Internet Research Task Force (IRTF)                  K. Pentikousis, Ed.
Request for Comments: 7476                                          EICT
Category: Informational                                        B. Ohlman
ISSN: 2070-1721                                                 Ericsson
                                                               D. Corujo
                                                  Universidade de Aveiro
                                                               G. Boggia
                                                     Politecnico di Bari
                                                                G. Tyson
                                        Queen Mary, University of London
                                                               E. Davies
                                                  Trinity College Dublin
                                                             A. Molinaro
                                                                   UNIRC
                                                                  S. Eum
                                                                    NICT
                                                              March 2015
        
Internet Research Task Force (IRTF)                  K. Pentikousis, Ed.
Request for Comments: 7476                                          EICT
Category: Informational                                        B. Ohlman
ISSN: 2070-1721                                                 Ericsson
                                                               D. Corujo
                                                  Universidade de Aveiro
                                                               G. Boggia
                                                     Politecnico di Bari
                                                                G. Tyson
                                        Queen Mary, University of London
                                                               E. Davies
                                                  Trinity College Dublin
                                                             A. Molinaro
                                                                   UNIRC
                                                                  S. Eum
                                                                    NICT
                                                              March 2015
        

Information-Centric Networking: Baseline Scenarios

以信息为中心的网络:基线方案

Abstract

摘要

This document aims at establishing a common understanding about a set of scenarios that can be used as a base for the evaluation of different information-centric networking (ICN) approaches so that they can be tested and compared against each other while showcasing their own advantages. Towards this end, we review the ICN literature and document scenarios which have been considered in previous performance evaluation studies. We discuss a variety of aspects that an ICN solution can address. This includes general aspects, such as, network efficiency, reduced complexity, increased scalability and reliability, mobility support, multicast and caching performance, real-time communication efficiency, energy consumption frugality, and disruption and delay tolerance. We detail ICN-specific aspects as well, such as information security and trust, persistence, availability, provenance, and location independence.

本文档旨在就一系列场景建立共识,这些场景可作为评估不同以信息为中心的网络(ICN)方法的基础,以便在展示各自优势的同时对它们进行测试和比较。为此,我们回顾了ICN文献,并记录了先前绩效评估研究中考虑的情景。我们讨论ICN解决方案可以解决的各种方面。这包括一般方面,如网络效率、降低复杂性、提高可扩展性和可靠性、移动性支持、多播和缓存性能、实时通信效率、节能以及中断和延迟容忍度。我们还详细介绍了ICN的特定方面,如信息安全和信任、持久性、可用性、来源和位置独立性。

This document is a product of the IRTF Information-Centric Networking Research Group (ICNRG).

本文件是IRTF信息中心网络研究小组(ICNRG)的产品。

Status of This Memo

关于下段备忘

This document is not an Internet Standards Track specification; it is published for informational purposes.

本文件不是互联网标准跟踪规范;它是为了提供信息而发布的。

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the results of Internet-related research and development activities. These results might not be suitable for deployment. This RFC represents the consensus of the Information-Centric Networking Research Group of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

本文件是互联网研究工作组(IRTF)的产品。IRTF发布互联网相关研究和开发活动的结果。这些结果可能不适合部署。本RFC代表了互联网研究任务组(IRTF)以信息为中心的网络研究小组的共识。IRSG批准发布的文件不适用于任何级别的互联网标准;见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7476.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7476.

Copyright Notice

版权公告

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2015 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。

Table of Contents

目录

   1. Introduction ....................................................3
      1.1. Baseline Scenario Selection ................................4
      1.2. Document Goals and Outline .................................5
   2. Scenarios .......................................................6
      2.1. Social Networking ..........................................6
      2.2. Real-Time Communication ....................................7
      2.3. Mobile Networking ..........................................9
      2.4. Infrastructure Sharing ....................................11
      2.5. Content Dissemination .....................................13
      2.6. Vehicular Networking ......................................14
      2.7. Delay- and Disruption-Tolerance ...........................17
           2.7.1. Opportunistic Content Sharing ......................20
           2.7.2. Emergency Support and Disaster Recovery ............21
      2.8. Internet of Things ........................................22
      2.9. Smart City ................................................25
   3. Cross-Scenario Considerations ..................................27
      3.1. Multiply Connected Nodes and Economics ....................27
      3.2. Energy Efficiency .........................................31
      3.3. Operation across Multiple Network Paradigms ...............33
   4. Summary ........................................................34
   5. Security Considerations ........................................35
   6. Informative References .........................................36
   Acknowledgments ...................................................44
   Authors' Addresses ................................................44
        
   1. Introduction ....................................................3
      1.1. Baseline Scenario Selection ................................4
      1.2. Document Goals and Outline .................................5
   2. Scenarios .......................................................6
      2.1. Social Networking ..........................................6
      2.2. Real-Time Communication ....................................7
      2.3. Mobile Networking ..........................................9
      2.4. Infrastructure Sharing ....................................11
      2.5. Content Dissemination .....................................13
      2.6. Vehicular Networking ......................................14
      2.7. Delay- and Disruption-Tolerance ...........................17
           2.7.1. Opportunistic Content Sharing ......................20
           2.7.2. Emergency Support and Disaster Recovery ............21
      2.8. Internet of Things ........................................22
      2.9. Smart City ................................................25
   3. Cross-Scenario Considerations ..................................27
      3.1. Multiply Connected Nodes and Economics ....................27
      3.2. Energy Efficiency .........................................31
      3.3. Operation across Multiple Network Paradigms ...............33
   4. Summary ........................................................34
   5. Security Considerations ........................................35
   6. Informative References .........................................36
   Acknowledgments ...................................................44
   Authors' Addresses ................................................44
        
1. Introduction
1. 介绍

Information-centric networking (ICN) marks a fundamental shift in communications and networking. In contrast with the omnipresent and very successful host-centric paradigm, which is based on perpetual connectivity and the end-to-end principle, ICN changes the focal point of the network architecture from the end host to "named information" (or content, or data). In this paradigm, connectivity may well be intermittent. End-host and in-network storage can be capitalized upon transparently, as bits in the network and on storage devices have exactly the same value. Mobility and multiaccess are the norm, and anycast, multicast, and broadcast are natively supported.

