Internet Engineering Task Force (IETF)                     E. Bellagamba
Request for Comments: 7487                                     A. Takacs
Category: Standards Track                                      G. Mirsky
ISSN: 2070-1721                                                 Ericsson
                                                            L. Andersson
                                                     Huawei Technologies
                                                           P. Skoldstrom
                                                                Acreo AB
                                                                 D. Ward
                                                                   Cisco
                                                              March 2015
        
Internet Engineering Task Force (IETF)                     E. Bellagamba
Request for Comments: 7487                                     A. Takacs
Category: Standards Track                                      G. Mirsky
ISSN: 2070-1721                                                 Ericsson
                                                            L. Andersson
                                                     Huawei Technologies
                                                           P. Skoldstrom
                                                                Acreo AB
                                                                 D. Ward
                                                                   Cisco
                                                              March 2015
        

Configuration of Proactive Operations, Administration, and Maintenance (OAM) Functions for MPLS-Based Transport Networks Using RSVP-TE

使用RSVP-TE为基于MPLS的传输网络配置主动操作、管理和维护(OAM)功能

Abstract

摘要

This specification describes the configuration of proactive MPLS Transport Profile (MPLS-TP) Operations, Administration, and Maintenance (OAM) functions for a given Label Switched Path (LSP) using a set of TLVs that are carried by the GMPLS RSVP-TE protocol based on the OAM Configuration Framework for GMPLS RSVP-TE.

本规范描述了基于GMPLS RSVP-TE的OAM配置框架,使用GMPLS RSVP-TE协议携带的一组TLV,为给定标签交换路径(LSP)配置主动式MPLS传输配置文件(MPLS-TP)操作、管理和维护(OAM)功能。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7487.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7487.

Copyright Notice

版权公告

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................4
      1.1. Conventions Used in This Document ..........................5
           1.1.1. Terminology .........................................5
           1.1.2. Requirements Language ...............................6
   2. Overview of MPLS OAM for Transport Applications .................6
   3. Theory of Operations ............................................7
      3.1. MPLS-TP OAM Configuration Operation Overview ...............7
           3.1.1. Configuration of BFD Sessions .......................8
           3.1.2. Configuration of Performance Monitoring .............8
           3.1.3. Configuration of Fault Management Signals ...........9
      3.2. MPLS OAM Configuration Sub-TLV .............................9
           3.2.1. CV Flag Rules of Use ...............................11
      3.3. BFD Configuration Sub-TLV .................................12
           3.3.1. BFD Identifiers Sub-TLV ............................14
           3.3.2. Negotiation Timer Parameters Sub-TLV ...............15
           3.3.3. BFD Authentication Sub-TLV .........................16
           3.3.4. Traffic Class Sub-TLV ..............................17
      3.4. Performance Monitoring Sub-TLV ............................17
           3.4.1. MPLS OAM PM Loss Sub-TLV ...........................19
           3.4.2. MPLS OAM PM Delay Sub-TLV ..........................21
      3.5. MPLS OAM FMS Sub-TLV ......................................22
   4. Summary of MPLS OAM Configuration Errors .......................23
   5. IANA Considerations ............................................25
      5.1. MPLS OAM Type .............................................25
      5.2. MPLS OAM Configuration Sub-TLV ............................25
      5.3. MPLS OAM Configuration Sub-TLV Types ......................26
      5.4. BFD Configuration Sub-TLV Types ...........................26
      5.5. Performance Monitoring Sub-TLV Types ......................27
      5.6. New RSVP-TE Error Codes ...................................28
   6. Security Considerations ........................................28
   7. References .....................................................29
      7.1. Normative References ......................................29
      7.2. Informative References ....................................30
   Acknowledgements ..................................................31
   Contributors ......................................................31
   Authors' Addresses ................................................32
        
   1. Introduction ....................................................4
      1.1. Conventions Used in This Document ..........................5
           1.1.1. Terminology .........................................5
           1.1.2. Requirements Language ...............................6
   2. Overview of MPLS OAM for Transport Applications .................6
   3. Theory of Operations ............................................7
      3.1. MPLS-TP OAM Configuration Operation Overview ...............7
           3.1.1. Configuration of BFD Sessions .......................8
           3.1.2. Configuration of Performance Monitoring .............8
           3.1.3. Configuration of Fault Management Signals ...........9
      3.2. MPLS OAM Configuration Sub-TLV .............................9
           3.2.1. CV Flag Rules of Use ...............................11
      3.3. BFD Configuration Sub-TLV .................................12
           3.3.1. BFD Identifiers Sub-TLV ............................14
           3.3.2. Negotiation Timer Parameters Sub-TLV ...............15
           3.3.3. BFD Authentication Sub-TLV .........................16
           3.3.4. Traffic Class Sub-TLV ..............................17
      3.4. Performance Monitoring Sub-TLV ............................17
           3.4.1. MPLS OAM PM Loss Sub-TLV ...........................19
           3.4.2. MPLS OAM PM Delay Sub-TLV ..........................21
      3.5. MPLS OAM FMS Sub-TLV ......................................22
   4. Summary of MPLS OAM Configuration Errors .......................23
   5. IANA Considerations ............................................25
      5.1. MPLS OAM Type .............................................25
      5.2. MPLS OAM Configuration Sub-TLV ............................25
      5.3. MPLS OAM Configuration Sub-TLV Types ......................26
      5.4. BFD Configuration Sub-TLV Types ...........................26
      5.5. Performance Monitoring Sub-TLV Types ......................27
      5.6. New RSVP-TE Error Codes ...................................28
   6. Security Considerations ........................................28
   7. References .....................................................29
      7.1. Normative References ......................................29
      7.2. Informative References ....................................30
   Acknowledgements ..................................................31
   Contributors ......................................................31
   Authors' Addresses ................................................32
        
1. Introduction
1. 介绍

This document describes the configuration of proactive MPLS-TP OAM functions for a given LSP using TLVs that use GMPLS RSVP-TE [RFC3473]. [RFC7260] defines use of GMPLS RSVP-TE for the configuration of OAM functions in a technology-agnostic way. This document specifies the additional mechanisms necessary to establish MPLS-TP OAM entities at the maintenance points for monitoring and performing measurements on an LSP, as well as defining information elements and procedures to configure proactive MPLS-TP OAM functions running between Label Edge Routers (LERs). Initialization and control of on-demand MPLS-TP OAM functions are expected to be carried out by directly accessing network nodes via a management interface; hence, configuration and control of on-demand OAM functions are out of scope for this document.

本文档描述了使用使用GMPLS RSVP-TE的TLV为给定LSP配置主动MPLS-TP OAM功能[RFC3473]。[RFC7260]定义了使用GMPLS RSVP-TE以技术无关的方式配置OAM功能。本文件规定了在维护点建立MPLS-TP OAM实体所需的附加机制,用于监控和执行LSP上的测量,以及定义信息元素和过程,以配置在标签边缘路由器(LER)之间运行的主动式MPLS-TP OAM功能。按需MPLS-TP OAM功能的初始化和控制预计将通过管理接口直接访问网络节点来执行;因此,按需OAM功能的配置和控制超出了本文档的范围。

MPLS-TP, the Transport Profile of MPLS, must, by definition [RFC5654], be capable of operating without a control plane. Therefore, there are several options for configuring MPLS-TP OAM without a control plane by using either a Network Management System (NMS), an LSP Ping, or signaling protocols such as RSVP-TE in the control plane.

MPLS-TP是MPLS的传输配置文件,根据定义[RFC5654],必须能够在没有控制平面的情况下运行。因此,通过在控制平面中使用网络管理系统(NMS)、LSP Ping或诸如RSVP-TE之类的信令协议,可以在没有控制平面的情况下配置MPLS-TP OAM。

MPLS-TP describes a profile of MPLS that enables operational models typical in transport networks while providing additional OAM survivability and other maintenance functions not currently supported by MPLS. [RFC5860] defines the requirements for the OAM functionality of MPLS-TP.

MPLS-TP描述了一种MPLS配置文件,该配置文件支持传输网络中典型的操作模型,同时提供额外的OAM生存能力和MPLS目前不支持的其他维护功能。[RFC5860]定义了MPLS-TP的OAM功能要求。

Proactive MPLS-TP OAM is performed by three different protocols: Bidirectional Forwarding Detection (BFD) [RFC6428] for Continuity Check / Connectivity Verification, the Delay Measurement (DM) protocol [RFC6374] for delay and delay variation (jitter) measurements, and the Loss Measurement (LM) protocol [RFC6374] for packet loss and throughput measurements. Additionally, there are a number of Fault Management signals that can be configured [RFC6427].

主动MPLS-TP OAM由三种不同的协议执行:用于连续性检查/连接验证的双向转发检测(BFD)[RFC6428],用于延迟和延迟变化(抖动)测量的延迟测量(DM)协议[RFC6374],以及损耗测量(LM)协议[RFC6374]用于数据包丢失和吞吐量测量。此外,还可以配置许多故障管理信号[RFC6427]。

BFD is a protocol that provides low-overhead, fast detection of failures in the path between two forwarding engines, including the interfaces, data link(s), and (to the extent possible) the forwarding engines themselves. BFD can be used to track the liveliness and to detect the data plane failures of MPLS-TP point to point and might also be extended to support point-to-multipoint connections.

BFD是一种协议,可提供低开销、快速检测两个转发引擎(包括接口、数据链路和(尽可能)转发引擎本身)之间路径中的故障。BFD可用于跟踪MPLS-TP点对点的活动性和检测数据平面故障,也可扩展为支持点对多点连接。

The delay and loss measurement protocols [RFC6374] use a simple query/response model for performing bidirectional measurements that allows the originating node to measure packet loss and delay in both directions. By timestamping and/or writing current packet counters

延迟和丢失测量协议[RFC6374]使用一个简单的查询/响应模型来执行双向测量,允许发起节点测量两个方向上的数据包丢失和延迟。通过时间戳和/或写入当前数据包计数器

to the measurement packets four times (Tx and Rx in both directions), current delays and packet losses can be calculated. By performing successive delay measurements, the delay variation (jitter) can be calculated. Current throughput can be calculated from the packet loss measurements by dividing the number of packets sent/received with the time it took to perform the measurement, given by the timestamp in LM header. Combined with a packet generator, the throughput measurement can be used to measure the maximum capacity of a particular LSP. It should be noted that here we are not configuring on-demand throughput estimates based on saturating the connection as defined in [RFC6371]. Rather, we only enable the estimation of the current throughput based on loss measurements.

