在其他情况下标记为不可读。
0 1 2 3 4 5 6 7 +--+--+--+--+--+--+--+--+ | | | | | P|MC|LA|NU| +--+--+--+--+--+--+--+--+
0 1 2 3 4 5 6 7 +--+--+--+--+--+--+--+--+ | | | | | P|MC|LA|NU| +--+--+--+--+--+--+--+--+
The Prefix Options field
前缀选项字段
NU-bit The "no unicast" capability bit. If set, the prefix should be excluded from IPv6 unicast calculations, otherwise it should be included.
NU位为“无单播”功能位。如果设置了前缀,则应将其排除在IPv6单播计算之外,否则应将其包括在内。
LA-bit The "local address" capability bit. If set, the prefix is actually an IPv6 interface address of the advertising router.
LA位为“本地地址”功能位。如果设置,前缀实际上是广告路由器的IPv6接口地址。
MC-bit The "multicast" capability bit. If set, the prefix should be included in IPv6 multicast routing calculations, otherwise it should be excluded.
MC位是“多播”功能位。如果设置了前缀,则应将其包括在IPv6多播路由计算中,否则应将其排除在外。
P-bit The "propagate" bit. Set on NSSA area prefixes that should be readvertised at the NSSA area border.
P位“传播”位。设置应在NSSA区域边界处读取的NSSA区域前缀。
All LSAs begin with a common 20 byte header. This header contains enough information to uniquely identify the LSA (LS type, Link State ID, and Advertising Router). Multiple instances of the LSA may exist in the routing domain at the same time. It is then necessary to determine which instance is more recent. This is accomplished by examining the LS age, LS sequence number and LS checksum fields that are also contained in the LSA header.
所有LSA都以一个公共的20字节头开始。此标头包含足够的信息来唯一标识LSA(LS类型、链路状态ID和播发路由器)。LSA的多个实例可能同时存在于路由域中。然后有必要确定哪个实例是最近的。这是通过检查也包含在LSA标头中的LS age、LS序列号和LS校验和字段来实现的。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | LS type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age | LS type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
LS age The time in seconds since the LSA was originated.
LS age自启动LSA以来的时间(以秒为单位)。
LS type The LS type field indicates the function performed by the LSA. The high-order three bits of LS type encode generic properties of the LSA, while the remainder (called LSA function code) indicate the LSA's specific functionality. See Section A.4.2.1 for a detailed description of LS type.
LS type LS type字段表示LSA执行的功能。LS类型的高阶三位编码LSA的通用属性,而其余部分(称为LSA功能代码)表示LSA的特定功能。有关LS类型的详细说明,请参见第A.4.2.1节。
Link State ID Together with LS type and Advertising Router, uniquely identifies the LSA in the link-state database.
链路状态ID与LS类型和广告路由器一起,在链路状态数据库中唯一标识LSA。
Advertising Router The Router ID of the router that originated the LSA. For example, in network-LSAs this field is equal to the Router ID of the network's Designated Router.
广告路由器发起LSA的路由器的路由器ID。例如,在网络LSAs中,此字段等于网络指定路由器的路由器ID。
LS sequence number Detects old or duplicate LSAs. Successive instances of an LSA are given successive LS sequence numbers. See Section 12.1.6 in [Ref1] for more details.
LS序列号检测旧的或重复的LSA。LSA的连续实例被赋予连续的LS序列号。有关更多详细信息,请参见[参考1]中的第12.1.6节。
LS checksum The Fletcher checksum of the complete contents of the LSA, including the LSA header but excluding the LS age field. See Section 12.1.7 in [Ref1] for more details.
LS校验和LSA完整内容的Fletcher校验和,包括LSA标头,但不包括LS age字段。更多详情见[参考文献1]第12.1.7节。
length The length in bytes of the LSA. This includes the 20 byte LSA header.
长度LSA的长度(以字节为单位)。这包括20字节的LSA报头。
The LS type field indicates the function performed by the LSA. The high-order three bits of LS type encode generic properties of the LSA, while the remainder (called LSA function code) indicate the LSA's specific functionality. The format of the LS type is as follows:
LS类型字段表示LSA执行的功能。LS类型的高阶三位编码LSA的通用属性,而其余部分(称为LSA功能代码)表示LSA的特定功能。LS类型的格式如下所示:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |U |S2|S1| LSA Function Code | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |U |S2|S1| LSA Function Code | +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The U bit indicates how the LSA should be handled by a router which does not recognize the LSA's function code. Its values are:
U位表示不识别LSA功能代码的路由器应如何处理LSA。其价值是:
U-bit LSA Handling ------------------------------------------------------------- 0 Treat the LSA as if it had link-local flooding scope 1 Store and flood the LSA, as if type understood
U-bit LSA Handling ------------------------------------------------------------- 0 Treat the LSA as if it had link-local flooding scope 1 Store and flood the LSA, as if type understood
The S1 and S2 bits indicate the flooding scope of the LSA. The values are:
S1和S2位表示LSA的泛洪范围。这些数值是:
S2 S1 Flooding Scope --------------------------------------------------------------------- 0 0 Link-Local Scoping. Flooded only on link it is originated on. 0 1 Area Scoping. Flooded to all routers in the originating area 1 0 AS Scoping. Flooded to all routers in the AS 1 1 Reserved
S2 S1 Flooding Scope --------------------------------------------------------------------- 0 0 Link-Local Scoping. Flooded only on link it is originated on. 0 1 Area Scoping. Flooded to all routers in the originating area 1 0 AS Scoping. Flooded to all routers in the AS 1 1 Reserved
The LSA function codes are defined as follows. The origination and processing of these LSA function codes are defined elsewhere in this memo, except for the group-membership-LSA (see [Ref7]) and the Type-7-LSA (see [Ref8]). Each LSA function code also implies a specific setting for the U, S1 and S2 bits, as shown below.