以信息为中心的网络(ICN)标志着通信和网络的根本性转变。与无处不在且非常成功的以主机为中心的模式(该模式基于永久连接性和端到端原则)相反,ICN将网络体系结构的焦点从终端主机更改为“命名信息”(或内容或数据)。在这种范式中,连通性很可能是间歇性的。可以透明地利用终端主机和网络存储,因为网络中的位和存储设备上的位具有完全相同的值。移动性和多址是标准,并且本地支持选播、多播和广播。

It is also worth noting that with the transition from a host-centric to an information-centric communication model the security paradigm changes as well. In a host-centric network, the basic idea is to create secure (remote-access) tunnels to trusted providers of data. In an information-centric network, on the other hand, any source (cache) should be equally usable. This requires some mechanism for

还值得注意的是,随着从以主机为中心的通信模式过渡到以信息为中心的通信模式,安全模式也发生了变化。在以主机为中心的网络中,基本思想是创建安全(远程访问)隧道,以连接受信任的数据提供者。另一方面,在以信息为中心的网络中,任何源(缓存)都应该同样可用。这需要某种机制来实现

making each information item trustworthy by itself; this can be achieved, for example, by name-data integrity or by signing data objects.

使每个信息项本身可信;例如,这可以通过命名数据完整性或对数据对象签名来实现。

Although interest in ICN is growing rapidly, ongoing work on different architectures, such as NetInf [NetInf], the original Content-Centric Networking [CCN], and its successors, Project CCNx [CCNx] and Named Data Networking (NDN) [NDNP], the Publish-Subscribe Internet (PSI) architecture [PSI], and the Data-Oriented Network Architecture [DONA] is far from being completed. One could think of ICN today as being at a stage of development similar to that of packet-switched networking in the late 1970s when different technologies, e.g., DECnet, Internetwork Packet Exchange (IPX), and IP, just to name a few, were being actively developed and put to the test. As such, ICN's current development phase and the plethora of approaches to tackle the hardest problems make this a very active and growing research area, but, on the downside, it also makes it more difficult to compare different proposals on an equal footing. This document aims to partially address this by establishing a common understanding about potential experimental setups where different ICN approaches can be tested and compared against each other while showcasing their advantages.

尽管人们对ICN的兴趣正在迅速增长,但正在进行的不同体系结构方面的工作,如NetInf[NetInf],最初的以内容为中心的网络[CCN],及其后继者,CCNx[CCNx]项目和命名数据网络(NDN)[NDNP],发布-订阅互联网(PSI)体系结构[PSI],以及面向数据的网络体系结构[DONA]还远远没有完成。人们可以认为,今天的ICN正处于一个发展阶段,类似于20世纪70年代末的分组交换网络,当时不同的技术,例如DECnet、网络间分组交换(IPX)和IP,正在积极开发和测试。因此,ICN目前的发展阶段和解决最困难问题的方法太多,使其成为一个非常活跃和不断增长的研究领域,但在不利方面,它也使得在平等的基础上比较不同的提案变得更加困难。本文件旨在通过建立关于潜在实验装置的共识,部分解决这一问题,在这些装置中,不同的ICN方法可以相互测试和比较,同时展示其优势。

The first draft version of this document appeared in November 2012. It was adopted by ICNRG at IETF 87 (July 2013) as the document to address the work item on the definition of "reference baseline scenarios to enable performance comparisons between different approaches". Earlier draft versions of this document have been presented during the ICNRG meetings at IETF 85, IETF 86, IETF 87, IETF 88, IETF 89, and the ICNRG interim meeting in Stockholm in February 2013. This document has been reviewed, commented, and discussed extensively for a period of nearly two years by the vast majority of ICNRG members, which certainly exceeds 100 individuals. It is the consensus of ICNRG that the baseline scenarios described in this document should be published in the IRTF Stream of the RFC series. This document does not constitute a standard.

本文件的初稿于2012年11月发布。ICNRG在IETF 87(2013年7月)上采用了该文件,作为解决“参考基线场景”定义工作项的文件,以实现不同方法之间的性能比较。在IETF 85、IETF 86、IETF 87、IETF 88、IETF 89的ICNRG会议上以及2013年2月在斯德哥尔摩举行的ICNRG临时会议上,已提交了本文件的早期草案。在近两年的时间里,绝大多数ICNRG成员(当然超过100人)对该文件进行了审查、评论和广泛讨论。ICNRG一致认为,本文件中描述的基线场景应在RFC系列的IRTF流中发布。本文件不构成标准。

1.1. Baseline Scenario Selection
1.1. 基线方案选择

Earlier surveys [SoA1] [SoA2] note that describing ICN architectures is akin to shooting a moving target. We find that comparing these different approaches is often even more tricky. It is not uncommon that researchers devise different performance evaluation scenarios, typically with good reason, in order to highlight the advantages of their approach. This should be expected to some degree at this early stage of ICN development. Nevertheless, this document shows that

早期的调查[SoA1][SoA2]指出,描述ICN架构类似于射击移动目标。我们发现,比较这些不同的方法往往更加棘手。研究人员设计不同的绩效评估场景(通常有充分的理由)以突出其方法的优势并不罕见。在ICN发展的早期阶段,这在一定程度上是可以预期的。然而,这份文件表明:

certain baseline scenarios seem to emerge in which ICN architectures could showcase their comparative advantages over current systems, in general, and against each other, in particular.