对于四次测量数据包(两个方向上的Tx和Rx),可以计算当前延迟和数据包丢失。通过执行连续的延迟测量,可以计算延迟变化(抖动)。通过将发送/接收的数据包数量除以执行测量所需的时间(由LM报头中的时间戳给出),可以从数据包丢失测量值计算当前吞吐量。结合分组生成器,吞吐量测量可用于测量特定LSP的最大容量。应该注意的是,这里我们没有根据[RFC6371]中定义的饱和连接来配置按需吞吐量估计。相反,我们只支持基于损耗测量的当前吞吐量估计。

1.1. Conventions Used in This Document
1.1. 本文件中使用的公约
1.1.1. Terminology
1.1.1. 术语

AIS - Alarm Indication Signal

AIS-报警指示信号

BFD - Bidirectional Forwarding Detection

双向转发检测

CC - Continuity Check

CC-连续性检查

CV - Connectivity Verification

CV-连通性验证

DM - Delay Measurement

延迟测量

FMS - Fault Management Signal

故障管理信号

G-ACh - Generic Associated Channel

G-ACh-通用关联信道

GMPLS - Generalized Multi-Protocol Label Switching

广义多协议标签交换

LDI - Link Down Indication

本地设计院(LDI)-链路下降指示

LER - Label Edge Router

标签边缘路由器

LKR - Lock Report

LKR-锁定报告

LM - Loss Measurement

LM-损耗测量

LOC - Loss Of Continuity

LOC-连续性丧失

LSP - Label Switched Path

标签交换路径

LSR - Label Switching Router

标签交换路由器

MEP - Maintenance Entity Group End Point

MEP-维修实体组终点

MIP - Maintenance Entity Group Intermediate Point

MIP-维护实体组中间点

MPLS - Multi-Protocol Label Switching

多协议标签交换

MPLS-TP - MPLS Transport Profile

MPLS-TP-MPLS传输配置文件

NMS - Network Management System

网络管理系统

PM - Performance Measurement

PM-性能测量

RSVP-TE - Reservation Protocol Traffic Engineering

RSVP-TE-预约协议流量工程

TC - Traffic Class

TC-交通等级

1.1.2. Requirements Language
1.1.2. 需求语言

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

本文件中的关键词“必须”、“不得”、“要求”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照RFC 2119[RFC2119]中所述进行解释。

2. Overview of MPLS OAM for Transport Applications
2. 用于传输应用的MPLS OAM概述

[RFC6371] describes how MPLS-TP OAM mechanisms are operated to meet transport requirements outlined in [RFC5860].

[RFC6371]描述了如何操作MPLS-TP OAM机制以满足[RFC5860]中概述的传输要求。

[RFC6428] specifies two BFD operation modes: 1) "CC mode", which uses periodic BFD message exchanges with symmetric timer settings supporting Continuity Check, and 2) "CV/CC mode", which sends unique maintenance entity identifiers in the periodic BFD messages supporting CV as well as CC.

[RFC6428]指定了两种BFD操作模式:1)“CC模式”,该模式使用具有支持连续性检查的对称定时器设置的周期性BFD消息交换;2)“CV/CC模式”,该模式在支持CV和CC的周期性BFD消息中发送唯一的维护实体标识符。

[RFC6374] specifies mechanisms for Performance Monitoring of LSPs, in particular it specifies loss and delay measurement OAM functions.

[RFC6374]指定了LSP性能监控机制,特别是指定了损失和延迟测量OAM功能。

[RFC6427] specifies fault management signals with which a server LSP can notify client LSPs about various fault conditions to suppress alarms or to be used as triggers for actions in the client LSPs. The following signals are defined: Alarm Indication Signal (AIS), Link Down Indication (LDI), and Lock Report (LKR).

[RFC6427]指定故障管理信号,服务器LSP可以使用该信号通知客户端LSP各种故障状况,以抑制报警或用作客户端LSP中操作的触发器。定义了以下信号:报警指示信号(AIS)、链路下降指示(LDI)和锁定报告(LKR)。

[RFC6371] describes the mapping of fault conditions to consequent actions. Some of these mappings may be configured by the operator depending on the application of the LSP. The following defects are identified: Loss Of Continuity (LOC), Misconnectivity, MEP Misconfiguration, and Period Misconfiguration. Out of these defect conditions, the following consequent actions may be configurable: 1)

[RFC6371]描述了故障条件到后续行动的映射。其中一些映射可由操作员根据LSP的应用进行配置。识别出以下缺陷:连续性丧失(LOC)、错误连接、MEP错误配置和周期错误配置。在这些缺陷条件下,可以配置以下后续操作:1)

whether or not the LOC defect should result in blocking the outgoing data traffic; 2) whether or not the "Period Misconfiguration defect" should result in a signal fail condition.

LOC缺陷是否会导致传出数据通信阻塞;2) “周期错误配置缺陷”是否应导致信号失效。

3. Theory of Operations
3. 运筹学
3.1. MPLS-TP OAM Configuration Operation Overview
3.1. MPLS-TP OAM配置操作概述

GMPLS RSVP-TE, or alternatively LSP Ping [LSP-PING-CONF], can be used to simply enable the different OAM functions by setting the corresponding flags in the OAM Function Flags Sub-TLV [RFC7260]. For a more detailed configuration, one may include sub-TLVs for the different OAM functions in order to specify various parameters in detail.

GMPLS RSVP-TE或LSP Ping[LSP-Ping-CONF]可用于通过在OAM功能标志子TLV[RFC7260]中设置相应标志来简单地启用不同的OAM功能。对于更详细的配置,可以包括用于不同OAM功能的子tlv,以便详细地指定各种参数。

Typically, intermediate nodes SHOULD NOT process or modify any of the OAM Configuration TLVs but simply forward them to the end node. There is one exception to this and that is if the MPLS OAM FMS Sub-TLV is present. This sub-TLV MUST be examined even by intermediate nodes that support these extensions but only acted upon by nodes capable of transmitting FMS signals into the LSP being established. The sub-TLV MAY be present when the FMS flag is set in the OAM Function Flags Sub-TLV. If this sub-TLV is present, then the "OAM MIP entities desired" and "OAM MEP entities desired" flags (described in [RFC7260]) in the LSP Attribute Flags TLV MUST be set and the entire OAM Configuration TLV placed either in the LSP_REQUIRED_ATTRIBUTES object or in the LSP_ATTRIBUTES object in order to ensure that capable intermediate nodes process the configuration. If placed in the LSP_ATTRIBUTES object, nodes that are not able to process the OAM Configuration TLV will forward the message without generating an error. If the MPLS OAM FMS Sub-TLV has been placed in the LSP_REQUIRED_ATTRIBUTES object, a node that supports RFC 7260 but does not support the MPLS OAM FMS Sub-TLV MUST generate a PathErr message with "OAM Problem/Configuration Error" [RFC7260]. Otherwise, if the node doesn't support RFC 7260, it will not raise any errors as described in the Section 4.1 of [RFC7260].

通常,中间节点不应处理或修改任何OAM配置TLV,而只应将它们转发到终端节点。有一个例外,即如果存在MPLS OAM FMS子TLV。该子TLV必须由支持这些扩展的中间节点进行检查,但只能由能够将FMS信号传输到正在建立的LSP的节点进行操作。当在OAM功能标志子TLV中设置FMS标志时,子TLV可能存在。如果存在此子TLV,则“需要OAM MIP实体”和“需要OAM MEP实体”标志(如[RFC7260]中所述)在LSP属性标志中,必须设置TLV,并将整个OAM配置TLV放置在LSP_REQUIRED_ATTRIBUTES对象或LSP_ATTRIBUTES对象中,以确保有能力的中间节点处理配置。如果放置在LSP_ATTRIBUTES对象中,则无法处理OAM配置TLV的节点将转发消息,而不会生成错误。如果MPLS OAM FMS子TLV已放置在LSP_REQUIRED_ATTRIBUTES对象中,则支持RFC 7260但不支持MPLS OAM FMS子TLV的节点必须生成带有“OAM问题/配置错误”的PathErr消息[RFC7260]。否则,如果节点不支持RFC 7260,则不会出现[RFC7260]第4.1节所述的任何错误。

Finally, if the MPLS OAM FMS Sub-TLV is not included, only the "OAM MEP entities desired" flag is set and the OAM Configuration TLV may be placed in either LSP_ATTRIBUTES or LSP_REQUIRED_ATTRIBUTES.

最后,如果不包括MPLS OAM FMS子TLV,则仅设置“所需OAM MEP实体”标志,并且OAM配置TLV可置于LSP_属性或LSP_所需属性中。

3.1.1. Configuration of BFD Sessions
3.1.1. BFD会话的配置

For this specification, BFD MUST be run in either one of the two modes:

对于本规范,BFD必须以以下两种模式之一运行:

o Asynchronous mode, where both sides should be in active mode; or

o 异步模式,其中双方应处于活动模式;或

o Unidirectional mode.

o 单向模式。

In the simplest scenario, RSVP-TE (or alternatively LSP Ping [LSP-PING-CONF]), is used only to bootstrap a BFD session for an LSP without any timer negotiation.

在最简单的场景中,RSVP-TE(或者LSP-Ping[LSP-Ping-CONF])仅用于引导LSP的BFD会话,而无需任何计时器协商。

Timer negotiation can be performed either in subsequent BFD Control messages (in this case the operation is similar to LSP-Ping-based bootstrapping described in [RFC5884]) or directly in the RSVP-TE signaling messages.

计时器协商可以在后续BFD控制消息中执行(在这种情况下,操作类似于[RFC5884]中描述的基于LSP Ping的引导),也可以直接在RSVP-TE信令消息中执行。

When BFD Control packets are transported in the G-ACh, they are not protected by any end-to-end checksum; only lower layers are providing error detection/correction. A single bit error, e.g., a flipped bit in the BFD State field, could cause the receiving end to wrongly conclude that the link is down and, in turn, trigger protection switching. To prevent this from happening, the BFD Configuration Sub-TLV has an Integrity flag that, when set, enables BFD Authentication using Keyed SHA1 with an empty key (all 0s) [RFC5880]. This would ensure that every BFD Control packet carries a SHA1 hash of itself that can be used to detect errors.

当BFD控制数据包在G-ACh中传输时,它们不受任何端到端校验和的保护;只有较低的层提供错误检测/纠正。单个位错误,例如BFD状态字段中的翻转位,可能导致接收端错误地得出链路断开的结论,进而触发保护切换。为了防止这种情况发生,BFD配置子TLV有一个完整性标志,当设置该标志时,使用带空密钥(全部0)的密钥SHA1启用BFD身份验证[RFC5880]。这将确保每个BFD控制数据包本身携带一个SHA1散列,可用于检测错误。

If BFD Authentication using a pre-shared key / password is desired (i.e., authentication and not only error detection), the BFD Authentication Sub-TLV MUST be included in the BFD Configuration Sub-TLV. The BFD Authentication Sub-TLV is used to specify which authentication method should be used and which pre-shared key / password should be used for this particular session. How the key exchange is performed is out of scope of this document.

如果需要使用预共享密钥/密码进行BFD身份验证(即,身份验证,而不仅仅是错误检测),BFD身份验证子TLV必须包含在BFD配置子TLV中。BFD身份验证子TLV用于指定此特定会话应使用哪种身份验证方法以及应使用哪种预共享密钥/密码。如何执行密钥交换超出了本文档的范围。

3.1.2. Configuration of Performance Monitoring
3.1.2. 性能监视的配置

It is possible to configure Performance Monitoring functionalities such as Loss, Delay, Delay variation (jitter), and Throughput, as described in [RFC6374].

如[RFC6374]所述,可以配置性能监控功能,如丢失、延迟、延迟变化(抖动)和吞吐量。

When configuring Performance Monitoring functionalities, it is possible to choose either the default configuration (by only setting the respective flags in the OAM Function Flags Sub-TLV) or a

配置性能监视功能时,可以选择默认配置(仅通过在OAM功能标志子TLV中设置相应标志)或

customized configuration. To customize the configuration, one would set the respective flags and include the respective Loss and/or Delay sub-TLVs.