LSA功能代码定义如下。这些LSA功能代码的起源和处理在本备忘录的其他地方进行了定义,但集团成员LSA(见[Ref7])和7-LSA类型(见[Ref8])除外。每个LSA功能代码还表示U、S1和S2位的特定设置,如下所示。
LSA function code LS Type Description ---------------------------------------------------- 1 0x2001 Router-LSA 2 0x2002 Network-LSA 3 0x2003 Inter-Area-Prefix-LSA 4 0x2004 Inter-Area-Router-LSA 5 0x4005 AS-External-LSA 6 0x2006 Group-membership-LSA 7 0x2007 Type-7-LSA 8 0x0008 Link-LSA 9 0x2009 Intra-Area-Prefix-LSA
LSA function code LS Type Description ---------------------------------------------------- 1 0x2001 Router-LSA 2 0x2002 Network-LSA 3 0x2003 Inter-Area-Prefix-LSA 4 0x2004 Inter-Area-Router-LSA 5 0x4005 AS-External-LSA 6 0x2006 Group-membership-LSA 7 0x2007 Type-7-LSA 8 0x0008 Link-LSA 9 0x2009 Intra-Area-Prefix-LSA
Router-LSAs have LS type equal to 0x2001. Each router in an area originates one or more router-LSAs. The complete collection of router-LSAs originated by the router describe the state and cost of the router's interfaces to the area. For details concerning the construction of router-LSAs, see Section 3.4.3.1. Router-LSAs are flooded throughout a single area only.
路由器LSA的LS类型等于0x2001。一个区域中的每个路由器发起一个或多个路由器LSA。由路由器发起的路由器LSA的完整集合描述了路由器与该区域接口的状态和成本。有关路由器LSA构造的详细信息,请参见第3.4.3.1节。路由器LSA仅在单个区域中被淹没。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |W|V|E|B| Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 |W|V|E|B| Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Interface ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Neighbor Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
A single router may originate one or more Router LSAs, distinguished by their Link-State IDs (which are chosen arbitrarily by the originating router). The Options field and V, E and B bits should be the same in all Router LSAs from a single originator. However, in the case of a mismatch the values in the LSA with the lowest Link State ID take precedence. When more than one Router LSA is received from a single router, the links are processed as if concatenated into a single LSA.
单个路由器可以发起一个或多个路由器lsa,通过它们的链路状态id(由发起路由器任意选择)进行区分。选项字段和V、E和B位在来自单个发起者的所有路由器LSA中应相同。然而,在不匹配的情况下,具有最低链路状态ID的LSA中的值优先。当从单个路由器接收到多个路由器LSA时,链路被处理为好像连接到单个LSA一样。
bit V When set, the router is an endpoint of one or more fully adjacent virtual links having the described area as Transit area (V is for virtual link endpoint).
位V设置时,路由器是一个或多个完全相邻的虚拟链路的端点,该虚拟链路具有所述区域作为传输区域(V表示虚拟链路端点)。
bit E When set, the router is an AS boundary router (E is for external).
位E设置后,路由器为AS边界路由器(E为外部路由器)。
bit B When set, the router is an area border router (B is for border).
位B设置后,路由器为区域边界路由器(B表示边界)。
bit W When set, the router is a wild-card multicast receiver. When running MOSPF, these routers receive all multicast datagrams, regardless of destination. See Sections 3, 4 and A.2 of [Ref8] for details.
位W设置后,路由器为通配符多播接收器。当运行MOSPF时,这些路由器接收所有多播数据报,而不考虑目的地。详见[参考文献8]第3、4和A.2节。
Options The optional capabilities supported by the router, as documented in Section A.2.
选项路由器支持的可选功能,如第A.2节所述。
The following fields are used to describe each router interface. The Type field indicates the kind of interface being described. It may be an interface to a transit network, a point-to-point connection to another router or a virtual link. The values of all the other fields describing a router interface depend on the interface's Type field.
以下字段用于描述每个路由器接口。类型字段表示所描述的接口类型。它可能是到传输网络的接口、到另一路由器的点对点连接或虚拟链路。描述路由器接口的所有其他字段的值取决于接口的类型字段。
Type The kind of interface being described. One of the following:
键入要描述的接口类型。以下其中一项:
Type Description --------------------------------------------------- 1 Point-to-point connection to another router 2 Connection to a transit network 3 Reserved 4 Virtual link
Type Description --------------------------------------------------- 1 Point-to-point connection to another router 2 Connection to a transit network 3 Reserved 4 Virtual link
Metric The cost of using this router interface, for outbound traffic.
度量出站流量使用此路由器接口的成本。
Interface ID The Interface ID assigned to the interface being described. See Sections 3.1.2 and C.3.
接口ID分配给所描述接口的接口ID。见第3.1.2和C.3节。
Neighbor Interface ID The Interface ID the neighbor router (or the attached link's Designated Router, for Type 2 interfaces) has been advertising in hello packets sent on the attached link.
邻居接口ID接口ID邻居路由器(或连接链路的指定路由器,用于类型2接口)已在连接链路上发送的hello数据包中公布。
Neighbor Router ID The Router ID the neighbor router (or the attached link's Designated Router, for Type 2 interfaces).
邻居路由器ID路由器ID邻居路由器(或连接链路的指定路由器,用于类型2接口)。
For Type 2 links, the combination of Neighbor Interface ID and Neighbor Router ID allows the network-LSA for the attached link to be found in the link-state database.
对于类型2链路,邻居接口ID和邻居路由器ID的组合允许在链路状态数据库中找到连接链路的网络LSA。
Network-LSAs have LS type equal to 0x2002. A network-LSA is originated for each broadcast and NBMA link in the area which supports two or more routers. The network-LSA is originated by the link's Designated Router. The LSA describes all routers attached to the link, including the Designated Router itself. The LSA's Link State ID field is set to the Interface ID that the Designated Router has been advertising in Hello packets on the link.