某些基线场景似乎出现了,在这些场景中,ICN体系结构总体上可以展示其相对于当前系统的比较优势,尤其是相互之间的比较优势。

This document surveys the peer-reviewed ICN literature and presents prominent evaluation study cases as a foundation for the baseline scenarios to be considered by the IRTF Information-Centric Networking Research Group (ICNRG) in its future work. There are two goals for this document: first, to provide a set of use cases and applications that highlight opportunities for testing different ICN proposals; second, to identify key attributes of a common set of techniques that can be instrumental in evaluating ICN. Further, these scenarios are intended to equip researchers with sufficient configuration data to effectively evaluate their ICN proposals in a variety of settings, particularly extending beyond scenarios focusing simply on traditional content delivery. The overall aim is that each scenario is described at a sufficient level of detail, and with adequate references to already published work, so that it can serve as the base for comparative evaluations of different approaches. Example code that implements some of the scenarios and topologies included in this document is available from <http://telematics.poliba.it/icn-baseline-scenarios>.

该文献调查同行评议的ICN文献,并提出了突出的评价研究案例作为基础方案的基础方案将被考虑的IRTF信息为中心的网络研究小组(ICNRG)在其未来的工作。本文档有两个目标:第一,提供一组用例和应用程序,突出测试不同ICN提案的机会;第二,确定一套通用技术的关键属性,这些技术有助于评估ICN。此外,这些场景旨在为研究人员提供足够的配置数据,以便在各种环境下有效地评估他们的ICN提案,特别是扩展到仅关注传统内容交付的场景之外。总体目标是以足够的详细程度描述每个场景,并充分参考已发表的工作,以便将其作为对不同方法进行比较评估的基础。实现本文档中包含的一些场景和拓扑的示例代码可从<http://telematics.poliba.it/icn-baseline-scenarios>.

1.2. Document Goals and Outline
1.2. 记录目标和大纲

This document incorporates input from ICNRG participants and their corresponding text contributions, has been reviewed by several ICNRG active participants (see Section 7), and represents the consensus of the research group. However, this document does not constitute an IETF standard, but is an Informational document; see also [RFC5743]. As mentioned above, these scenarios are intended to provide a framework for evaluating different ICN approaches. The methodology for how to do these evaluations as well as definitions of metrics that should be used are described in a separate document [EVAL-METHOD]. In addition, interested readers should consider reviewing [CHALLENGES].

本文件包含了ICNRG参与者的投入及其相应的文本贡献,已经过ICNRG活跃参与者的审查(见第7节),代表了研究小组的共识。然而,本文件不构成IETF标准,而是一份信息性文件;另见[RFC5743]。如上所述,这些场景旨在为评估不同的ICN方法提供一个框架。如何进行这些评估的方法以及应使用的指标定义在单独的文件[EVAL-METHOD]中描述。此外,感兴趣的读者应该考虑复习[挑战]。

The remainder of this document presents a number of scenarios grouped into several categories in Section 2, followed by a number of cross-scenario considerations in Section 3. Overall, note that certain evaluation scenarios span across these categories, so the boundaries between them should not be considered rigid and inflexible. Section 4 summarizes the main evaluation aspects across the range of scenarios discussed in this document.

本文件的其余部分在第2节中介绍了一些分为几个类别的场景,然后在第3节中介绍了一些跨场景的注意事项。总的来说,请注意,某些评估场景跨越这些类别,因此它们之间的边界不应被视为僵硬和不灵活。第4节总结了本文档中讨论的一系列场景中的主要评估方面。

2. Scenarios
2. 情节

This section presents nine scenario categories based on use cases and evaluations that have appeared in the peer-reviewed literature.

本节根据同行评审文献中出现的用例和评估,介绍了九种场景类别。

2.1. Social Networking
2.1. 社交网络

Social-networking applications have proliferated over the past decade based on overlay content dissemination systems that require large infrastructure investments to roll out and maintain. Content dissemination is at the heart of the ICN paradigm. Therefore, we would expect that social-networking scenarios are a "natural fit" for comparing ICN performance with traditional client-server TCP/IP-based systems. Mathieu et al. [ICN-SN], for instance, illustrate how an Internet Service Provider (ISP) can capitalize on CCN to deploy a short-message service akin to Twitter at a fraction of the complexity of today's systems. Their key observation is that such a service can be seen as a combination of multicast delivery and caching. That is, a single user addresses a large number of recipients, some of which receive the new message immediately as they are online at that instant, while others receive the message whenever they connect to the network.

在过去十年中,基于覆盖内容传播系统的社交网络应用程序激增,需要大量基础设施投资才能推广和维护。内容传播是ICN范式的核心。因此,我们认为社交网络场景是比较ICN性能与传统的基于客户机-服务器TCP/IP系统的“自然适合”。例如,Mathieu等人[ICN-SN]举例说明了互联网服务提供商(ISP)如何利用CCN部署类似于Twitter的短消息服务,其复杂性仅为当今系统的一小部分。他们的主要观察结果是,这种服务可以看作是多播交付和缓存的组合。也就是说,单个用户向大量收件人发送地址,其中一些收件人在联机时会立即接收新邮件,而另一些则在连接到网络时接收邮件。

Along similar lines, Kim et al. [VPC] present an ICN-based social-networking platform in which a user shares content with her/his family and friends without the need for centralized content servers; see also Section 2.4, below, and [CBIS]. Based on the CCN naming scheme, [VPC] takes a user name to represent a set of devices that belong to the person. Other users in this in-network, serverless social sharing scenario can access the user's content not via a device name/address but with the user's name. In [VPC], signature verification does not require any centralized authentication server. Kim and Lee [VPC2] present a proof-of-concept evaluation in which users with ordinary smartphones can browse a list of members or content using a name, and download the content selected from the list.

类似地,Kim等人[VPC]提出了一种基于ICN的社交网络平台,在该平台中,用户与家人和朋友共享内容,而无需使用集中式内容服务器;另见下文第2.4节和[CBIS]。基于CCN命名方案,[VPC]采用用户名来表示属于此人的一组设备。此网络中的其他用户,无服务器社交共享场景可以访问用户的内容,而不是通过设备名称/地址,而是使用用户名。在[VPC]中,签名验证不需要任何集中式身份验证服务器。Kim和Lee[VPC2]提出了一个概念验证评估,使用普通智能手机的用户可以使用姓名浏览成员或内容列表,并下载从列表中选择的内容。

In other words, the above-mentioned evaluation studies indicate that with ICN there may be no need for an end-to-end system design that intermediates between content providers and consumers in a hub-and-spoke fashion at all times.