自定义配置。要定制配置,可以设置相应的标志,并包括相应的丢失和/或延迟子TLV。

By setting the PM/Loss flag in the OAM Function Flags Sub-TLV and by including the MPLS OAM PM Loss Sub-TLV, one can configure the measurement interval and loss threshold values for triggering protection.

通过在OAM功能标志子TLV中设置PM/丢失标志,并通过包括MPLS OAM PM丢失子TLV,可以配置触发保护的测量间隔和丢失阈值。

Delay measurements are configured by setting the PM/Delay flag in the OAM Function Flags Sub-TLV; by including the MPLS OAM PM Loss Sub-TLV, one can configure the measurement interval and the delay threshold values for triggering protection.

通过在OAM功能标志子TLV中设置PM/延迟标志来配置延迟测量;通过包括MPLS OAM PM Loss子TLV,可以配置触发保护的测量间隔和延迟阈值。

3.1.3. Configuration of Fault Management Signals
3.1.3. 故障管理信号的配置

To configure Fault Management signals and their refresh time, the FMS flag in the OAM Function Flags Sub-TLV MUST be set and the MPLS OAM FMS Sub-TLV included. When configuring Fault Management signals, an implementation can enable the default configuration by setting the FMS flag in the OAM Function Flags Sub-TLV. In order to modify the default configuration, the MPLS OAM FMS Sub-TLV MUST be included.

要配置故障管理信号及其刷新时间,必须设置OAM功能标志子TLV中的FMS标志,并包括MPLS OAM FMS子TLV。配置故障管理信号时,实施可通过在OAM功能标志子TLV中设置FMS标志来启用默认配置。为了修改默认配置,必须包括MPLS OAM FMS子TLV。

If an intermediate point is intended to originate fault management signal messages, this means that such an intermediate point is associated with a server MEP through a co-located MPLS-TP client/ server adaptation function, and the "Fault Management subscription" flag in the MPLS OAM FMS Sub-TLV has been set as an indication of the request to create the association at each intermediate node of the client LSP. The corresponding server MEP needs to be configured by its own RSVP-TE session (or, alternatively, via an NMS or LSP Ping).

如果中间点打算发起故障管理信号消息,这意味着该中间点通过位于同一位置的MPLS-TP客户机/服务器适配功能和“故障管理订阅”与服务器MEP相关联MPLS OAM FMS子TLV中的标志已设置为在客户端LSP的每个中间节点上创建关联的请求的指示。相应的服务器MEP需要通过其自己的RSVP-TE会话(或者,通过NMS或LSP Ping)进行配置。

3.2. MPLS OAM Configuration Sub-TLV
3.2. MPLS OAM配置子TLV

The OAM Configuration TLV, defined in [RFC7260], specifies the OAM functions that are used for the LSP. This document extends the OAM Configuration TLV by defining a new OAM Type: "MPLS OAM" (3). The MPLS OAM type is set to request the establishment of OAM functions for MPLS-TP LSPs. The specific OAM functions are specified in the OAM Function Flags Sub-TLV as depicted in [RFC7260].

[RFC7260]中定义的OAM配置TLV指定用于LSP的OAM函数。本文档通过定义新的OAM类型“MPLS OAM”(3),扩展了OAM配置TLV。MPLS OAM类型设置为请求为MPLS-TP LSP建立OAM功能。具体的OAM功能在[RFC7260]中描述的OAM功能标志子TLV中指定。

When an egress LSR receives an OAM Configuration TLV indicating the MPLS OAM type, the LSR will first process any present OAM Function Flags Sub-TLV, and then it MUST process technology-specific configuration TLVs. This document defines a sub-TLV, the MPLS OAM Configuration Sub-TLV, which is carried in the OAM Configuration TLV.

当出口LSR接收到指示MPLS OAM类型的OAM配置TLV时,LSR将首先处理任何现有的OAM功能标志子TLV,然后它必须处理特定于技术的配置TLV。本文档定义了一个子TLV,即MPLS OAM配置子TLV,它包含在OAM配置TLV中。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | MPLS OAM Conf. Sub-TLV (33)   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | MPLS OAM Conf. Sub-TLV (33)   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 1: MPLS OAM Configuration Sub-TLV Format

图1:MPLS OAM配置子TLV格式

Type: 33, the MPLS OAM Configuration Sub-TLV.

类型:33,MPLS OAM配置子TLV。

Length: Indicates the total length in octets, including sub-TLVs as well as the Type and Length fields.

长度:以八位字节表示总长度,包括子TLV以及类型和长度字段。

The following MPLS-OAM-specific sub-TLVs MAY be included in the MPLS OAM Configuration Sub-TLV:

以下MPLS OAM特定子TLV可包括在MPLS OAM配置子TLV中:

o BFD Configuration Sub-TLV MUST be included if either the CC, the CV, or both OAM Function flags are being set in the OAM Function Flags Sub-TLV [RFC7260]. This sub-TLV carries additional sub-TLVs; failure to include the correct sub-TLVs MUST result in an error being generated: "OAM Problem/Configuration Error". The sub-TLVs are:

o 如果在OAM功能标志子TLV[RFC7260]中设置了CC、CV或两个OAM功能标志,则必须包括BFD配置子TLV。该子TLV承载额外的子TLV;未能包含正确的子TLV必须导致生成错误:“OAM问题/配置错误”。次级TLV是:

* BFD Identifiers Sub-TLV MUST always be included.

* 必须始终包括BFD标识符子TLV。

* Timer Negotiation Parameters Sub-TLV MUST be included if the N flag is not set.

* 如果未设置N标志,则必须包括计时器协商参数子TLV。

* BFD Authentication Sub-TLV MAY be included if the I flag is set.

* 如果设置了I标志,则可以包括BFD认证子TLV。

o Performance Monitoring Sub-TLV, which MUST be included if any of the PM/Delay, PM/Loss, or PM/Throughput flags are set in the OAM Function Flag Sub-TLV [RFC7260]. This sub-TLV MAY carry additional sub-TLVs:

o 性能监控子TLV,如果在OAM功能标志子TLV[RFC7260]中设置了任何PM/延迟、PM/丢失或PM/吞吐量标志,则必须包括该子TLV。该子TLV可携带额外的子TLV:

* MPLS OAM PM Loss Sub-TLV MAY be included if the PM/Loss OAM Function flag is set. If the MPLS OAM PM Loss Sub-TLV is not included, default configuration values are used. The same sub-TLV MAY also be included in case the PM/Throughput OAM Function flag is set and there is the need to specify measurement intervals different from the default ones. Since throughput measurements use the same tool as loss measurements, the same TLV is used.

* 如果设置了PM/丢失OAM功能标志,则可以包括MPLS OAM PM丢失子TLV。如果不包括MPLS OAM PM丢失子TLV,则使用默认配置值。如果设置了PM/吞吐量OAM功能标志,并且需要指定不同于默认测量间隔的测量间隔,则也可以包括相同的子TLV。由于吞吐量测量使用与损耗测量相同的工具,因此使用相同的TLV。

* MPLS OAM PM Delay Sub-TLV MAY be included if the PM/Delay OAM Function flag is set. If the MPLS OAM PM Delay Sub-TLV is not included, default configuration values are used.

* 如果设置了PM/延迟OAM功能标志,则可以包括MPLS OAM PM Delay Sub TLV。如果不包括MPLS OAM PM延迟子TLV,则使用默认配置值。

o MPLS OAM FMS Sub-TLV MAY be included if the FMS OAM Function flag is set. If the MPLS OAM FMS Sub-TLV is not included, default configuration values are used.

o 如果设置了FMS OAM功能标志,则可包括MPLS OAM FMS子TLV。如果不包括MPLS OAM FMS子TLV,则使用默认配置值。

The following are some additional rules of processing the MPLS OAM Configuration Sub-TLV:

以下是处理MPLS OAM配置子TLV的一些附加规则:

o The MPLS OAM Configuration Sub-TLV MAY be empty, i.e., have no Value. If so, then its Length MUST be 8. Then, all OAM functions that have their corresponding flags set in the OAM Function Flags Sub-TLV MUST be assigned their default values or left disabled.

o MPLS OAM配置子TLV可以是空的,即没有值。如果是,则其长度必须为8。然后,必须为所有在OAM函数标志子TLV中设置了相应标志的OAM函数分配其默认值或保持禁用状态。

o A sub-TLV that doesn't have a corresponding flag set MUST be silently ignored.

o 必须以静默方式忽略未设置相应标志的子TLV。

o If multiple copies of a sub-TLV are present, then only the first sub-TLV MUST be used and the remaining sub-TLVs MUST be silently ignored.

o 如果存在子TLV的多个副本,则必须仅使用第一个子TLV,并且必须静默忽略其余子TLV。

However, not all the values can be derived from the standard RSVP-TE objects, in particular the locally assigned Tunnel ID at the egress cannot be derived by the ingress node. Therefore, the full LSP MEP-ID used by the ingress has to be carried in the BFD Identifiers Sub-TLV in the Path message and the egress LSP MEP-ID in the same way in the Resv message.

然而,并非所有的值都可以从标准RSVP-TE对象中导出,特别是入口节点无法导出出口处本地分配的隧道ID。因此,入口使用的完整LSP MEP-ID必须以与Resv消息中相同的方式在路径消息中的BFD标识符子TLV和出口LSP MEP-ID中携带。

3.2.1. CV Flag Rules of Use
3.2.1. CV标志使用规则

If the CV flag is set in the OAM Function Flags Sub-TLV [RFC7260], then the CC flag MUST be set as well because performing Connectivity Verification implies performing Continuity Check as well. The format of an MPLS-TP CV/CC message is shown in [RFC6428]. In order to perform Connectivity Verification, the CV/CC message MUST contain the "LSP MEP-ID" in addition to the BFD Control packet information. The "LSP MEP-ID" contains four identifiers:

如果在OAM功能标志子TLV[RFC7260]中设置了CV标志,则还必须设置CC标志,因为执行连接验证意味着执行连续性检查。MPLS-TP CV/CC报文的格式如[RFC6428]所示。为了执行连接验证,CV/CC消息除了BFD控制数据包信息外,还必须包含“LSP MEP-ID”。“LSP MEP-ID”包含四个标识符:

MPLS-TP Global_ID

MPLS-TP全局\u ID

MPLS-TP Node Identifier

MPLS-TP节点标识符

Tunnel_Num

隧道数量

LSP_Num

LSP_Num

These values need to be correctly set by both ingress and egress when transmitting a CV packet, and both ingress and egress need to know what to expect when receiving a CV packet. Most of these values can be derived from the Path and Resv messages [RFC3473], which use a 5-tuple to uniquely identify an LSP within an operator's network. This tuple is composed of a Tunnel Sender Address, Tunnel Endpoint Address, Tunnel_ID, Extended Tunnel ID, and (GMPLS) LSP_ID.

在发送CV数据包时,入口和出口都需要正确设置这些值,并且入口和出口都需要知道在接收CV数据包时会发生什么。这些值中的大多数可以从Path和Resv消息[RFC3473]中派生,它们使用5元组来唯一标识运营商网络中的LSP。此元组由隧道发送方地址、隧道端点地址、隧道ID、扩展隧道ID和(GMPLS)LSPUID组成。

3.3. BFD Configuration Sub-TLV
3.3. BFD配置子TLV

The BFD Configuration Sub-TLV (depicted below) is defined for BFD-OAM-specific configuration parameters. The BFD Configuration Sub-TLV is carried as a sub-TLV of the MPLS OAM Configuration Sub-TLV.