网络LSA的LS类型等于0x2002。在支持两个或多个路由器的区域中,为每个广播和NBMA链路发起网络LSA。网络LSA由链路的指定路由器发起。LSA描述连接到链路的所有路由器,包括指定的路由器本身。LSA的链路状态ID字段设置为指定路由器在链路上的Hello数据包中公布的接口ID。
The distance from the network to all attached routers is zero. This is why the metric fields need not be specified in the network-LSA. For details concerning the construction of network-LSAs, see Section 3.4.3.2.
从网络到所有连接的路由器的距离为零。这就是为什么不需要在网络LSA中指定度量字段。有关网络LSA建设的详细信息,请参见第3.4.3.2节。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Attached Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Attached Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... |
Attached Router The Router IDs of each of the routers attached to the link. Actually, only those routers that are fully adjacent to the Designated Router are listed. The Designated Router includes itself in this list. The number of routers included can be deduced from the LSA header's length field.
连接的路由器连接到链路的每个路由器的路由器ID。实际上,仅列出与指定路由器完全相邻的路由器。指定的路由器将自身包含在此列表中。包含的路由器数量可以从LSA报头的长度字段中推断出来。
Inter-Area-Prefix-LSAs have LS type equal to 0x2003. These LSAs are are the IPv6 equivalent of OSPF for IPv4's type 3 summary-LSAs (see Section 12.4.3 of [Ref1]). Originated by area border routers, they describe routes to IPv6 address prefixes that belong to other areas. A separate Inter-Area-Prefix-LSA is originated for each IPv6 address prefix. For details concerning the construction of Inter-Area-Prefix-LSAs, see Section 3.4.3.3.
区域间前缀LSA的LS类型等于0x2003。这些LSA是IPv4第3类汇总LSA的IPv6等效OSPF(见[Ref1]第12.4.3节)。由区域边界路由器发起,它们描述到属于其他区域的IPv6地址前缀的路由。为每个IPv6地址前缀生成单独的区域间前缀LSA。有关区域间前缀LSA构造的详细信息,请参见第3.4.3.3节。
For stub areas, Inter-Area-Prefix-LSAs can also be used to describe a (per-area) default route. Default summary routes are used in stub areas instead of flooding a complete set of external routes. When describing a default summary route, the Inter-Area-Prefix-LSA's PrefixLength is set to 0.
对于存根区域,区域间前缀LSA也可用于描述(每个区域)的默认路由。默认摘要路由用于存根区域,而不是淹没一整套外部路由。描述默认摘要路由时,区域间前缀LSA的PrefixLength设置为0。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | (0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | (0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Metric The cost of this route. Expressed in the same units as the interface costs in the router-LSAs. When the Inter-Area-Prefix-LSA is describing a route to a range of addresses (see Section C.2) the cost is set to the maximum cost to any reachable component of the address range.
衡量这条路线的成本。以与路由器LSA中的接口成本相同的单位表示。当区域间前缀LSA描述到地址范围的路由时(参见第C.2节),成本设置为地址范围任何可到达组件的最大成本。
PrefixLength, PrefixOptions and Address Prefix Representation of the IPv6 address prefix, as described in Section A.4.1.
IPv6地址前缀的前缀长度、前缀选项和地址前缀表示,如第A.4.1节所述。
Inter-Area-Router-LSAs have LS type equal to 0x2004. These LSAs are are the IPv6 equivalent of OSPF for IPv4's type 4 summary-LSAs (see Section 12.4.3 of [Ref1]). Originated by area border routers, they describe routes to routers in other areas. (To see why it is necessary to advertise the location of each ASBR, consult Section 16.4 in [Ref1].) Each LSA describes a route to a single router. For details concerning the construction of Inter-Area-Router-LSAs, see Section 3.4.3.4.
区域间路由器LSA的LS类型等于0x2004。这些LSA是IPv4第4类汇总LSA的IPv6等效OSPF(见[Ref1]第12.4.3节)。源于区域边界路由器,它们描述到其他区域路由器的路由。(要了解为什么有必要公布每个ASBR的位置,请参阅[参考文献1]中的第16.4节。)每个LSA描述到单个路由器的路由。有关区域间路由器LSA构造的详细信息,请参见第3.4.3.4节。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 0 | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Router ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Options The optional capabilities supported by the router, as documented in Section A.2.
选项路由器支持的可选功能,如第A.2节所述。
Metric The cost of this route. Expressed in the same units as the interface costs in the router-LSAs.
衡量这条路线的成本。以与路由器LSA中的接口成本相同的单位表示。
Destination Router ID The Router ID of the router being described by the LSA.
目标路由器ID LSA描述的路由器的路由器ID。
AS-external-LSAs have LS type equal to 0x4005. These LSAs are originated by AS boundary routers, and describe destinations external to the AS. Each LSA describes a route to a single IPv6 address prefix. For details concerning the construction of AS-external-LSAs, see Section 3.4.3.5.
AS外部LSA的LS类型等于0x4005。这些LSA由AS边界路由器发起,并描述AS外部的目的地。每个LSA描述到单个IPv6地址前缀的路由。有关AS外部LSA施工的详细信息,请参见第3.4.3.5节。
AS-external-LSAs can be used to describe a default route. Default routes are used when no specific route exists to the destination. When describing a default route, the AS-external-LSA's PrefixLength is set to 0.
AS外部LSA可用于描述默认路由。当不存在到目的地的特定路线时,使用默认路线。描述默认路由时,AS外部LSA的前缀长度设置为0。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|1|0| 5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |E|F|T| Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | Referenced LS Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- Forwarding Address (Optional) -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | External Route Tag (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Referenced Link State ID (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|1|0| 5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |E|F|T| Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | Referenced LS Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- Forwarding Address (Optional) -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | External Route Tag (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Referenced Link State ID (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
bit E The type of external metric. If bit E is set, the metric specified is a Type 2 external metric. This means the metric is considered larger than any intra-AS path. If bit E is zero, the specified metric is a Type 1 external metric. This means that it is expressed in the same units as the link state metric (i.e., the same units as interface cost).