换言之,上述评估研究表明,使用ICN,可能不需要端到端的系统设计,即始终以中心辐射方式在内容提供商和消费者之间充当中间人。

Earlier work by Arianfar et al. [CCR] considers a similar pull-based content retrieval scenario using a different architecture, pointing to significant performance advantages. Although the authors consider a network topology (redrawn in Figure 1 for convenience) that has certain interesting characteristics, they do not explicitly address social networking in their evaluation scenario. Nonetheless,

Arianfar等人的早期工作[CCR]考虑了使用不同体系结构的类似基于拉取的内容检索场景,指出了显著的性能优势。虽然作者认为网络拓扑(在图1中为方便起见而重新绘制)具有某些有趣的特性,但是它们在其评估场景中没有明确地解决社交网络。尽管如此

similarities are easy to spot: "followers" (such as C0, C1, ..., and Cz in Figure 1) obtain content put "on the network" (I1, ..., Im, and B1, B2) by a single user (e.g., Px) relying solely on network primitives.

相似之处很容易发现:“追随者”(如图1中的C0、C1、…、和Cz)通过单个用户(如Px)仅依靠网络原语获取“网络上”的内容(I1、…、Im和B1、B2)。

   \--/
   |C0|
   /--\     +--+     +--+     +--+               +--+
       *=== |I0| === |I1| ... |In|               |P0|
   \--/     +--+     +--+     +--+               +--+
   |C1|                           \             / o
   /--\                            +--+     +--+  o
    o                              |B1| === |B2|  o
    o              o o o o         +--+     +--+  o
    o                             /             \ o
    o       +--+     +--+     +--+                +--+
    o  *=== |Ik| === |Il| ... |Im|                |Px|
   \--/     +--+     +--+     +--+                +--+
   |Cz|
   /--\
        
   \--/
   |C0|
   /--\     +--+     +--+     +--+               +--+
       *=== |I0| === |I1| ... |In|               |P0|
   \--/     +--+     +--+     +--+               +--+
   |C1|                           \             / o
   /--\                            +--+     +--+  o
    o                              |B1| === |B2|  o
    o              o o o o         +--+     +--+  o
    o                             /             \ o
    o       +--+     +--+     +--+                +--+
    o  *=== |Ik| === |Il| ... |Im|                |Px|
   \--/     +--+     +--+     +--+                +--+
   |Cz|
   /--\
        

Figure 1. Dumbbell with Linear Daisy Chains

图1。带线性菊花链的哑铃

In summary, the social-networking scenario aims to exercise each ICN architecture in terms of network efficiency, multicast support, caching performance and its reliance on centralized mechanisms (or lack thereof).

总之,社交网络场景旨在根据网络效率、多播支持、缓存性能及其对集中式机制的依赖(或缺乏集中式机制)来实施每个ICN架构。

2.2. Real-Time Communication
2.2. 实时通信

Real-time audio and video (A/V) communications include an array of services ranging from one-to-one voice calls to multiparty multimedia conferences with support ranging from whiteboards to augmented reality. Real-time communications have been studied and deployed in the context of packet- and circuit-switched networks for decades. The stringent Quality of Service (QoS) requirements that this type of communication imposes on network infrastructure are well known. Since one could argue that network primitives that are excellent for information dissemination are not well-suited for conversational services, ICN evaluation studies should consider real-time communication scenarios in detail.

实时音频和视频(A/V)通信包括一系列服务,从一对一语音呼叫到多方多媒体会议,支持范围从白板到增强现实。在分组和电路交换网络中,实时通信已经研究和部署了几十年。这种类型的通信对网络基础设施提出的严格的服务质量(QoS)要求是众所周知的。由于人们可以认为,信息传播的优秀网络原语不太适合会话服务,ICN评估研究应该详细考虑实时通信场景。

Notably, Jacobson et al. [VoCCN] presented an early evaluation where the performance of a VoIP (Voice over IP) call using an information-centric approach was compared with that of an off-the-shelf VoIP implementation using RTP/UDP. The results indicated that despite the extra cost of adding security support in the ICN approach, performance was virtually identical in the two cases evaluated in

值得注意的是,Jacobson等人[VoCCN]提出了一项早期评估,其中使用以信息为中心的方法对VoIP(IP语音)呼叫的性能与使用RTP/UDP的现成VoIP实现的性能进行了比较。结果表明,尽管在ICN方法中增加了额外的安全支持成本,但在中评估的两种情况下,性能几乎相同

their testbed. However, the experimental setup presented is quite rudimentary, while the evaluation considered a single voice call only. Xuan and Yan [NDNpb] revisit the same scenario but are primarily interested in reducing the overhead that may arise in one-to-one communication employing an ICN architecture. Both studies illustrate that quality telephony services are feasible with at least one ICN approach. That said, future ICN evaluations should employ standardized call arrival patterns, for example, following well-established methodologies from the QoS and QoE (Quality of Experience) evaluation toolbox and would need to consider more comprehensive metrics.

他们的试验台。然而,所提供的实验装置是相当基本的,而评估仅考虑单个语音呼叫。Xuan和Yan[NDNpb]重温了相同的场景,但主要关注的是减少采用ICN架构的一对一通信中可能出现的开销。这两项研究都表明,至少有一种ICN方法可以提供高质量的电话服务。也就是说,未来的ICN评估应该采用标准的呼叫到达模式,例如,遵循从QoS和QoE(经验质量)评估工具箱建立的方法,并且需要考虑更全面的度量。

Given the widespread deployment of real-time A/V communications, an evaluation of an ICN system should demonstrate capabilities beyond feasibility. For example, with respect to multimedia conferencing, Zhu et al. [ACT] describe the design of a distributed audio conference tool based on NDN. Their system includes ICN-based conference discovery, speaker discovery, and voice data distribution. The reported evaluation results point to gains in scalability and security. Moreover, Chen et al. [G-COPSS] explore the feasibility of implementing a Massively Multiplayer Online Role-Playing Game (MMORPG) based on CCNx code and show that stringent temporal requirements can be met, while scalability is significantly improved when compared to a host-centric (IP-based) client-server system. This type of work points to benefits for both the data and control path of a modern network infrastructure.