BFD配置子TLV(如下所示)是为BFD OAM特定配置参数定义的。BFD配置子TLV作为MPLS OAM配置子TLV的子TLV携带。

This TLV accommodates generic BFD OAM information and carries sub-TLVs.

该TLV容纳通用BFD OAM信息并承载子TLV。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      BFD Conf. Type (1)       |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Vers.|N|S|I|G|U|B|       Reserved (set to all 0s)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      BFD Conf. Type (1)       |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Vers.|N|S|I|G|U|B|       Reserved (set to all 0s)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 2: BFD Configuration Sub-TLV Format

图2:BFD配置子TLV格式

Type: 1, the BFD Configuration Sub-TLV.

类型:1,BFD配置子TLV。

Length: Indicates the total length in octets, including sub-TLVs as well as the Type and Length fields.

长度:以八位字节表示总长度,包括子TLV以及类型和长度字段。

Version: Identifies the BFD protocol version. If the egress LSR does not support the version, an error MUST be generated: "OAM Problem/ Unsupported BFD Version".

版本:标识BFD协议版本。如果出口LSR不支持该版本,则必须生成错误:“OAM问题/不支持的BFD版本”。

BFD Negotiation (N): If set timer negotiation/re-negotiation via BFD Control messages is enabled, when cleared it is disabled.

BFD协商(N):如果启用了通过BFD控制消息进行的设置计时器协商/重新协商,则清除后将禁用。

Symmetric Session (S): If set, the BFD session MUST use symmetric timing values.

对称会话:如果设置,BFD会话必须使用对称定时值。

Integrity (I): If set, BFD Authentication MUST be enabled. If the BFD Configuration Sub-TLV does not include a BFD Authentication Sub-TLV, the authentication MUST use Keyed SHA1 with an empty pre-shared key (all 0s). If the egress LSR does not support BFD Authentication, an error MUST be generated: "OAM Problem/BFD Authentication unsupported".

完整性(I):如果设置,则必须启用BFD身份验证。如果BFD配置子TLV不包括BFD身份验证子TLV,则身份验证必须使用带有空预共享密钥(所有0)的密钥SHA1。如果出口LSR不支持BFD身份验证,则必须生成错误:“OAM问题/BFD身份验证不受支持”。

Encapsulation Capability (G): If set, it shows the capability of encapsulating BFD messages into The G-Ach channel. If both the G bit and U bit are set, configuration gives precedence to the G bit. If the egress LSR does not support any of the ingress LSR Encapsulation Capabilities, an error MUST be generated: "OAM Problem/Unsupported BFD Encapsulation format".

封装能力(G):如果设置,则显示将BFD消息封装到G-Ach通道中的能力。如果同时设置了G位和U位,则配置优先于G位。如果出口LSR不支持任何入口LSR封装功能,则必须生成错误:“OAM问题/不支持的BFD封装格式”。

Encapsulation Capability (U): If set, it shows the capability of encapsulating BFD messages into UDP packets. If both the G bit and U bit are set, configuration gives precedence to the G bit. If the egress LSR does not support any of the ingress LSR Encapsulation Capabilities, an error MUST be generated: "OAM Problem/Unsupported BFD Encapsulation Format".

封装能力(U):如果设置,则显示将BFD消息封装为UDP数据包的能力。如果同时设置了G位和U位,则配置优先于G位。如果出口LSR不支持任何入口LSR封装功能,则必须生成错误:“OAM问题/不支持的BFD封装格式”。

Bidirectional (B): If set, it configures BFD in the Bidirectional mode. If it is not set, it configures BFD in unidirectional mode. In the second case, the source node does not expect any Discriminator values back from the destination node.

双向(B):如果设置,则在双向模式下配置BFD。如果未设置,则在单向模式下配置BFD。在第二种情况下,源节点不希望从目标节点返回任何鉴别器值。

Reserved: Reserved for future specifications; set to 0 on transmission and ignored when received.

预留:预留给未来的规格;传输时设置为0,接收时忽略。

The BFD Configuration Sub-TLV MUST include the following sub-TLVs in the Path message:

BFD配置子TLV必须在路径消息中包含以下子TLV:

o BFD Identifiers Sub-TLV; and

o BFD识别子TLV;和

o Negotiation Timer Parameters Sub-TLV if the N flag is cleared.

o 如果清除N标志,则协商计时器参数子TLV。

The BFD Configuration Sub-TLV MUST include the following sub-TLVs in the Resv message:

BFD配置子TLV必须在Resv消息中包括以下子TLV:

o BFD Identifiers Sub-TLV; and

o BFD识别子TLV;和

o Negotiation Timer Parameters Sub-TLV if:

o 协商计时器参数子TLV,如果:

* the N and S flags are cleared; or if

* N和S标志被清除;或者如果

* the N flag is cleared and the S flag is set and the Negotiation Timer Parameters Sub-TLV received by the egress contains unsupported values. In this case, an updated Negotiation Timer Parameters Sub-TLV containing values supported by the egress LSR MUST be returned to the ingress.

* 清除N标志并设置S标志,出口接收的协商计时器参数Sub TLV包含不支持的值。在这种情况下,必须将包含出口LSR支持的值的更新的协商计时器参数Sub TLV返回到入口。

3.3.1. BFD Identifiers Sub-TLV
3.3.1. BFD标识符子TLV

The BFD Identifiers Sub-TLV is carried as a sub-TLV of the BFD Configuration Sub-TLV and is depicted below.

BFD标识符子TLV作为BFD配置子TLV的子TLV携带,如下所示。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   BFD Identifiers Type (1)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Local Discriminator                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       MPLS-TP Global_ID                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    MPLS-TP Node Identifier                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tunnel_Num          |            LSP_Num            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   BFD Identifiers Type (1)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Local Discriminator                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       MPLS-TP Global_ID                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    MPLS-TP Node Identifier                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tunnel_Num          |            LSP_Num            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 3: BFD Identifiers Sub-TLV Format

图3:BFD标识符子TLV格式

Type: 1, the BFD Identifiers Sub-TLV.

类型:1,BFD标识符子TLV。

Length: Indicates the TLV total length in octets, including the Type and Length fields (20).

长度:以八位字节表示TLV总长度,包括类型和长度字段(20)。

Local Discriminator: A unique, non-zero discriminator value generated by the transmitting system and referring to itself; it is used to de-multiplex multiple BFD sessions between the same pair of systems as defined in [RFC5880].

本地鉴别器:由传输系统生成并参考自身的唯一非零鉴别器值;它用于在[RFC5880]中定义的同一对系统之间解复用多个BFD会话。

MPLS-TP Global_ID, Node Identifier, Tunnel_Num, and LSP_Num: All set as defined in [RFC6370].

MPLS-TP全局_ID、节点标识符、隧道_Num和LSP_Num:所有设置如[RFC6370]中所定义。

3.3.2. Negotiation Timer Parameters Sub-TLV
3.3.2. 协商定时器参数子TLV

The Negotiation Timer Parameters Sub-TLV is carried as a sub-TLV of the BFD Configuration Sub-TLV and is depicted below.

协商定时器参数子TLV作为BFD配置子TLV的子TLV携带,如下所示。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Nego. Timer Type (2)       |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Acceptable Min. Asynchronous TX interval              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Acceptable Min. Asynchronous RX interval              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Required Echo TX Interval                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Nego. Timer Type (2)       |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Acceptable Min. Asynchronous TX interval              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Acceptable Min. Asynchronous RX interval              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Required Echo TX Interval                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 4: Negotiation Timer Parameters Sub-TLV Format

图4:协商计时器参数子TLV格式

Type: 2, the Negotiation Timer Parameters Sub-TLV.

类型:2,协商定时器参数子TLV。

Length: Indicates the TLV total length in octets, including Type and Length fields (16).

长度:以八位字节表示TLV总长度,包括类型和长度字段(16)。

Acceptable Min. Asynchronous TX interval: If the S flag is set in the BFD Configuration Sub-TLV, it expresses the desired time interval (in microseconds) at which the ingress LER intends to both transmit and receive BFD periodic control packets. If the egress LSR cannot support the value, it SHOULD reply with a supported interval.

可接受的最小异步发送间隔:如果在BFD配置子TLV中设置了S标志,则表示入口LER打算发送和接收BFD周期控制数据包的所需时间间隔(以微秒为单位)。如果出口LSR不能支持该值,它应该以支持的间隔进行响应。

If the S flag is cleared in the BFD Configuration Sub-TLV, this field expresses the desired time interval (in microseconds) at which the ingress LSR intends to transmit BFD periodic control packets.

如果在BFD配置子TLV中清除了S标志,则该字段表示入口LSR打算传输BFD周期控制数据包的所需时间间隔(以微秒为单位)。

Acceptable Min. Asynchronous RX interval: If the S flag is set in the BFD Configuration Sub-TLV, this field MUST be set equal to "Acceptable Min. Asynchronous TX interval" on transmit and MUST be ignored on receipt since it has no additional meaning with respect to the one described for "Acceptable Min. Asynchronous TX interval".

可接受的最小异步接收间隔:如果在BFD配置子TLV中设置了S标志,则该字段必须在传输时设置为等于“可接受的最小异步发送间隔”,并且在接收时必须忽略,因为它与“可接受的最小异步发送间隔”所述的字段没有其他含义。

If the S flag is cleared in the BFD Configuration Sub-TLV, it expresses the minimum time interval (in microseconds) at which the ingress/egress LSRs can receive periodic BFD Control packets. If this value is greater than the "Acceptable Min. Asynchronous TX interval" received from the ingress/egress LSR, the receiving LSR MUST adopt the interval expressed in the "Acceptable Min. Asynchronous RX interval".

如果在BFD配置子TLV中清除S标志,则表示入口/出口LSR可以接收周期性BFD控制数据包的最小时间间隔(以微秒为单位)。如果该值大于从入口/出口LSR接收的“可接受的最小异步发送间隔”,则接收LSR必须采用“可接受的最小异步接收间隔”中表示的间隔。

Required Echo TX Interval: The minimum interval (in microseconds) between received BFD Echo packets that this system is capable of supporting, less any jitter applied by the sender as described in Section 6.8.9 of [RFC5880]. This value is also an indication for the receiving system of the minimum interval between transmitted BFD Echo packets. If this value is zero, the transmitting system does not support the receipt of BFD Echo packets. If the LSR node cannot support this value, it SHOULD reply with a supported value (which may be zero if Echo is not supported).

所需回波发送间隔:本系统能够支持的接收BFD回波数据包之间的最小间隔(微秒),减去[RFC5880]第6.8.9节所述发送方施加的任何抖动。该值也是接收系统发送BFD回波数据包之间最小间隔的指示。如果该值为零,则传输系统不支持接收BFD回波数据包。如果LSR节点无法支持此值,则应使用支持的值进行回复(如果不支持Echo,则该值可能为零)。

3.3.3. BFD Authentication Sub-TLV
3.3.3. BFD认证子TLV

The BFD Authentication Sub-TLV is carried as a sub-TLV of the BFD Configuration Sub-TLV and is depicted below.

BFD认证子TLV作为BFD配置子TLV的子TLV携带,如下所示。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      BFD Auth. Type (3)       |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Auth Type   |  Auth Key ID  |         Reserved (0s)         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      BFD Auth. Type (3)       |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Auth Type   |  Auth Key ID  |         Reserved (0s)         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 5: BFD Authentication Sub-TLV Format

图5:BFD认证子TLV格式

Type: 3, the BFD Authentication Sub-TLV.