位E表示外部度量的类型。如果设置了位E,则指定的度量是类型2外部度量。这意味着度量被认为比任何内部AS路径都大。如果位E为零,则指定的度量是类型1外部度量。这意味着它以与链路状态度量相同的单位表示(即,与接口成本相同的单位)。
bit F If set, a Forwarding Address has been included in the LSA.
位F如果设置,则LSA中已包含转发地址。
bit T If set, an External Route Tag has been included in the LSA.
位T如果设置,则LSA中已包含外部路由标签。
Metric The cost of this route. Interpretation depends on the external type indication (bit E above).
衡量这条路线的成本。解释取决于外部类型指示(上面的E位)。
PrefixLength, PrefixOptions and Address Prefix Representation of the IPv6 address prefix, as described in Section A.4.1.
IPv6地址前缀的前缀长度、前缀选项和地址前缀表示,如第A.4.1节所述。
Referenced LS type If non-zero, an LSA with this LS type is to be associated with this LSA (see Referenced Link State ID below).
引用的LS类型如果非零,则具有此LS类型的LSA将与此LSA关联(请参阅下面的引用链接状态ID)。
Forwarding address A fully qualified IPv6 address (128 bits). Included in the LSA if and only if bit F has been set. If included, Data traffic for the advertised destination will be forwarded to this address. Must not be set to the IPv6 Unspecified Address (0:0:0:0:0:0:0:0).
转发地址完全限定的IPv6地址(128位)。当且仅当已设置位F时才包含在LSA中。如果包含,则播发目的地的数据流量将转发到此地址。不能设置为IPv6未指定的地址(0:0:0:0:0:0:0:0)。
External Route Tag A 32-bit field which may be used to communicate additional information between AS boundary routers; see [Ref5] for example usage. Included in the LSA if and only if bit T has been set.
外部路由标签32位字段,可用于在AS边界路由器之间传输附加信息;有关用法示例,请参见[参考文献5]。当且仅当设置了位T时才包含在LSA中。
Referenced Link State ID Included if and only if Reference LS Type is non-zero. If included, additional information concerning the advertised external route can be found in the LSA having LS type equal to "Referenced LS Type", Link State ID equal to "Referenced Link State ID" and Advertising Router the same as that specified in the AS-external-LSA's link state header. This additional information is not used by the OSPF protocol itself. It may be used to communicate information between AS boundary routers; the precise nature of such information is outside the scope of this specification.
当且仅当引用LS类型为非零时,才包含引用链接状态ID。如果包括,则可以在具有LS类型等于“参考LS类型”、链路状态ID等于“参考链路状态ID”且广告路由器与as外部LSA的链路状态报头中指定的相同的LSA中找到关于广告外部路由的附加信息。OSPF协议本身不使用此附加信息。它可用于在AS边界路由器之间进行信息通信;此类信息的准确性质不在本规范范围内。
All, none or some of the fields labeled Forwarding address, External Route Tag and Referenced Link State ID may be present in the AS-external-LSA (as indicated by the setting of bit F, bit T and Referenced LS type respectively). However, when present Forwarding Address always comes first, with External Route Tag always preceding Referenced Link State ID.
AS外部LSA中可能存在标记为转发地址、外部路由标签和参考链路状态ID的所有、无或部分字段(分别通过设置位F、位T和参考LS类型表示)。但是,当当前转发地址始终位于第一位时,外部路由标记始终位于引用的链路状态ID之前。
Link-LSAs have LS type equal to 0x0008. A router originates a separate Link-LSA for each link it is attached to. These LSAs have local-link flooding scope; they are never flooded beyond the link that they are associated with. Link-LSAs have three purposes: 1) they provide the router's link-local address to all other routers attached to the link and 2) they inform other routers attached to the link of a list of IPv6 prefixes to associate with the link and 3) they allow the router to assert a collection of Options bits to associate with the Network-LSA that will be originated for the link.
链路LSA的LS类型等于0x0008。路由器为其连接到的每个链路生成一个单独的链路LSA。这些LSA具有本地链路泛洪范围;它们永远不会淹没在与它们相关联的链接之外。链路LSA有三个用途:1)它们向连接到该链路的所有其他路由器提供路由器的链路本地地址,2)它们通知连接到该链路的其他路由器要与该链路关联的IPv6前缀列表,以及3)它们允许路由器断言一组选项位,以与将要连接的网络LSA关联为链接而创建。
A link-LSA's Link State ID is set equal to the originating router's Interface ID on the link.
链路LSA的链路状态ID设置为等于链路上发起路由器的接口ID。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|0| 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Rtr Pri | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- Link-local Interface Address -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # prefixes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | (0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | (0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|0| 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Rtr Pri | Options | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- Link-local Interface Address -+ | | +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # prefixes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | (0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | (0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Rtr Pri The Router Priority of the interface attaching the originating router to the link.
Rtr Pri将始发路由器连接到链路的接口的路由器优先级。
Options The set of Options bits that the router would like set in the Network-LSA that will be originated for the link.
选项路由器希望在网络LSA中设置的一组选项位,该网络LSA将为链路发起。
Link-local Interface Address The originating router's link-local interface address on the link.
链路本地接口地址链路上发起路由器的链路本地接口地址。
# prefixes The number of IPv6 address prefixes contained in the LSA.
#前缀LSA中包含的IPv6地址前缀数。
The rest of the link-LSA contains a list of IPv6 prefixes to be associated with the link.
链路LSA的其余部分包含要与链路关联的IPv6前缀列表。
PrefixLength, PrefixOptions and Address Prefix Representation of an IPv6 address prefix, as described in Section A.4.1.
IPv6地址前缀的前缀长度、前缀选项和地址前缀表示,如第A.4.1节所述。
Intra-Area-Prefix-LSAs have LS type equal to 0x2009. A router uses Intra-Area-Prefix-LSAs to advertise one or more IPv6 address prefixes that are associated with a) the router itself, b) an attached stub network segment or c) an attached transit network segment. In IPv4, a) and b) were accomplished via the router's router-LSA, and c) via a network-LSA. However, in OSPF for IPv6 all addressing information has been removed from router-LSAs and network-LSAs, leading to the introduction of the Intra-Area-Prefix-LSA.