鉴于实时A/V通信的广泛部署,对ICN系统的评估应证明其能力超出了可行性。例如,关于多媒体会议,Zhu等人[ACT]描述了基于NDN的分布式音频会议工具的设计。他们的系统包括基于ICN的会议发现、说话人发现和语音数据分发。报告的评估结果表明,可扩展性和安全性有所提高。此外,Chen等人[G-COPS]探讨了基于CCNx代码实现大规模多人在线角色扮演游戏(MMORPG)的可行性,并表明可以满足严格的时间要求,同时与以主机为中心(基于IP)的客户机-服务器系统相比,可扩展性显著提高。这种类型的工作对现代网络基础设施的数据和控制路径都有好处。

Real-time communication also brings up the issue of named data granularity for dynamically generated content. In many cases, A/V data is generated in real-time and is distributed immediately. One possibility is to apply a single name to the entire content, but this could result in significant distribution delays. Alternatively, distributing A/V content in smaller "chunks" that are named individually may be a better option with respect to real-time distribution but raises naming scalability concerns.

实时通信还带来了动态生成内容的命名数据粒度问题。在许多情况下,A/V数据实时生成并立即分发。一种可能是对整个内容应用单个名称,但这可能会导致严重的分发延迟。或者,在单独命名的较小“块”中分发A/V内容可能是实时分发的更好选择,但会引起命名可伸缩性问题。

We observe that, all in all, the ICN research community has hitherto only scratched the surface of illustrating the benefits of adopting an information-centric approach as opposed to a host-centric one, and thus more work is recommended in this direction. Scenarios in this category should illustrate not only feasibility but reduced complexity, increased scalability, reliability, and capacity to meet stringent QoS/QoE requirements when compared to established host-centric solutions. Accordingly, the primary aim of this scenario is to exercise each ICN architecture in terms of its ability to satisfy real-time QoS requirements and provide improved user experience.

我们注意到,总的来说,ICN研究界迄今为止只触及了说明采用以信息为中心的方法而不是以主机为中心的方法的好处的表面,因此建议在这方面开展更多的工作。与已建立的以主机为中心的解决方案相比,此类场景不仅应说明可行性,还应说明降低复杂性、提高可扩展性、可靠性和容量,以满足严格的QoS/QoE要求。因此,该场景的主要目的是根据其满足实时QoS需求和提供改进的用户体验的能力来练习每个ICN体系结构。

2.3. Mobile Networking
2.3. 移动网络

IP mobility management relies on anchors to provide ubiquitous connectivity to end-hosts as well as moving networks [MMIN]. This is a natural choice for a host-centric paradigm that requires end-to-end connectivity and a continuous network presence for hosts [SCES]. An implicit assumption in host-centric mobility management is therefore that the mobile node aims to connect to a particular peer, as well as to maintain global reachability and service continuity [EEMN]. However, with ICN, new ideas about mobility management should come to the fore, capitalizing on the different nature of the paradigm, such as native support for multihoming, abstraction of network addresses from applications, less dependence on connection-oriented sessions, and so on [MOBSURV].

IP移动性管理依赖于锚来提供到终端主机以及移动网络的无处不在的连接[MMIN]。这是以主机为中心模式的自然选择,该模式需要端到端连接和主机的连续网络存在[SCE]。因此,以主机为中心的移动性管理中的一个隐含假设是,移动节点旨在连接到特定的对等方,以及保持全局可达性和服务连续性[EEMN]。然而,有了ICN,有关移动性管理的新想法应该脱颖而出,利用范式的不同性质,例如对多归属的本机支持、从应用程序中提取网络地址、减少对面向连接会话的依赖等等[MOBSURV]。

Dannewitz et al. [N-Scen] illustrate a scenario where a multiaccess end-host can retrieve email securely using a combination of cellular and Wireless Local Area Network (WLAN) connectivity. This scenario borrows elements from previous work, e.g., [DTI], and develops them further with respect to multiaccess. Unfortunately, Dannewitz et al. [N-Scen] do not present any results demonstrating that an ICN approach is, indeed, better. That said, the scenario is interesting as it considers content specific to a single user (i.e., her mailbox) and does point to reduced complexity. It is also compatible with recent work in the Distributed Mobility Management (DMM) Working Group within the IETF. Finally, Xylomenos et al. [PSIMob] as well as Pentikousis [EEMN] argue that an information-centric architecture can avoid the complexity of having to manage tunnels to maintain end-to-end connectivity as is the case with mobile anchor-based protocols such as Mobile IP (and its variants). Similar considerations hold for a vehicular (networking) environment, as we discuss in Section 2.6.

Dannewitz等人[N-Scen]举例说明了一个场景,其中多址终端主机可以使用蜂窝和无线局域网(WLAN)连接的组合安全地检索电子邮件。此场景借用了以前工作中的元素,例如[DTI],并进一步针对多址访问进行了开发。不幸的是,Dannewitz等人[N-Scen]没有给出任何结果证明ICN方法确实更好。这就是说,该场景很有趣,因为它考虑了特定于单个用户(即她的邮箱)的内容,并指出降低了复杂性。它还与IETF内分布式移动性管理(DMM)工作组的最新工作兼容。最后,Xylomenos等人[PSIMob]和Pentikousis[EEMN]认为,以信息为中心的体系结构可以避免管理隧道以保持端到端连接的复杂性,移动IP(及其变体)等基于移动锚的协议就是如此。正如我们在第2.6节中所讨论的,类似的考虑也适用于车辆(网络)环境。