类型:3,BFD认证子TLV。

Length: Indicates the TLV total length in octets, including Type and Length fields (8).

长度:以八位字节表示TLV总长度,包括类型和长度字段(8)。

Auth Type: Indicates which type of authentication to use. The same values are used as are defined in Section 4.1 of [RFC5880]. If the egress LSR does not support this type, an "OAM Problem/Unsupported BFD Authentication Type" error MUST be generated.

身份验证类型:指示要使用的身份验证类型。使用[RFC5880]第4.1节中定义的相同值。如果出口LSR不支持此类型,则必须生成“OAM问题/不支持的BFD身份验证类型”错误。

Auth Key ID: Indicates which authentication key or password (depending on Auth Type) should be used. How the key exchange is performed is out of scope of this document. If the egress LSR does not support this Auth Key ID, an "OAM Problem/Mismatch of BFD Authentication Key ID" error MUST be generated.

身份验证密钥ID:指示应使用哪个身份验证密钥或密码(取决于身份验证类型)。如何执行密钥交换超出了本文档的范围。如果出口LSR不支持此身份验证密钥ID,则必须生成“OAM问题/BFD身份验证密钥ID不匹配”错误。

Reserved: Reserved for future specifications; set to 0 on transmission and ignored when received.

预留:预留给未来的规格;传输时设置为0,接收时忽略。

3.3.4. Traffic Class Sub-TLV
3.3.4. 交通等级分组

The Traffic Class Sub-TLV is carried as a sub-TLV of the BFD Configuration Sub-TLV or Fault Management Signal Sub-TLV (Section 3.5) and is depicted in Figure 6.

交通等级子TLV作为BFD配置子TLV或故障管理信号子TLV(第3.5节)的子TLV携带,如图6所示。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Traffic Class Sub-Type (4)   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  TC |                 Reserved (set to all 0s)                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Traffic Class Sub-Type (4)   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  TC |                 Reserved (set to all 0s)                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 6: Traffic Class Sub-TLV Format

图6:交通等级子TLV格式

Type: 4, the Traffic Class Sub-TLV.

类型:4,交通等级子TLV。

Length: Indicates the length of the Value field in octets (4).

长度:以八位字节(4)表示值字段的长度。

Traffic Class (TC): Identifies the TC [RFC5462] for periodic continuity monitoring messages or packets with fault management information.

流量等级(TC):识别定期连续性监测消息或包含故障管理信息的数据包的TC[RFC5462]。

If the Traffic Class Sub-TLV is present, then the value of the TC field MUST be used as the value of the TC field of an MPLS label stack entry. If the Traffic Class Sub-TLV is absent from BFD Configuration Sub-TLV or Fault Management Signal Sub-TLV, then selection of the TC value is a local decision.

如果存在流量类别子TLV,则TC字段的值必须用作MPLS标签堆栈项的TC字段的值。如果BFD配置子TLV或故障管理信号子TLV中没有交通等级子TLV,则TC值的选择是本地决定。

3.4. Performance Monitoring Sub-TLV
3.4. 性能监控子TLV

If the OAM Function Flags Sub-TLV has either the PM/Loss, PM/Delay, or PM/Throughput flag set, the Performance Monitoring Sub-TLV MUST be present in the MPLS OAM Configuration Sub-TLV. Failure to include the correct sub-TLVs MUST result in an "OAM Problem/Configuration Error" message being generated.

如果OAM功能标志子TLV设置了PM/丢失、PM/延迟或PM/吞吐量标志,则性能监视子TLV必须出现在MPLS OAM配置子TLV中。未能包含正确的子TLV必须导致生成“OAM问题/配置错误”消息。

The Performance Monitoring Sub-TLV provides the configuration information mentioned in Section 7 of [RFC6374]. It includes support for the configuration of quality thresholds and, as described in [RFC6374], "the crossing of which will trigger warnings or alarms, and result reporting and exception notification will be integrated into the system-wide network management and reporting framework."

性能监控子TLV提供[RFC6374]第7节中提到的配置信息。它包括对质量阈值配置的支持,如[RFC6374]中所述,“跨越质量阈值将触发警告或警报,结果报告和异常通知将集成到系统范围的网络管理和报告框架中。”

In case the values need to be different than the default ones, the Performance Monitoring Sub-TLV includes the following sub-TLVs:

如果值需要不同于默认值,则性能监控子TLV包括以下子TLV:

o MPLS OAM PM Loss Sub-TLV if the PM/Loss and/or PM/Throughput flag is set in the OAM Function Flags Sub-TLV; and

o 如果在OAM功能标志子TLV中设置了PM/丢失和/或PM/吞吐量标志,则MPLS OAM PM丢失子TLV;和

o MPLS OAM PM Delay Sub-TLV if the PM/Delay flag is set in the OAM Function Flags Sub-TLV.

o 如果在OAM功能标志子TLV中设置了PM/延迟标志,则MPLS OAM PM Delay Sub TLV。

The Performance Monitoring Sub-TLV depicted below is carried as a sub-TLV of the MPLS OAM Configuration Sub-TLV.

下面描述的性能监视子TLV作为MPLS OAM配置子TLV的子TLV携带。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Perf. Monitoring Type (2)  |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |D|L|J|Y|K|C|            Reserved (set to all 0s)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Perf. Monitoring Type (2)  |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |D|L|J|Y|K|C|            Reserved (set to all 0s)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 7: Performance Monitoring Sub-TLV Format

图7:性能监控子TLV格式

Type: 2, the Performance Monitoring Sub-TLV.

类型:2,性能监控子TLV。

Length: Indicates the TLV total length in octets, including sub-TLVs as well as Type and Length fields.

长度:以八位字节表示TLV总长度,包括子TLV以及类型和长度字段。

Configuration Flags (for the specific function description please refer to [RFC6374]):

配置标志(有关具体功能说明,请参阅[RFC6374]):

o D: Delay inferred/direct (0=INFERRED, 1=DIRECT). If the egress LSR does not support the specified mode, an "OAM Problem/ Unsupported Delay Mode" error MUST be generated.

o D:推断/直接延迟(0=推断,1=直接)。如果出口LSR不支持指定模式,则必须生成“OAM问题/不支持的延迟模式”错误。

o L: Loss inferred/direct (0=INFERRED, 1=DIRECT). If the egress LSR does not support the specified mode, an "OAM Problem/Unsupported Loss Mode" error MUST be generated.

o L:推断/直接损失(0=推断,1=直接)。如果出口LSR不支持指定模式,则必须生成“OAM问题/不支持的丢失模式”错误。

o J: Delay variation/jitter (1=ACTIVE, 0=NOT ACTIVE). If the egress LSR does not support Delay variation measurements and the J flag is set, an "OAM Problem/Delay variation unsupported" error MUST be generated.

o J:延迟变化/抖动(1=激活,0=未激活)。如果出口LSR不支持延迟变化测量,并且设置了J标志,则必须生成“OAM问题/延迟变化不支持”错误。

o Y: Dyadic (1=ACTIVE, 0=NOT ACTIVE). If the egress LSR does not support Dyadic mode and the Y flag is set, an "OAM Problem/Dyadic mode unsupported" error MUST be generated.

o Y:并矢(1=激活,0=未激活)。如果出口LSR不支持并矢模式且设置了Y标志,则必须生成“OAM问题/并矢模式不支持”错误。

o K: Loopback (1=ACTIVE, 0=NOT ACTIVE). If the egress LSR does not support Loopback mode and the K flag is set, an "OAM Problem/ Loopback mode unsupported" error MUST be generated.

o K:环回(1=活动,0=不活动)。如果出口LSR不支持环回模式,并且设置了K标志,则必须生成“OAM问题/环回模式不支持”错误。

o C: Combined (1=ACTIVE, 0=NOT ACTIVE). If the egress LSR does not support Combined mode and the C flag is set, an "OAM Problem/ Combined mode unsupported" error MUST be generated.

o C:组合(1=激活,0=未激活)。如果出口LSR不支持组合模式且设置了C标志,则必须生成“OAM问题/组合模式不支持”错误。

Reserved: Reserved for future specifications; set to 0 on transmission and ignored when received.

预留:预留给未来的规格;传输时设置为0,接收时忽略。

3.4.1. MPLS OAM PM Loss Sub-TLV
3.4.1. MPLS OAM PM丢失子TLV

The MPLS OAM PM Loss Sub-TLV depicted below is carried as a sub-TLV of the Performance Monitoring Sub-TLV.

下面描述的MPLS OAM PM丢失子TLV作为性能监视子TLV的子TLV携带。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       PM Loss Type (1)        |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | OTF |T|B|              Reserved (set to all 0s)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Measurement Interval                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Test Interval                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Loss Threshold                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       PM Loss Type (1)        |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | OTF |T|B|              Reserved (set to all 0s)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Measurement Interval                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Test Interval                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Loss Threshold                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 8: MPLS OAM PM Loss Sub-TLV Format

图8:MPLS OAM PM丢失子TLV格式

Type: 1, the MPLS OAM PM Loss Sub-TLV.

类型:1,MPLS OAM PM丢失子TLV。

Length: Indicates the length of the parameters in octets, including Type and Length fields (20).

长度:以八位字节表示参数的长度,包括类型和长度字段(20)。

Origin Timestamp Format (OTF): Origin Timestamp Format of the Origin Timestamp field described in [RFC6374]. By default, it is set to IEEE 1588 version 1. If the egress LSR cannot support this value, an "OAM Problem/Unsupported Timestamp Format" error MUST be generated.

原点时间戳格式(OTF):在[RFC6374]中描述的原点时间戳字段的原点时间戳格式。默认情况下,它设置为IEEE 1588版本1。如果出口LSR不能支持此值,则必须生成“OAM问题/不支持的时间戳格式”错误。

Configuration Flags (please refer to [RFC6374] for further details):

配置标志(有关更多详细信息,请参阅[RFC6374]:

o T: Traffic-class-specific measurement indicator. Set to 1 when the measurement operation is scoped to packets of a particular traffic class (Differentiated Service Code Point (DSCP) value) and zero otherwise. When set to 1, the Differentiated Services (DS) field of the message indicates the measured traffic class. By default, it is set to 1.

o T:交通等级特定测量指标。当测量操作的范围限定为特定流量类别(区分服务代码点(DSCP)值)的数据包时,设置为1,否则设置为零。当设置为1时,消息的区分服务(DS)字段指示测量的流量类别。默认情况下,它设置为1。

o B: Octet (byte) count. When set to 1, it indicates that the Counter 1-4 fields represent octet counts. When set to 0, it indicates that the Counter 1-4 fields represent packet counts. By default, it is set to 0.

o 八位字节(字节)计数。设置为1时,表示计数器1-4字段表示八位字节计数。当设置为0时,表示计数器1-4字段表示数据包计数。默认情况下,它设置为0。

Reserved: Reserved for future specifications; set to 0 on transmission and ignored when received.

预留:预留给未来的规格;传输时设置为0,接收时忽略。

Measurement Interval: The time interval (in milliseconds) at which Loss Measurement query messages MUST be sent in both directions. If the egress LSR cannot support the value, it SHOULD reply with a supported interval. By default, it is set to 100 milliseconds as per [RFC6375].