区域内前缀LSA的LS类型等于0x2009。路由器使用区域内前缀LSA公布一个或多个IPv6地址前缀,这些地址前缀与A)路由器本身、b)连接的存根网段或c)连接的传输网段相关联。在IPv4中,a)和b)通过路由器的路由器LSA完成,c)通过网络LSA完成。然而,在用于IPv6的OSPF中,所有寻址信息都已从路由器LSA和网络LSA中删除,从而引入了区域内前缀LSA。
A router can originate multiple Intra-Area-Prefix-LSAs for each router or transit network; each such LSA is distinguished by its Link State ID.
路由器可以为每个路由器或传输网络发起多个区域内前缀lsa;每个这样的LSA通过其链路状态ID来区分。
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 9 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # prefixes | Referenced LS type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Referenced Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Referenced Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS age |0|0|1| 9 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LS checksum | length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | # prefixes | Referenced LS type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Referenced Link State ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Referenced Advertising Router | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PrefixLength | PrefixOptions | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address Prefix | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# prefixes The number of IPv6 address prefixes contained in the LSA.
#前缀LSA中包含的IPv6地址前缀数。
Router Referenced LS type, Referenced Link State ID and Referenced Advertising Identifies the router-LSA or network-LSA with which the IPv6 address prefixes should be associated. If Referenced LS type is 1, the prefixes are associated with a router-LSA, Referenced Link State ID should be 0 and Referenced Advertising Router should be the originating router's Router ID. If Referenced LS type is 2, the prefixes are associated with a network-LSA, Referenced Link State ID should be the Interface ID of the link's Designated Router and Referenced Advertising Router should be the Designated Router's Router ID.
路由器引用的LS类型、引用的链路状态ID和引用的广告标识应与IPv6地址前缀关联的路由器LSA或网络LSA。如果引用的LS类型为1,则前缀与路由器LSA关联,引用的链路状态ID应为0,引用的播发路由器应为发起路由器的路由器ID。如果引用的LS类型为2,则前缀与网络LSA关联,参考链路状态ID应为链路指定路由器的接口ID,参考广告路由器应为指定路由器的路由器ID。
The rest of the Intra-Area-Prefix-LSA contains a list of IPv6 prefixes to be associated with the router or transit link, together with the cost of each prefix.
区域内前缀LSA的其余部分包含与路由器或传输链路关联的IPv6前缀列表,以及每个前缀的成本。
PrefixLength, PrefixOptions and Address Prefix Representation of an IPv6 address prefix, as described in Section A.4.1.
IPv6地址前缀的前缀长度、前缀选项和地址前缀表示,如第A.4.1节所述。
Metric The cost of this prefix. Expressed in the same units as the interface costs in the router-LSAs.
度量此前缀的成本。以与路由器LSA中的接口成本相同的单位表示。
B. Architectural Constants
B.建筑常数
Architectural constants for the OSPF protocol are defined in Appendix B of [Ref1]. The only difference for OSPF for IPv6 is that DefaultDestination is encoded as a prefix of length 0 (see Section A.4.1).
OSPF协议的架构常数在[参考文献1]的附录B中定义。用于IPv6的OSPF的唯一区别是DefaultDestination编码为长度为0的前缀(参见第a.4.1节)。
C. Configurable Constants
C.可配置常数
The OSPF protocol has quite a few configurable parameters. These parameters are listed below. They are grouped into general functional categories (area parameters, interface parameters, etc.). Sample values are given for some of the parameters.
OSPF协议有很多可配置的参数。下面列出了这些参数。它们分为一般功能类别(区域参数、接口参数等)。给出了一些参数的样本值。
Some parameter settings need to be consistent among groups of routers. For example, all routers in an area must agree on that area's parameters, and all routers attached to a network must agree on that network's HelloInterval and RouterDeadInterval.
某些参数设置需要在路由器组之间保持一致。例如,一个区域中的所有路由器必须同意该区域的参数,并且连接到网络的所有路由器必须同意该网络的HelloInterval和RouterReadInterval。
Some parameters may be determined by router algorithms outside of this specification (e.g., the address of a host connected to the router via a SLIP line). From OSPF's point of view, these items are still configurable.
一些参数可由本规范之外的路由器算法确定(例如,通过滑线连接到路由器的主机地址)。从OSPF的角度来看,这些项目仍然是可配置的。
In general, a separate copy of the OSPF protocol is run for each area. Because of this, most configuration parameters are defined on a per-area basis. The few global configuration parameters are listed below.
通常,每个区域都会运行OSPF协议的单独副本。因此,大多数配置参数都是按面积定义的。下面列出了几个全局配置参数。
Router ID This is a 32-bit number that uniquely identifies the router in the Autonomous System. If a router's OSPF Router ID is changed, the router's OSPF software should be restarted before the new Router ID takes effect. Before restarting in order to change its Router
路由器ID这是一个32位的数字,唯一标识自治系统中的路由器。如果路由器的OSPF路由器ID发生更改,则应在新路由器ID生效之前重新启动路由器的OSPF软件。在重新启动之前,更改其路由器
ID, the router should flush its self-originated LSAs from the routing domain (see Section 14.1 of [Ref1]), or they will persist for up to MaxAge minutes.
ID时,路由器应从路由域刷新其自源LSA(见[Ref1]第14.1节),否则它们将持续最长分钟。
Because the size of the Router ID is smaller than an IPv6 address, it cannot be set to one of the router's IPv6 addresses (as is commonly done for IPv4). Possible Router ID assignment procedures for IPv6 include: a) assign the IPv6 Router ID as one of the router's IPv4 addresses or b) assign IPv6 Router IDs through some local administrative procedure (similar to procedures used by manufacturers to assign product serial numbers).