Overall, mobile networking scenarios have not been developed in detail, let alone evaluated at a large scale. Further, the majority of scenarios discussed so far have related to the mobility of the information consumer, rather than the source. We expect that in the coming period more papers will address this topic. Earlier work [mNetInf] argues that for mobile and multiaccess networking scenarios we need to go beyond the current mobility management mechanisms in order to capitalize on the core ICN features. They present a testbed setup (redrawn in Figure 2) that can serve as the basis for other ICN evaluations. In this scenario, node "C0" has multiple network interfaces that can access local domains N0 and N1 simultaneously, allowing C0 to retrieve objects from whichever server (I2 or I3) can supply them without necessarily needing to access the servers in the core network "C" (P1 and P2). Lindgren [HybICN] explores this

总的来说,移动网络场景尚未得到详细开发,更不用说大规模评估了。此外,到目前为止讨论的大多数场景都与信息消费者的移动性有关,而不是与信息来源有关。我们预计,在未来一段时间内,将有更多的论文讨论这一主题。早期的研究[mNetInf]认为,对于移动和多址网络场景,我们需要超越当前的移动性管理机制,以利用ICN的核心功能。它们提供了一个测试台设置(图2中重新绘制),可以作为其他ICN评估的基础。在此场景中,节点“C0”具有多个网络接口,可以同时访问本地域N0和N1,从而允许C0从能够提供对象的任何服务器(I2或I3)检索对象,而无需访问核心网络“C”(P1和P2)中的服务器。林德格伦[HybICN]对此进行了探索

scenario further for an urban setting. He uses simulation and reports sizable gains in terms of reduction of object retrieval times and core network capacity use.

城市环境的进一步情景。他使用模拟,并报告了在减少对象检索时间和核心网络容量使用方面的可观收益。

   +------------+      +-----------+
   | Network N0 |      | Network C |
   |            |      |           |
   | +--+       | ==== |    +--+   |
   | |I2|       |      |    |P1|   |
   | +--+       |      |    +--+   |
   |     \--/   |      |           |
   +-----|C0|---+      |           |
   |     /--\   |      |           |
   | +--+       |      |           |
   | |I3|       |      |      +--+ |
   | +--+       | ==== |      |P2| |
   |            |      |      +--+ |
   | Network N1 |      |           |
   +------------+      +-----------+
        
   +------------+      +-----------+
   | Network N0 |      | Network C |
   |            |      |           |
   | +--+       | ==== |    +--+   |
   | |I2|       |      |    |P1|   |
   | +--+       |      |    +--+   |
   |     \--/   |      |           |
   +-----|C0|---+      |           |
   |     /--\   |      |           |
   | +--+       |      |           |
   | |I3|       |      |      +--+ |
   | +--+       | ==== |      |P2| |
   |            |      |      +--+ |
   | Network N1 |      |           |
   +------------+      +-----------+
        

Figure 2. Overlapping Wireless Multiaccess

图2。重叠无线多址接入

The benefits from capitalizing on the broadcast nature of wireless access technologies has yet to be explored to its full potential in the ICN literature, including quantifying possible gains in terms of energy efficiency [E-CHANET]. Obviously, ICN architectures must avoid broadcast storms. Early work in this area considers distributed packet suppression techniques that exploit delayed transmissions and overhearing; examples can be found in [MobiA] and [CCNMANET] for ICN-based mobile ad-hoc networks (MANETs), and in [RTIND] and [CCNVANET] for vehicular scenarios.

利用无线接入技术的广播特性所带来的好处尚未在ICN文献中充分挖掘,包括量化能效方面的可能收益[E-CHANET]。显然,ICN架构必须避免广播风暴。该领域的早期工作考虑利用延迟传输和窃听的分布式数据包抑制技术;在[MobiA]和[CCNMANET]中可以找到基于ICN的移动自组织网络(MANET)的示例,在[RTIND]和[CCNVANET]中可以找到车辆场景的示例。

One would expect that mobile networking scenarios will be naturally coupled with those discussed in the previous sections, as more users access social-networking and multimedia applications through mobile devices. Further, the constraints of real-time A/V applications create interesting challenges in handling mobility, particularly in terms of maintaining service continuity. This scenario therefore spans across most of the others considered in this document with the likely need for some level of integration, particularly considering the well-documented increases in mobile traffic. Mobility is further considered in Section 2.7 and the economic consequences of nodes having multiple network interfaces is explored in Section 3.1.

随着越来越多的用户通过移动设备访问社交网络和多媒体应用程序,人们预计移动网络场景将自然地与前面章节中讨论的场景相结合。此外,实时A/V应用程序的限制在处理移动性方面带来了有趣的挑战,特别是在维护服务连续性方面。因此,该场景跨越了本文档中考虑的大多数其他场景,可能需要某种程度的集成,特别是考虑到有充分记录的移动通信量的增加。第2.7节进一步考虑了移动性,第3.1节探讨了具有多个网络接口的节点的经济后果。

Host-centric mobility management has traditionally used a range of metrics for evaluating performance on a per-node and network-wide level. The first metric that comes to mind is handover latency, defined in [RFC5568] as the "period during which the mobile node is

以主机为中心的移动性管理传统上使用一系列指标来评估每个节点和整个网络的性能。想到的第一个指标是切换延迟,在[RFC5568]中定义为“移动节点移动的时间”

unable to send or receive packets". This metric should be considered in ICN performance evaluation studies dealing with mobility. Note that, in IP-based networks, handover latency has been addressed by the introduction of mobility management protocols that aim to hide node mobility from the correspondent node, and often follow a make-before-break approach in order to ensure seamless connectivity and minimize (or eliminate altogether) handover latency. The "always-on" and "always best connected" [ABC] paradigms have guided mobility management research and standardization for a good decade or so. One can argue that such mechanisms are not particularly suited for ICN. That said, there has been a lot of interest recently in distributed mobility management schemes (see [MMIN] for a summary), where mobility management support is not "always on" by default. Such schemes may be more suitable for ICN. As a general recommendation, ICN designs should aim to minimize handover latency so that the end-user and service QoE is not affected adversely.