度量间隔:必须在两个方向上发送损失度量查询消息的时间间隔(以毫秒为单位)。如果出口LSR不能支持该值,它应该以支持的间隔进行响应。默认情况下,根据[RFC6375]将其设置为100毫秒。

Test Interval: Test messages interval (in milliseconds) as described in [RFC6374]. By default, it is set to 10 milliseconds as per [RFC6375]. If the egress LSR cannot support the value, it SHOULD reply with a supported interval.

测试间隔:测试消息间隔(毫秒),如[RFC6374]中所述。默认情况下,根据[RFC6375]将其设置为10毫秒。如果出口LSR不能支持该值,它应该以支持的间隔进行响应。

Loss Threshold: The threshold value of measured lost packets per measurement over which action(s) SHOULD be triggered.

丢失阈值:每次测量中测量到的丢失数据包的阈值,应在该阈值上触发操作。

3.4.2. MPLS OAM PM Delay Sub-TLV
3.4.2. MPLS OAM PM延迟子TLV

The MPLS OAM PM Delay Sub-TLV depicted below is carried as a sub-TLV of the Performance Monitoring Sub-TLV.

下面描述的MPLS OAM PM延迟子TLV作为性能监视子TLV的子TLV携带。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      PM Delay Type (2)        |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | OTF |T|B|             Reserved (set to all 0s)                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Measurement Interval                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Test Interval                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Delay Threshold                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      PM Delay Type (2)        |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | OTF |T|B|             Reserved (set to all 0s)                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Measurement Interval                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Test Interval                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Delay Threshold                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 9: MPLS OAM PM Delay Sub-TLV Format

图9:MPLS OAM PM延迟子TLV格式

Type: 2, the MPLS OAM PM Delay Sub-TLV.

类型:2,MPLS OAM PM延迟子TLV。

Length: Indicates the length of the parameters in octets, including Type and Length fields (20).

长度:以八位字节表示参数的长度,包括类型和长度字段(20)。

OTF: Origin Timestamp Format of the Origin Timestamp field described in [RFC6374]. By default, it is set to IEEE 1588 version 1. If the egress LSR cannot support this value, an "OAM Problem/Unsupported Timestamp Format" error MUST be generated.

OTF:[RFC6374]中描述的原点时间戳字段的原点时间戳格式。默认情况下,它设置为IEEE 1588版本1。如果出口LSR不能支持此值,则必须生成“OAM问题/不支持的时间戳格式”错误。

Configuration Flags (please refer to [RFC6374] for further details):

配置标志(有关更多详细信息,请参阅[RFC6374]:

o T: Traffic-class-specific measurement indicator. Set to 1 when the measurement operation is scoped to packets of a particular traffic class (Differentiated Services Code Point (DSCP) value) and zero otherwise. When set to 1, the Differentiated Service (DS) field of the message indicates the measured traffic class. By default, it is set to 1.

o T:交通等级特定测量指标。当测量操作的范围限定为特定流量类别(区分服务代码点(DSCP)值)的数据包时,设置为1,否则设置为零。当设置为1时,消息的区分服务(DS)字段指示测量的通信量类别。默认情况下,它设置为1。

o B: Octet (byte) count. When set to 1, it indicates that the Counter 1-4 fields represent octet counts. When set to 0, it indicates that the Counter 1-4 fields represent packet counts. By default, it is set to 0.

o 八位字节(字节)计数。设置为1时,表示计数器1-4字段表示八位字节计数。当设置为0时,表示计数器1-4字段表示数据包计数。默认情况下,它设置为0。

Reserved: Reserved for future specifications; set to 0 on transmission and ignored when received.

预留:预留给未来的规格;传输时设置为0,接收时忽略。

Measurement Interval: The time interval (in milliseconds) at which Delay Measurement query messages MUST be sent on both directions. If the egress LSR cannot support the value, it SHOULD reply with a supported interval. By default, it is set to 1000 milliseconds as per [RFC6375].

测量间隔:必须在两个方向上发送延迟测量查询消息的时间间隔(毫秒)。如果出口LSR不能支持该值,它应该以支持的间隔进行响应。默认情况下,根据[RFC6375]将其设置为1000毫秒。

Test Interval: Test messages interval (in milliseconds) as described in [RFC6374]. By default, it is set to 10 milliseconds as per [RFC6375]. If the egress LSR cannot support the value, it SHOULD reply with a supported interval.

测试间隔:测试消息间隔(毫秒),如[RFC6374]中所述。默认情况下,根据[RFC6375]将其设置为10毫秒。如果出口LSR不能支持该值,它应该以支持的间隔进行响应。

Delay Threshold: The threshold value of measured two-way delay (in milliseconds) over which action(s) SHOULD be triggered.

Delay Threshold(延迟阈值):应触发操作的测量双向延迟(以毫秒为单位)的阈值。

3.5. MPLS OAM FMS Sub-TLV
3.5. MPLS OAM FMS子TLV

The MPLS OAM FMS Sub-TLV depicted below is carried as a sub-TLV of the MPLS OAM Configuration Sub-TLV. When both working and protection paths are signaled, both LSPs SHOULD be signaled with identical settings of the E flag, T flag, and the refresh timer.

下面描述的MPLS OAM FMS子TLV作为MPLS OAM配置子TLV的子TLV携带。当工作和保护路径都发出信号时,应使用相同的E标志、T标志和刷新计时器设置向两个LSP发出信号。

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     MPLS OAM FMS Type (3)     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |E|S|T|           Reserved            |      Refresh Timer      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           Sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     MPLS OAM FMS Type (3)     |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |E|S|T|           Reserved            |      Refresh Timer      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           Sub-TLVs                            ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 10: MPLS OAM FMS Sub-TLV Format

图10:MPLS OAM FMS子TLV格式

Type: 3, the MPLS OAM FMS Sub-TLV.

类型:3,MPLS OAM FMS子TLV。

Length: Indicates the TLV total length in octets, including Type and Length fields (8).

长度:以八位字节表示TLV总长度,包括类型和长度字段(8)。

FMS Signal Flags are used to enable the FMS signals at MEPs and the server MEPs of the links over which the LSP is forwarded. In this document, only the S flag pertains to server MEPs.

FMS信号标志用于启用转发LSP链路的MEP和服务器MEP处的FMS信号。在本文档中,只有S标志与服务器MEP相关。

The following flags are defined:

定义了以下标志:

E: Enable Alarm Indication Signal (AIS) and Lock Report (LKR) signaling as described in [RFC6427]. The default value is 1 (enabled). If the egress MEP does not support FMS signal generation, an "OAM Problem/Fault management signaling unsupported" error MUST be generated.

E:如[RFC6427]所述,启用报警指示信号(AIS)和锁定报告(LKR)信号。默认值为1(已启用)。如果出口MEP不支持FMS信号生成,则必须生成“OAM问题/故障管理信号不支持”错误。

S: Indicate to a server MEP that it should transmit AIS and LKR signals on client LSPs. The default value is 0 (disabled). If a server MEP, which is capable of generating FMS messages, is for some reason unable to do so for the LSP being signaled an "OAM Problem/Unable to create fault management association" error MUST be generated.

S:向服务器MEP指示它应在客户端LSP上传输AIS和LKR信号。默认值为0(已禁用)。如果能够生成FMS消息的服务器MEP由于某种原因无法生成FMS消息,则必须生成“OAM问题/无法创建故障管理关联”错误。

T: Set timer value, enabled by the configuration of a specific timer value. The Default value is 0 (disabled).

T:设置定时器值,通过特定定时器值的配置启用。默认值为0(已禁用)。

Remaining bits: Reserved for a future specification and set to 0.

剩余位:为将来的规范保留,并设置为0。

Refresh Timer: Indicates (in seconds) the refresh timer of fault indication messages. The value MUST be between 1 to 20 seconds as specified for the Refresh Timer field in [RFC6427]. If the egress LSR cannot support the value, it SHOULD reply with a supported timer value.

刷新计时器:指示(秒)故障指示消息的刷新计时器。该值必须在[RFC6427]中为刷新计时器字段指定的1到20秒之间。如果出口LSR无法支持该值,则应使用支持的计时器值进行回复。

The Fault Management Signals Sub-TLV MAY include the Traffic Class Sub-TLV (Section 3.3.4.) If the Traffic Class Sub-TLV is present, the value of the TC field MUST be used as the value of the TC field of an MPLS label stack entry for FMS messages. If the Traffic Class Sub-TLV is absent, then selection of the TC value is local decision.

故障管理信号子TLV可能包括流量等级子TLV(第3.3.4节)。如果存在流量等级子TLV,则TC字段的值必须用作FMS消息MPLS标签堆栈条目的TC字段值。如果不存在交通等级子TLV,则TC值的选择是本地决定。

4. Summary of MPLS OAM Configuration Errors
4. MPLS OAM配置错误摘要

In addition to error values specified in [RFC7260], this document defines the following values for the "OAM Problem" error code:

除了[RFC7260]中规定的错误值外,本文档还为“OAM问题”错误代码定义了以下值:

o If an egress LSR does not support the specified BFD version, an error MUST be generated: "OAM Problem/Unsupported BFD Version".

o 如果出口LSR不支持指定的BFD版本,则必须生成错误:“OAM问题/不支持的BFD版本”。

o If an egress LSR does not support the specified BFD Encapsulation format, an error MUST be generated: "OAM Problem/Unsupported BFD Encapsulation format".

o 如果出口LSR不支持指定的BFD封装格式,则必须生成错误:“OAM问题/不支持的BFD封装格式”。

o If an egress LSR does not support BFD Authentication and it is requested, an error MUST be generated: "OAM Problem/BFD Authentication unsupported".

o 如果出口LSR不支持BFD身份验证,并且被请求,则必须生成错误:“OAM问题/BFD身份验证不受支持”。

o If an egress LSR does not support the specified BFD Authentication Type, an error MUST be generated: "OAM Problem/Unsupported BFD Authentication Type".

o 如果出口LSR不支持指定的BFD身份验证类型,则必须生成错误:“OAM问题/不支持的BFD身份验证类型”。

o If an egress LSR is not able to use the specified Authentication Key ID, an error MUST be generated: "OAM Problem/Mismatch of BFD Authentication Key ID".

o 如果出口LSR无法使用指定的身份验证密钥ID,则必须生成错误:“OAM问题/BFD身份验证密钥ID不匹配”。

o If an egress LSR does not support the specified Timestamp Format, an error MUST be generated: "OAM Problem/Unsupported Timestamp Format".

o 如果出口LSR不支持指定的时间戳格式,则必须生成错误:“OAM问题/不支持的时间戳格式”。

o If an egress LSR does not support the specified Delay mode, an "OAM Problem/Unsupported Delay Mode" error MUST be generated.

o 如果出口LSR不支持指定的延迟模式,则必须生成“OAM问题/不支持的延迟模式”错误。

o If an egress LSR does not support the specified Loss mode, an "OAM Problem/Unsupported Loss Mode" error MUST be generated.

o 如果出口LSR不支持指定的丢失模式,则必须生成“OAM问题/不支持的丢失模式”错误。

o If an egress LSR does not support Delay variation measurements and it is requested, an "OAM Problem/Delay variation unsupported" error MUST be generated.

o 如果出口LSR不支持延迟变化测量且被请求,则必须生成“OAM问题/延迟变化不支持”错误。

o If an egress LSR does not support Dyadic mode and it is requested, an "OAM Problem/Dyadic mode unsupported" error MUST be generated.

o 如果出口LSR不支持并进模式,并且被请求,则必须生成“OAM问题/并进模式不支持”错误。

o If an egress LSR does not support Loopback mode and it is requested, an "OAM Problem/Loopback mode unsupported" error MUST be generated.

o 如果出口LSR不支持环回模式,并且被请求,则必须生成“OAM问题/不支持环回模式”错误。

o If an egress LSR does not support Combined mode and it is requested, an "OAM Problem/Combined mode unsupported" error MUST be generated.

o 如果出口LSR不支持组合模式且被请求,则必须生成“OAM问题/组合模式不支持”错误。

o If an egress LSR does not support Fault Monitoring signals and it is requested, an "OAM Problem/Fault management signaling unsupported" error MUST be generated.

o 如果出口LSR不支持故障监控信号,并且被请求,则必须生成“OAM问题/故障管理信令不支持”错误。

o If an intermediate server MEP supports Fault Monitoring signals but is unable to create an association when requested to do so, an "OAM Problem/Unable to create fault management association" error MUST be generated.

o 如果中间服务器MEP支持故障监视信号,但在请求时无法创建关联,则必须生成“OAM问题/无法创建故障管理关联”错误。

5. IANA Considerations
5. IANA考虑
5.1. MPLS OAM Type
5.1. MPLS OAM类型

This document specifies the new MPLS OAM type. IANA has allocated a new type (3) from the "OAM Types" space of the "RSVP-TE OAM Configuration Registry".