由于路由器ID的大小小于IPv6地址,因此无法将其设置为路由器的IPv6地址之一(IPv4通常是这样)。IPv6可能的路由器ID分配过程包括:a)将IPv6路由器ID分配为路由器的IPv4地址之一,或b)通过一些本地管理过程分配IPv6路由器ID(类似于制造商分配产品序列号的过程)。
The Router ID of 0.0.0.0 is reserved, and should not be used.
路由器ID 0.0.0.0是保留的,不应使用。
All routers belonging to an area must agree on that area's configuration. Disagreements between two routers will lead to an inability for adjacencies to form between them, with a resulting hindrance to the flow of routing protocol and data traffic. The following items must be configured for an area:
属于某个区域的所有路由器必须同意该区域的配置。两个路由器之间的分歧将导致它们之间无法形成邻接,从而阻碍路由协议和数据流量的流动。必须为区域配置以下项目:
Area ID This is a 32-bit number that identifies the area. The Area ID of 0 is reserved for the backbone.
区域ID这是标识区域的32位数字。区域ID 0是为主干保留的。
List of address ranges Address ranges control the advertisement of routes across area boundaries. Each address range consists of the following items:
地址范围列表地址范围控制跨区域边界的路由广告。每个地址范围由以下项目组成:
[IPv6 prefix, prefix length] Describes the collection of IPv6 addresses contained in the address range.
[IPv6前缀,前缀长度]描述地址范围中包含的IPv6地址的集合。
Status Set to either Advertise or DoNotAdvertise. Routing information is condensed at area boundaries. External to the area, at most a single route is advertised (via a inter-area-prefix-LSA) for each address range. The route is advertised if and only if the address range's Status is set to Advertise. Unadvertised ranges allow the existence of certain networks to be intentionally hidden from other areas. Status is set to Advertise by default.
状态设置为播发或不播发。路由信息在区域边界处压缩。在该区域之外,对于每个地址范围,最多只公布一条路由(通过区域间前缀LSA)。当且仅当地址范围的状态设置为播发时,才会播发路由。未经宣传的范围允许故意对其他区域隐藏某些网络的存在。默认情况下,状态设置为播发。
ExternalRoutingCapability Whether AS-external-LSAs will be flooded into/throughout the area. If AS-external-LSAs are excluded from the area, the area is called a "stub". Internal to stub areas, routing to external destinations will be based solely on a default inter-area route. The backbone cannot be configured as a stub area. Also, virtual links cannot be configured through stub areas. For more information, see Section 3.6 of [Ref1].
外部布线能力是否为外部LSA将被淹没到该区域/整个区域。如果外部LSA被排除在该区域之外,则该区域称为“存根”。内部到存根区域,到外部目的地的路由将仅基于默认的区域间路由。主干不能配置为存根区域。此外,不能通过存根区域配置虚拟链接。有关更多信息,请参见[参考文献1]第3.6节。
StubDefaultCost If the area has been configured as a stub area, and the router itself is an area border router, then the StubDefaultCost indicates the cost of the default inter-area-prefix-LSA that the router should advertise into the area. See Section 12.4.3.1 of [Ref1] for more information.
StubDefaultCost如果该区域已配置为存根区域,并且路由器本身是区域边界路由器,则StubDefaultCost表示路由器应向该区域播发的默认区域间前缀LSA的成本。更多信息,请参见[参考1]第12.4.3.1节。
Some of the configurable router interface parameters (such as Area ID, HelloInterval and RouterDeadInterval) actually imply properties of the attached links, and therefore must be consistent across all the routers attached to that link. The parameters that must be configured for a router interface are:
一些可配置的路由器接口参数(如Area ID、HelloInterval和RouterDeadInterval)实际上意味着连接的链路的属性,因此必须在连接到该链路的所有路由器上保持一致。必须为路由器接口配置的参数包括:
IPv6 link-local address The IPv6 link-local address associated with this interface. May be learned through auto-configuration.
IPv6链路本地地址与此接口关联的IPv6链路本地地址。可通过自动配置学习。
Area ID The OSPF area to which the attached link belongs.
Area ID连接的链路所属的OSPF区域。
Instance ID The OSPF protocol instance associated with this OSPF interface. Defaults to 0.
实例ID与此OSPF接口关联的OSPF协议实例。默认值为0。
Interface ID 32-bit number uniquely identifying this interface among the collection of this router's interfaces. For example, in some implementations it may be possible to use the MIB-II IfIndex ([Ref3]).
接口ID 32位数字,在路由器接口集合中唯一标识此接口。例如,在某些实现中,可以使用MIB-II IfIndex([Ref3])。
IPv6 prefixes The list of IPv6 prefixes to associate with the link. These will be advertised in intra-area-prefix-LSAs.
IPv6前缀要与链接关联的IPv6前缀列表。这些将在区域内前缀LSA中公布。
Interface output cost(s) The cost of sending a packet on the interface, expressed in the link state metric. This is advertised as the link cost for this interface in the router's router-LSA. The interface output cost must always be greater than 0.
接口输出成本在接口上发送数据包的成本,以链路状态度量表示。这在路由器的路由器LSA中作为该接口的链路成本公布。接口输出成本必须始终大于0。
RxmtInterval The number of seconds between LSA retransmissions, for adjacencies belonging to this interface. Also used when retransmitting Database Description and Link State Request Packets. This should be well over the expected round-trip delay between any two routers on the attached link. The setting of this value should be conservative or needless retransmissions will result. Sample value for a local area network: 5 seconds.
RxMTINERVAL对于属于此接口的邻接,LSA重新传输之间的秒数。在重新传输数据库描述和链路状态请求数据包时也使用。这应该远远超过连接链路上任何两个路由器之间的预期往返延迟。此值的设置应保守,否则将导致不必要的重新传输。局域网的样本值:5秒。
InfTransDelay The estimated number of seconds it takes to transmit a Link State Update Packet over this interface. LSAs contained in the update packet must have their age incremented by this amount before transmission. This value should take into account the transmission and propagation delays of the interface. It must be greater than 0. Sample value for a local area network: 1 second.