无法发送或接收数据包“。在涉及流动性的ICN绩效评估研究中应考虑这一指标。请注意,在基于IP的网络中,通过引入移动性管理协议解决了切换延迟问题,移动性管理协议旨在对对应节点隐藏节点移动性,并且通常采用先通后断的方法,以确保无缝连接并最小化(或完全消除)切换延迟。“始终在线”和“始终最佳连接”[ABC]范式指导了移动性管理研究和标准化长达十年左右。可以说,这种机制并不特别适合ICN。也就是说,最近人们对分布式移动性管理方案(参见[MMIN]以获取摘要)产生了很大的兴趣,在这种方案中,移动性管理支持在默认情况下并非“始终开启”。这样的方案可能更适合ICN。作为一般性建议,ICN设计的目标应是最小化切换延迟,以便最终用户和服务QoE不会受到不利影响。

Network overhead, such as the amount of signaling necessary to minimize handover latency, is also a metric that should be considered when studying ICN mobility management. In the past, network overhead has been seen as one of the main factors hindering the deployment of various mobility solutions. In IP-based networks, network overhead includes, but is not limited to, tunneling overhead, in-band control protocol overhead, mobile terminal and network equipment state maintenance and update. ICN designs and evaluation studies should clearly identify the network overhead associated with handling mobility. Alongside network overhead, deployment complexity should also be studied.

网络开销,如最小化切换延迟所需的信令量,也是研究ICN移动性管理时应考虑的一个指标。过去,网络开销一直被视为阻碍各种移动性解决方案部署的主要因素之一。在基于IP的网络中,网络开销包括但不限于隧道开销、带内控制协议开销、移动终端和网络设备状态维护和更新。ICN设计和评估研究应明确识别与处理移动性相关的网络开销。除了网络开销外,还应研究部署复杂性。

To summarize, mobile networking scenarios should aim to provide service continuity for those applications that require it, decrease complexity and control signaling for the network infrastructure, as well as increase wireless capacity utilization by taking advantage of the broadcast nature of the medium. Beyond this, mobile networking scenarios should form a cross-scenario platform that can highlight how other scenarios can still maintain their respective performance metrics during periods of high mobility.

总而言之,移动网络场景应旨在为需要的应用程序提供服务连续性,降低网络基础设施的复杂性和控制信令,并通过利用媒体的广播性质提高无线容量利用率。除此之外,移动网络场景应该形成一个跨场景平台,该平台可以强调其他场景如何在高移动性期间保持各自的性能指标。

2.4. Infrastructure Sharing
2.4. 基础设施共享

A key idea in ICN is that the network should secure information objects per se, not the communications channel that they are delivered over. This means that hosts attached to an information-centric network can share resources on an unprecedented scale, especially when compared to what is possible in an IP network. All devices with network access and storage capacity can contribute their resources thereby increasing the value of an information-centric

ICN中的一个关键思想是,网络应该保护信息对象本身,而不是它们通过的通信通道。这意味着连接到以信息为中心的网络的主机可以以前所未有的规模共享资源,特别是与IP网络中可能的资源相比。所有具有网络访问和存储容量的设备都可以贡献其资源,从而提高以信息为中心的网络的价值

network, although compensation schemes motivating users to contribute resources remain a research challenge primarily from a business perspective.

尽管激励用户贡献资源的薪酬方案主要从商业角度来看仍然是一项研究挑战。

For example, Jacobson et al. [CBIS] argue that in ICN the "where and how" of obtaining information are new degrees of freedom. They illustrate this with a scenario involving a photo-sharing application that takes advantage of whichever access network connectivity is available at the moment (WLAN, Bluetooth, and even SMS) without requiring a centralized infrastructure to synchronize between numerous devices. It is important to highlight that since the focus of communication changes, keep-alives in this scenario are simply unnecessary, as devices participating in the testbed network contribute resources in order to maintain user content consistency, not link state information as is the case in the host-centric paradigm. This means that the notion of "infrastructure" may be completely different in the future.

例如,Jacobson等人[CBIS]认为,在ICN中,获取信息的“地点和方式”是新的自由度。他们通过一个场景来说明这一点,该场景涉及一个照片共享应用程序,该应用程序利用当前可用的任何接入网络连接(WLAN、蓝牙,甚至SMS),而无需在多个设备之间使用集中式基础设施进行同步。重要的是要强调,由于通信的重点发生了变化,因此在这种情况下保持有效性是完全不必要的,因为参与测试床网络的设备提供资源以保持用户内容的一致性,而不是以主机为中心的范例中的链接状态信息。这意味着“基础设施”的概念在未来可能会完全不同。

Muscariello et al. [SHARE], for instance, presented early work on an analytical framework that attempts to capture the storage/bandwidth tradeoffs that ICN enables and can be used as the foundation for a network planning tool. In addition, Chai et al. [CL4M] explore the benefits of ubiquitous caching throughout an information-centric network and argue that "caching less can actually achieve more." These papers also sit alongside a variety of other studies that look at various scenarios such as caching HTTP-like traffic [CCNCT] and BitTorrent-like traffic [BTCACHE]. We observe that much more work is needed in order to understand how to make optimal use of all resources available in an information-centric network. In real-world deployments, policy and commercial considerations are also likely to affect the use of particular resources, and more work is expected in this direction as well.

例如,MasCARILO等[Stase]提出了一个分析框架的早期工作,该框架试图捕获ICN使能的存储/带宽折衷,并且可以用作网络计划工具的基础。此外,Chai等人[CL4M]探讨了在整个以信息为中心的网络中无处不在的缓存的好处,并认为“缓存较少实际上可以实现更多”。这些论文还与其他各种研究并驾齐驱,研究了各种场景,如缓存类似HTTP的流量[CCNCT]和类似BitTorrent的流量[BTCACHE]。我们观察到,为了理解如何在以信息为中心的网络中优化利用所有可用资源,还需要做更多的工作。在实际部署中,政策和商业考虑因素也可能影响特定资源的使用,预计在这方面也会有更多的工作。

In conclusion, scenarios in this category would cover the communication-computation-storage tradeoffs that an ICN deployment must consider. This would exercise features relating to network planning, perhaps capitalizing on user-provided resources, as well as operational and economical aspects of ICN, and contrast them with other approaches. An obvious baseline to compare against in this regard is existing federations of IP-based Content Distribution Networks (CDNs), such as the ones discussed in the IETF Content Delivery Networks Interconnection Working Group.