本文档指定了新的MPLS OAM类型。IANA已从“RSVP-TE OAM配置注册表”的“OAM类型”空间分配了一个新类型(3)。

                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  3   |   MPLS OAM  | [RFC7487] |
                    +------+-------------+-----------+
        
                    +------+-------------+-----------+
                    | Type | Description | Reference |
                    +------+-------------+-----------+
                    |  3   |   MPLS OAM  | [RFC7487] |
                    +------+-------------+-----------+
        

Table 1: MPLS OAM Type

表1:MPLS OAM类型

5.2. MPLS OAM Configuration Sub-TLV
5.2. MPLS OAM配置子TLV

This document specifies the MPLS OAM Configuration Sub-TLV. IANA has allocated a new type (33) from the OAM Sub-TLV space of the "RSVP-TE OAM Configuration Registry".

本文档指定了MPLS OAM配置子TLV。IANA已从“RSVP-TE OAM配置注册表”的OAM子TLV空间分配了一个新类型(33)。

           +------+--------------------------------+-----------+
           | Type |          Description           | Reference |
           +------+--------------------------------+-----------+
           |  33  | MPLS OAM Configuration Sub-TLV | [RFC7487] |
           +------+--------------------------------+-----------+
        
           +------+--------------------------------+-----------+
           | Type |          Description           | Reference |
           +------+--------------------------------+-----------+
           |  33  | MPLS OAM Configuration Sub-TLV | [RFC7487] |
           +------+--------------------------------+-----------+
        

Table 2: MPLS OAM Configuration Sub-TLV Type

表2:MPLS OAM配置子TLV类型

5.3. MPLS OAM Configuration Sub-TLV Types
5.3. MPLS OAM配置子TLV类型

IANA has created an "MPLS OAM Configuration Sub-TLV Types" sub-registry in the "RSVP-TE OAM Configuration Registry" for the sub-TLVs carried in the MPLS OAM Configuration Sub-TLV. Values from this new sub-registry are to be allocated through IETF Review except for the "Reserved for Experimental Use" range. This document defines the following types:

IANA已在“RSVP-TE OAM配置注册表”中为MPLS OAM配置子TLV中携带的子TLV创建了“MPLS OAM配置子TLV类型”子注册表。除“保留供实验使用”范围外,该新子注册表中的值将通过IETF评审进行分配。本文件定义了以下类型:

       +-------------+--------------------------------+-----------+
       |     Type    |          Description           | Reference |
       +-------------+--------------------------------+-----------+
       |      0      |            Reserved            | [RFC7487] |
       |      1      |   BFD Configuration Sub-TLV    | [RFC7487] |
       |      2      | Performance Monitoring Sub-TLV | [RFC7487] |
       |      3      |      MPLS OAM FMS Sub-TLV      | [RFC7487] |
       |   4-65532   |           Unassigned           |           |
       | 65533-65534 | Reserved for Experimental Use  | [RFC7487] |
       |    65535    |            Reserved            | [RFC7487] |
       +-------------+--------------------------------+-----------+
        
       +-------------+--------------------------------+-----------+
       |     Type    |          Description           | Reference |
       +-------------+--------------------------------+-----------+
       |      0      |            Reserved            | [RFC7487] |
       |      1      |   BFD Configuration Sub-TLV    | [RFC7487] |
       |      2      | Performance Monitoring Sub-TLV | [RFC7487] |
       |      3      |      MPLS OAM FMS Sub-TLV      | [RFC7487] |
       |   4-65532   |           Unassigned           |           |
       | 65533-65534 | Reserved for Experimental Use  | [RFC7487] |
       |    65535    |            Reserved            | [RFC7487] |
       +-------------+--------------------------------+-----------+
        

Table 3: MPLS OAM Configuration Sub-TLV Types

表3:MPLS OAM配置子TLV类型

5.4. BFD Configuration Sub-TLV Types
5.4. BFD配置子TLV类型

IANA has created a "BFD Configuration Sub-TLV Types" sub-registry in the "RSVP-TE OAM Configuration Registry" for the sub-TLV types carried in the BFD Configuration Sub-TLV. Values from this new sub-registry are to be allocated through IETF Review except for the "Reserved for Experimental Use" range. This document defines the following types:

IANA已在“RSVP-TE OAM配置注册表”中为BFD配置子TLV中携带的子TLV类型创建了“BFD配置子TLV类型”子注册表。除“保留供实验使用”范围外,该新子注册表中的值将通过IETF评审进行分配。本文件定义了以下类型:

    +-------------+--------------------------------------+-----------+
    |     Type    |             Description              | Reference |
    +-------------+--------------------------------------+-----------+
    |      0      |               Reserved               | [RFC7487] |
    |      1      |       BFD Identifiers Sub-TLV        | [RFC7487] |
    |      2      | Negotiation Timer Parameters Sub-TLV | [RFC7487] |
    |      3      |      BFD Authentication Sub-TLV      | [RFC7487] |
    |      4      |        Traffic Class Sub-TLV         | [RFC7487] |
    |   5-65532   |              Unassigned              |           |
    | 65533-65534 |    Reserved for Experimental Use     | [RFC7487] |
    |    65535    |               Reserved               | [RFC7487] |
    +-------------+--------------------------------------+-----------+
        
    +-------------+--------------------------------------+-----------+
    |     Type    |             Description              | Reference |
    +-------------+--------------------------------------+-----------+
    |      0      |               Reserved               | [RFC7487] |
    |      1      |       BFD Identifiers Sub-TLV        | [RFC7487] |
    |      2      | Negotiation Timer Parameters Sub-TLV | [RFC7487] |
    |      3      |      BFD Authentication Sub-TLV      | [RFC7487] |
    |      4      |        Traffic Class Sub-TLV         | [RFC7487] |
    |   5-65532   |              Unassigned              |           |
    | 65533-65534 |    Reserved for Experimental Use     | [RFC7487] |
    |    65535    |               Reserved               | [RFC7487] |
    +-------------+--------------------------------------+-----------+
        

Table 4: BFD Configuration Sub-TLV Types

表4:BFD配置子TLV类型

5.5. Performance Monitoring Sub-TLV Types
5.5. 性能监控子TLV类型

IANA has created a "Performance Monitoring Sub-TLV Type" sub-registry in the "RSVP-TE OAM Configuration Registry" for the sub-TLV types carried in the Performance Monitoring Sub-TLV. Values from this new sub-registry are to be allocated through IETF Review except for the "Reserved for Experimental Use" range. This document defines the following types:

IANA已在“RSVP-TE OAM配置注册表”中为性能监控子TLV中携带的子TLV类型创建了“性能监控子TLV类型”子注册表。除“保留供实验使用”范围外,该新子注册表中的值将通过IETF评审进行分配。本文件定义了以下类型:

        +-------------+-------------------------------+-----------+
        |     Type    |          Description          | Reference |
        +-------------+-------------------------------+-----------+
        |      0      |            Reserved           | [RFC7487] |
        |      1      |    MPLS OAM PM Loss Sub-TLV   | [RFC7487] |
        |      2      |   MPLS OAM PM Delay Sub-TLV   | [RFC7487] |
        |   3-65532   |           Unassigned          |           |
        | 65533-65534 | Reserved for Experimental Use | [RFC7487] |
        |    65535    |            Reserved           | [RFC7487] |
        +-------------+-------------------------------+-----------+
        
        +-------------+-------------------------------+-----------+
        |     Type    |          Description          | Reference |
        +-------------+-------------------------------+-----------+
        |      0      |            Reserved           | [RFC7487] |
        |      1      |    MPLS OAM PM Loss Sub-TLV   | [RFC7487] |
        |      2      |   MPLS OAM PM Delay Sub-TLV   | [RFC7487] |
        |   3-65532   |           Unassigned          |           |
        | 65533-65534 | Reserved for Experimental Use | [RFC7487] |
        |    65535    |            Reserved           | [RFC7487] |
        +-------------+-------------------------------+-----------+
        

Table 5: Performance Monitoring Sub-TLV Types

表5:性能监测子TLV类型

5.6. New RSVP-TE Error Codes
5.6. 新的RSVP-TE错误代码

The following values have been assigned under the "OAM Problem" error code [RFC7260] by IETF Review process:

IETF审查过程在“OAM问题”错误代码[RFC7260]下分配了以下值:

   +------------------+------------------------------------+-----------+
   | Error Value Sub- | Description                        | Reference |
   | Codes            |                                    |           |
   +------------------+------------------------------------+-----------+
   | 13               | Unsupported BFD Version            | [RFC7487] |
   | 14               | Unsupported BFD Encapsulation      | [RFC7487] |
   |                  | format                             |           |
   | 15               | Unsupported BFD Authentication     | [RFC7487] |
   |                  | Type                               |           |
   | 16               | Mismatch of BFD Authentication Key | [RFC7487] |
   |                  | ID                                 |           |
   | 17               | Unsupported Timestamp Format       | [RFC7487] |
   | 18               | Unsupported Delay Mode             | [RFC7487] |
   | 19               | Unsupported Loss Mode              | [RFC7487] |
   | 20               | Delay variation unsupported        | [RFC7487] |
   | 21               | Dyadic mode unsupported            | [RFC7487] |
   | 22               | Loopback mode unsupported          | [RFC7487] |
   | 23               | Combined mode unsupported          | [RFC7487] |
   | 24               | Fault management signaling         | [RFC7487] |
   |                  | unsupported                        |           |
   | 25               | Unable to create fault management  | [RFC7487] |
   |                  | association                        |           |
   +------------------+------------------------------------+-----------+
        
   +------------------+------------------------------------+-----------+
   | Error Value Sub- | Description                        | Reference |
   | Codes            |                                    |           |
   +------------------+------------------------------------+-----------+
   | 13               | Unsupported BFD Version            | [RFC7487] |
   | 14               | Unsupported BFD Encapsulation      | [RFC7487] |
   |                  | format                             |           |
   | 15               | Unsupported BFD Authentication     | [RFC7487] |
   |                  | Type                               |           |
   | 16               | Mismatch of BFD Authentication Key | [RFC7487] |
   |                  | ID                                 |           |
   | 17               | Unsupported Timestamp Format       | [RFC7487] |
   | 18               | Unsupported Delay Mode             | [RFC7487] |
   | 19               | Unsupported Loss Mode              | [RFC7487] |
   | 20               | Delay variation unsupported        | [RFC7487] |
   | 21               | Dyadic mode unsupported            | [RFC7487] |
   | 22               | Loopback mode unsupported          | [RFC7487] |
   | 23               | Combined mode unsupported          | [RFC7487] |
   | 24               | Fault management signaling         | [RFC7487] |
   |                  | unsupported                        |           |
   | 25               | Unable to create fault management  | [RFC7487] |
   |                  | association                        |           |
   +------------------+------------------------------------+-----------+
        

Table 6: MPLS OAM Configuration Error Codes

表6:MPLS OAM配置错误代码

The "Sub-Codes - 40 OAM Problem" sub-registry is located in the "Error Codes and Globally-Defined Error Value Sub-Codes" registry.