InfTransDelay通过此接口传输链路状态更新数据包所需的估计秒数。在传输之前,更新数据包中包含的LSA的年龄必须增加此数量。该值应考虑接口的传输和传播延迟。它必须大于0。局域网的样本值:1秒。
Router Priority An 8-bit unsigned integer. When two routers attached to a network both attempt to become Designated Router, the one with the highest Router Priority takes precedence. If there is still a tie, the router with the highest Router ID takes precedence. A router whose Router Priority is set to 0 is ineligible to become Designated Router on the attached link. Router Priority is only configured for interfaces to broadcast and NBMA networks.
路由器优先级为8位无符号整数。当两个连接到网络的路由器都试图成为指定路由器时,具有最高路由器优先级的路由器优先。如果仍然存在平局,则具有最高路由器ID的路由器优先。路由器优先级设置为0的路由器没有资格成为连接链路上的指定路由器。路由器优先级仅为广播和NBMA网络的接口配置。
HelloInterval The length of time, in seconds, between the Hello Packets that the router sends on the interface. This value is advertised in the router's Hello Packets. It must be the same for all routers attached to a common link. The smaller the HelloInterval, the faster topological changes will be detected; however, more OSPF routing protocol traffic will ensue. Sample value for a X.25 PDN: 30 seconds. Sample value for a local area network (LAN): 10 seconds.
HelloInterval路由器在接口上发送的Hello数据包之间的时间长度,以秒为单位。此值在路由器的Hello数据包中公布。连接到公共链路的所有路由器必须相同。HelloInterval越小,检测到的拓扑变化越快;然而,更多的OSPF路由协议流量将随之增加。X.25 PDN的样本值:30秒。局域网(LAN)的样本值:10秒。
RouterDeadInterval After ceasing to hear a router's Hello Packets, the number of seconds before its neighbors declare the router down. This is also advertised in the router's Hello Packets in their
RouterReadInterval停止听到路由器的Hello数据包后,其邻居宣布路由器关闭前的秒数。这也会在路由器的Hello数据包中公布
RouterDeadInterval field. This should be some multiple of the HelloInterval (say 4). This value again must be the same for all routers attached to a common link.
RouterReadInterval字段。这应该是HelloInterval的倍数(比如4)。对于连接到公共链路的所有路由器,该值也必须相同。
Virtual links are used to restore/increase connectivity of the backbone. Virtual links may be configured between any pair of area border routers having interfaces to a common (non-backbone) area. The virtual link appears as an unnumbered point-to-point link in the graph for the backbone. The virtual link must be configured in both of the area border routers.
虚拟链路用于恢复/增加主干网的连接性。虚拟链路可以配置在具有公共(非主干)区域接口的任何一对区域边界路由器之间。虚拟链路在主干的图形中显示为未编号的点到点链路。必须在两个区域边界路由器中配置虚拟链路。
A virtual link appears in router-LSAs (for the backbone) as if it were a separate router interface to the backbone. As such, it has most of the parameters associated with a router interface (see Section C.3). Virtual links do not have link-local addresses, but instead use one of the router's global-scope or site-local IPv6 addresses as the IP source in OSPF protocol packets it sends along the virtual link. Router Priority is not used on virtual links. Interface output cost is not configured on virtual links, but is dynamically set to be the cost of the intra-area path between the two endpoint routers. The parameter RxmtInterval must be configured, and should be well over the expected round-trip delay between the two routers. This may be hard to estimate for a virtual link; it is better to err on the side of making it too large.
虚拟链路出现在路由器LSA(用于主干网)中,就好像它是到主干网的单独路由器接口一样。因此,它具有与路由器接口相关的大多数参数(参见第C.3节)。虚拟链路没有链路本地地址,而是使用路由器的全局作用域或站点本地IPv6地址之一作为其沿虚拟链路发送的OSPF协议包中的IP源。虚拟链路上未使用路由器优先级。接口输出成本不是在虚拟链路上配置的,而是动态设置为两个端点路由器之间的区域内路径的成本。必须配置参数RxmtInterval,并且参数RxmtInterval应远远超过两个路由器之间的预期往返延迟。对于虚拟链路,这可能很难估计;宁可把它弄得太大。
A virtual link is defined by the following two configurable parameters: the Router ID of the virtual link's other endpoint, and the (non-backbone) area through which the virtual link runs (referred to as the virtual link's Transit area). Virtual links cannot be configured through stub areas.
虚拟链路由以下两个可配置参数定义:虚拟链路的另一个端点的路由器ID和虚拟链路运行所经过的(非主干)区域(称为虚拟链路的传输区域)。无法通过存根区域配置虚拟链接。
OSPF treats an NBMA network much like it treats a broadcast network. Since there may be many routers attached to the network, a Designated Router is selected for the network. This Designated Router then originates a network-LSA, which lists all routers attached to the NBMA network.
OSPF对待NBMA网络就像对待广播网络一样。由于可能有许多路由器连接到网络,因此为网络选择指定的路由器。然后,该指定路由器发起网络LSA,列出连接到NBMA网络的所有路由器。
However, due to the lack of broadcast capabilities, it may be necessary to use configuration parameters in the Designated Router selection. These parameters will only need to be configured in those routers that are themselves eligible to become Designated Router (i.e., those router's whose Router Priority for the network is non-zero), and then only if no automatic procedure for discovering neighbors exists:
但是,由于缺少广播功能,可能需要在指定的路由器选择中使用配置参数。这些参数只需要在那些自身有资格成为指定路由器的路由器中配置(即,网络路由器优先级为非零的路由器),并且只有在不存在自动发现邻居程序的情况下:
List of all other attached routers The list of all other routers attached to the NBMA network. Each router is configured with its Router ID and IPv6 link-local address on the network. Also, for each router listed, that router's eligibility to become Designated Router must be defined. When an interface to a NBMA network comes up, the router sends Hello Packets only to those neighbors eligible to become Designated Router, until the identity of the Designated Router is discovered.