“子代码-40 OAM问题”子注册表位于“错误代码和全局定义的错误值子代码”注册表中。

6. Security Considerations
6. 安全考虑

The signaling of OAM-related parameters and the automatic establishment of OAM entities introduces additional security considerations to those discussed in [RFC3473]. In particular, a network element could be overloaded if an attacker were to request high frequency liveliness monitoring of a large number of LSPs, targeting a single network element as discussed in [RFC7260] and [RFC6060].

OAM相关参数的信令和OAM实体的自动建立引入了[RFC3473]中讨论的额外安全注意事项。特别是,如果攻击者请求对大量LSP进行高频活动性监控,并以[RFC7260]和[RFC6060]中讨论的单个网元为目标,则网元可能会过载。

Additional discussion of security for MPLS and GMPLS protocols can be found in [RFC5920].

有关MPLS和GMPLS协议安全性的更多讨论,请参见[RFC5920]。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月<http://www.rfc-editor.org/info/rfc2119>.

[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003, <http://www.rfc-editor.org/info/rfc3473>.

[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月<http://www.rfc-editor.org/info/rfc3473>.

[RFC5654] Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M., Ed., Sprecher, N., and S. Ueno, "Requirements of an MPLS Transport Profile", RFC 5654, September 2009, <http://www.rfc-editor.org/info/rfc5654>.

[RFC5654]Niven Jenkins,B.,Ed.,Brungard,D.,Ed.,Betts,M.,Ed.,Sprecher,N.,和S.Ueno,“MPLS传输配置文件的要求”,RFC 56542009年9月<http://www.rfc-editor.org/info/rfc5654>.

[RFC5860] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed., "Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks", RFC 5860, May 2010, <http://www.rfc-editor.org/info/rfc5860>.

[RFC5860]Vigoureux,M.,Ed.,Ward,D.,Ed.,和M.Betts,Ed.,“MPLS传输网络中的操作、管理和维护(OAM)要求”,RFC 58602010年5月<http://www.rfc-editor.org/info/rfc5860>.

[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, June 2010, <http://www.rfc-editor.org/info/rfc5880>.

[RFC5880]Katz,D.和D.Ward,“双向转发检测(BFD)”,RFC 58802010年6月<http://www.rfc-editor.org/info/rfc5880>.

[RFC5884] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow, "Bidirectional Forwarding Detection (BFD) for MPLS Label Switched Paths (LSPs)", RFC 5884, June 2010, <http://www.rfc-editor.org/info/rfc5884>.

[RFC5884]Aggarwal,R.,Kompella,K.,Nadeau,T.,和G.Swallow,“MPLS标签交换路径(LSP)的双向转发检测(BFD)”,RFC 58842010年6月<http://www.rfc-editor.org/info/rfc5884>.

[RFC6060] Fedyk, D., Shah, H., Bitar, N., and A. Takacs, "Generalized Multiprotocol Label Switching (GMPLS) Control of Ethernet Provider Backbone Traffic Engineering (PBB-TE)", RFC 6060, March 2011, <http://www.rfc-editor.org/info/rfc6060>.

[RFC6060]Fedyk,D.,Shah,H.,Bitar,N.,和A.Takacs,“以太网提供商主干流量工程(PBB-TE)的通用多协议标签交换(GMPLS)控制”,RFC 6060,2011年3月<http://www.rfc-editor.org/info/rfc6060>.

[RFC6370] Bocci, M., Swallow, G., and E. Gray, "MPLS Transport Profile (MPLS-TP) Identifiers", RFC 6370, September 2011, <http://www.rfc-editor.org/info/rfc6370>.

[RFC6370]Bocci,M.,Swallow,G.和E.Gray,“MPLS传输配置文件(MPLS-TP)标识符”,RFC 63702011年9月<http://www.rfc-editor.org/info/rfc6370>.

[RFC6374] Frost, D. and S. Bryant, "Packet Loss and Delay Measurement for MPLS Networks", RFC 6374, September 2011, <http://www.rfc-editor.org/info/rfc6374>.

[RFC6374]Frost,D.和S.Bryant,“MPLS网络的数据包丢失和延迟测量”,RFC 63742011年9月<http://www.rfc-editor.org/info/rfc6374>.

[RFC6427] Swallow, G., Ed., Fulignoli, A., Ed., Vigoureux, M., Ed., Boutros, S., and D. Ward, "MPLS Fault Management Operations, Administration, and Maintenance (OAM)", RFC 6427, November 2011, <http://www.rfc-editor.org/info/rfc6427>.

[RFC6427]Swallow,G.,Ed.,Fulignoli,A.,Ed.,Vigoureux,M.,Ed.,Boutros,S.,和D.Ward,“MPLS故障管理操作、管理和维护(OAM)”,RFC 64272011年11月<http://www.rfc-editor.org/info/rfc6427>.

[RFC6428] Allan, D., Ed., Swallow Ed., G., and J. Drake Ed., "Proactive Connectivity Verification, Continuity Check, and Remote Defect Indication for the MPLS Transport Profile", RFC 6428, November 2011, <http://www.rfc-editor.org/info/rfc6428>.

[RFC6428]Allan,D.,Ed.,Swallow Ed.,G.,和J.Drake Ed.“MPLS传输配置文件的主动连接验证、连续性检查和远程缺陷指示”,RFC 6428,2011年11月<http://www.rfc-editor.org/info/rfc6428>.

[RFC7260] Takacs, A., Fedyk, D., and J. He, "GMPLS RSVP-TE Extensions for Operations, Administration, and Maintenance (OAM) Configuration", RFC 7260, June 2014, <http://www.rfc-editor.org/info/rfc7260>.

[RFC7260]Takacs,A.,Fedyk,D.,和J.He,“用于运行、管理和维护(OAM)配置的GMPLS RSVP-TE扩展”,RFC 72602014年6月<http://www.rfc-editor.org/info/rfc7260>.

7.2. Informative References
7.2. 资料性引用

[LSP-PING-CONF] Bellagamba, E., Mirsky, G., Andersson, L., Skoldstrom, P., Ward, D., and J. Drake, "Configuration of Proactive Operations, Administration, and Maintenance (OAM) Functions for MPLS-based Transport Networks using LSP Ping", Work in Progress, draft-ietf-mpls-lsp-ping-mpls-tp-oam-conf-09, January 2015.

[LSP-PING-CONF]Bellagamba,E.,Mirsky,G.,Andersson,L.,Skoldstrom,P.,Ward,D.,和J.Drake,“使用LSP-PING为基于MPLS的传输网络配置主动操作、管理和维护(OAM)功能”,正在进行中,草案-ietf-MPLS-LSP-PING-MPLS-tp-OAM-CONF-09,2015年1月。

[RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic Class" Field", RFC 5462, February 2009, <http://www.rfc-editor.org/info/rfc5462>.

[RFC5462]Andersson,L.和R.Asati,“多协议标签交换(MPLS)标签堆栈条目:“EXP”字段重命名为“Traffic Class”字段”,RFC 5462,2009年2月<http://www.rfc-editor.org/info/rfc5462>.

[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010, <http://www.rfc-editor.org/info/rfc5920>.

[RFC5920]Fang,L.,Ed.“MPLS和GMPLS网络的安全框架”,RFC 5920,2010年7月<http://www.rfc-editor.org/info/rfc5920>.

[RFC6371] Busi, I., Ed. and D. Allan, Ed., "Operations, Administration, and Maintenance Framework for MPLS-Based Transport Networks", RFC 6371, September 2011, <http://www.rfc-editor.org/info/rfc6371>.

[RFC6371]Busi,I.,Ed.和D.Allan,Ed.,“基于MPLS的传输网络的运营、管理和维护框架”,RFC 63712011年9月<http://www.rfc-editor.org/info/rfc6371>.

[RFC6375] Frost, D., Ed. and S. Bryant, Ed., "A Packet Loss and Delay Measurement Profile for MPLS-Based Transport Networks", RFC 6375, September 2011, <http://www.rfc-editor.org/info/rfc6375>.

[RFC6375]Frost,D.,Ed.和S.Bryant,Ed.,“基于MPLS的传输网络的数据包丢失和延迟测量模式”,RFC 63752011年9月<http://www.rfc-editor.org/info/rfc6375>.

Acknowledgements

致谢

The authors would like to thank David Allan, Lou Berger, Annamaria Fulignoli, Eric Gray, Andras Kern, David Jocha, and David Sinicrope for their useful comments.

作者要感谢David Allan、Lou Berger、Annama Fulignoli、Eric Gray、Andras Kern、David Jocha和David Sinicrope的有用评论。

Contributors

贡献者

This document is the result of a large team of authors and contributors. The following is a list of the contributors:

本文档是一个由作者和贡献者组成的大型团队的成果。以下是贡献者列表:

John Drake

约翰·德雷克

Benoit Tremblay

贝诺特颤音

Authors' Addresses

作者地址

Elisa Bellagamba Ericsson

艾莉莎·贝拉甘巴·爱立信

   EMail: elisa.bellagamba@ericsson.com
        
   EMail: elisa.bellagamba@ericsson.com
        

Attila Takacs Ericsson

爱立信酒店

   EMail: attila.takacs@ericsson.com
        
   EMail: attila.takacs@ericsson.com
        

Gregory Mirsky Ericsson

格雷戈里·米尔斯基·爱立信

   EMail: Gregory.Mirsky@ericsson.com
        
   EMail: Gregory.Mirsky@ericsson.com
        

Loa Andersson Huawei Technologies

安达信华为技术有限公司

   EMail: loa@mail01.huawei.com
        
   EMail: loa@mail01.huawei.com
        

Pontus Skoldstrom Acreo AB Electrum 236 Kista 164 40 Sweden

Pontus Skoldstrom Acreo AB Electrum 236基斯塔164 40瑞典

   Phone: +46 70 7957731
   EMail: pontus.skoldstrom@acreo.se
        
   Phone: +46 70 7957731
   EMail: pontus.skoldstrom@acreo.se
        

Dave Ward Cisco

戴夫·沃德·思科

   EMail: dward@cisco.com
        
   EMail: dward@cisco.com