所有其他连接路由器的列表连接到NBMA网络的所有其他路由器的列表。每个路由器都配置有其路由器ID和网络上的IPv6链路本地地址。此外,对于列出的每个路由器,必须定义该路由器成为指定路由器的资格。当NBMA网络的接口出现时,路由器只向有资格成为指定路由器的邻居发送Hello数据包,直到发现指定路由器的身份为止。
PollInterval If a neighboring router has become inactive (Hello Packets have not been seen for RouterDeadInterval seconds), it may still be necessary to send Hello Packets to the dead neighbor. These Hello Packets will be sent at the reduced rate PollInterval, which should be much larger than HelloInterval. Sample value for a PDN X.25 network: 2 minutes.
PollInterval如果相邻路由器已变为非活动状态(在RouterDeadInterval秒内未看到Hello数据包),则可能仍然需要向死亡的邻居发送Hello数据包。这些Hello数据包将以较低的PollInterval速率发送,这应该比HelloInterval大得多。PDN X.25网络的样本值:2分钟。
On Point-to-MultiPoint networks, it may be necessary to configure the set of neighbors that are directly reachable over the Point-to-MultiPoint network. Each neighbor is configured with its Router ID and IPv6 link-local address on the network. Designated Routers are not elected on Point-to-MultiPoint networks, so the Designated Router eligibility of configured neighbors is undefined.
在点对多点网络上,可能需要配置可通过点对多点网络直接访问的邻居集。每个邻居都配置了其路由器ID和网络上的IPv6链路本地地址。在点对多点网络上未选择指定路由器,因此未定义已配置邻居的指定路由器资格。
Host prefixes are advertised in intra-area-prefix-LSAs. They indicate either internal router addresses, router interfaces to point-to-point networks, looped router interfaces, or IPv6 hosts that are directly connected to the router (e.g., via a PPP connection). For each host directly connected to the router, the following items must be configured:
主机前缀在区域内前缀LSA中播发。它们表示内部路由器地址、指向点对点网络的路由器接口、环路路由器接口或直接连接到路由器(例如,通过PPP连接)的IPv6主机。对于每个直接连接到路由器的主机,必须配置以下项目:
Host IPv6 prefix The IPv6 prefix belonging to the host.
主机IPv6前缀属于主机的IPv6前缀。
Cost of link to host The cost of sending a packet to the host, in terms of the link state metric. However, since the host probably has only a single connection to the internet, the actual configured cost(s) in many cases is unimportant (i.e., will have no effect on routing).
链路到主机的成本根据链路状态度量向主机发送数据包的成本。但是,由于主机可能只有一个到internet的连接,因此在许多情况下,实际配置的成本并不重要(即对路由没有影响)。
Area ID The OSPF area to which the host's prefix belongs.
区域ID主机前缀所属的OSPF区域。
Security Considerations
安全考虑
When running over IPv6, OSPF relies on the IP Authentication Header (see [Ref19]) and the IP Encapsulating Security Payload (see [Ref20]) to ensure integrity and authentication/confidentiality of routing exchanges.
在IPv6上运行时,OSPF依赖IP身份验证头(请参见[Ref19])和IP封装安全负载(请参见[Ref20])来确保路由交换的完整性和身份验证/机密性。
Most OSPF implementations will be running on systems that support multiple protocols, many of them having independent security assumptions and domains. When IPSEC is used to protect OSPF packets, it is important for the implementation to check the IPSEC SA, and local SA database to make sure that the packet originates from a source THAT IS TRUSTED FOR OSPF PURPOSES.
大多数OSPF实现将在支持多种协议的系统上运行,其中许多具有独立的安全假设和域。当使用IPSEC保护OSPF数据包时,实现检查IPSEC SA和本地SA数据库以确保数据包来源于OSPF目的的可信源非常重要。
Authors' Addresses
作者地址
Rob Coltun Siara Systems 300 Ferguson Drive Mountain View, CA 94043
罗伯·科尔顿·塞拉系统公司,加利福尼亚州福格森大道300号山景城,邮编94043
Phone: (650) 390-9030 EMail: rcoltun@siara.com
电话:(650)390-9030电子邮件:rcoltun@siara.com
Dennis Ferguson Juniper Networks 385 Ravendale Drive Mountain View, CA 94043
加利福尼亚州山景城拉文代尔大道385号Dennis Ferguson Juniper Networks 94043
Phone: +1 650 526 8004 EMail: dennis@juniper.com
Phone: +1 650 526 8004 EMail: dennis@juniper.com
John Moy Sycamore Networks, Inc. 10 Elizabeth Drive Chelmsford, MA 01824
约翰·莫伊·桑树网络公司,马萨诸塞州切姆斯福德伊丽莎白大道10号,邮编01824
Phone: (978) 367-2161 Fax: (978) 250-3350 EMail: jmoy@sycamorenet.com
电话:(978)367-2161传真:(978)250-3350电子邮件:jmoy@sycamorenet.com
Full Copyright Statement
完整版权声明
Copyright (C) The Internet Society (1999). All Rights Reserved.
版权所有(C)互联网协会(1999年)。版权所有。
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.
本文件及其译本可复制并提供给他人,对其进行评论或解释或协助其实施的衍生作品可全部或部分编制、复制、出版和分发,不受任何限制,前提是上述版权声明和本段包含在所有此类副本和衍生作品中。但是,不得以任何方式修改本文件本身,例如删除版权通知或对互联网协会或其他互联网组织的引用,除非出于制定互联网标准的需要,在这种情况下,必须遵循互联网标准过程中定义的版权程序,或根据需要将其翻译成英语以外的其他语言。
The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.
上述授予的有限许可是永久性的,互联网协会或其继承人或受让人不会撤销。
This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
本文件和其中包含的信息是按“原样”提供的,互联网协会和互联网工程任务组否认所有明示或暗示的保证,包括但不限于任何保证,即使用本文中的信息不会侵犯任何权利,或对适销性或特定用途适用性的任何默示保证。
Acknowledgement
确认
Funding for the RFC Editor function is currently provided by the Internet Society.
RFC编辑功能的资金目前由互联网协会提供。