总之,该类别中的场景将涵盖ICN部署必须考虑的通信计算存储权衡。这将运用与网络规划相关的功能,可能利用用户提供的资源,以及ICN的运营和经济方面,并将其与其他方法进行对比。在这方面,一个明显的比较基准是现有的基于IP的内容分发网络(CDN)联盟,如IETF内容交付网络互连工作组中讨论的联盟。

2.5. Content Dissemination
2.5. 内容传播

Content dissemination has attracted more attention than other aspects of ICN. Scenarios in this category abound in the literature, including stored and streaming A/V distribution, file distribution, mirroring and bulk transfers, versioned content services (cf. Subversion-type revision control), as well as traffic aggregation.

内容传播比ICN的其他方面更受关注。这类场景在文献中比比皆是,包括存储和流式A/V分发、文件分发、镜像和批量传输、版本化内容服务(参见Subversion类型修订控制)以及流量聚合。

Decentralized content dissemination with on-the-fly aggregation of information sources was envisaged in [N-Scen], where information objects can be dynamically assembled based on hierarchically structured subcomponents. For example, a video stream could be associated with different audio streams and subtitle sets, which can all be obtained from different sources. Using the topology depicted in Figure 1 as an example, an application at C1 may end up obtaining, say, the video content from I1, but the user-selected subtitles from Px. Semantics and content negotiation, on behalf of the user, were also considered, e.g., for the case of popular tunes that may be available in different encoding formats. Effectively, this scenario has the information consumer issuing independent requests for content based on information identifiers, and stitching the pieces together irrespective of "where" or "how" they were obtained.

[N-Scen]设想了分散的内容传播和信息源的动态聚合,其中信息对象可以基于层次结构的子组件进行动态组装。例如,视频流可以与不同的音频流和字幕集相关联,它们都可以从不同的源获得。以图1所示的拓扑为例,C1处的应用程序可能最终从I1获取视频内容,但用户从Px选择字幕。还考虑了代表用户的语义和内容协商,例如,对于可能以不同编码格式提供的流行歌曲的情况。实际上,该场景让信息消费者根据信息标识符发出独立的内容请求,并将这些片段拼接在一起,而不管它们是“在哪里”或“如何”获得的。

A case in point for content dissemination are vehicular ad hoc networks (VANETs), as an ICN approach may address their needs for information dissemination between vehicles better than today's solutions, as discussed in the following section. The critical part of information dissemination in a VANET scenario revolves around "where" and "when". For instance, one may be interested in traffic conditions 2 km ahead while having no interest in similar information about the area around the path origin. VANET scenarios may provide fertile ground for showcasing the ICN advantage with respect to content dissemination especially when compared with current host-centric approaches. That said, information integrity and filtering are challenges that must be addressed. As mentioned above, content dissemination scenarios in VANETs have a particular affinity to the mobility scenarios discussed in Section 2.3.

内容传播的一个典型例子是车辆自组织网络(VANET),因为ICN方法可能比当今的解决方案更好地解决车辆之间的信息传播需求,如下一节所述。VANET场景中信息传播的关键部分围绕“在哪里”和“何时”展开。例如,人们可能对前方2km的交通状况感兴趣,而对路径起点周围区域的类似信息不感兴趣。VANET场景可能为展示ICN在内容传播方面的优势提供肥沃的土壤,特别是与当前以主机为中心的方法相比。也就是说,信息完整性和过滤是必须解决的挑战。如上所述,VANET中的内容传播场景与第2.3节中讨论的移动场景具有特殊的关联性。

Content dissemination scenarios, in general, have a large overlap with those described in the previous sections and are explored in several papers, such as [DONA], [PSI], [PSIMob], [NetInf], [CCN], [CBIS], and [CCR], just to name a few. In addition, Chai et al. [CURLING] present a hop-by-hop hierarchical content resolution approach that employs receiver-driven multicast over multiple domains, advocating another content dissemination approach. Yet, largely, work in this area did not address the issue of access authorization in detail. Often, the distributed content is mostly assumed to be freely accessible by any consumer. Distribution of

一般来说,内容传播场景与前几节中描述的场景有很大的重叠,并在几篇论文中进行了探讨,例如[DONA]、[PSI]、[PSIMob]、[NetInf]、[CCN]、[CBIS]和[CCR],仅举几个例子。此外,Chai等人[CURLING]提出了一种逐跳分层内容解析方法,该方法在多个域上采用接收器驱动的多播,提倡另一种内容传播方法。然而,在很大程度上,这方面的工作没有详细解决访问授权问题。通常,分布式内容通常被认为是任何消费者都可以自由访问的。分布

paid-for or otherwise restricted content on a public ICN network requires more attention in the future. Fotiou et al. [ACDICN] consider a scheme to this effect, but it still requires access to an authorization server to verify the user's status after the (encrypted) content has been obtained. This may effectively negate the advantage of obtaining the content from any node, especially in a disruption-prone or mobile network.

公共ICN网络上的付费或受限内容在未来需要更多关注。FoTiou.A.[ACDIn]考虑一种方案来实现这种效果,但是它仍然需要访问授权服务器,以在获得(加密的)内容之后验证用户的状态。这可能有效地否定从任何节点获取内容的优势,特别是在易中断或移动网络中。

In summary, scenarios in this category aim to exercise primarily scalability and the cost and performance attributes of content dissemination. Particularly, they should highlight the ability of an ICN to scale to billions of objects, while not exceeding the cost of existing content dissemination solutions (i.e., CDNs) and, ideally, increasing performance. These should be shown in a holistic manner, improving content dissemination for both information consumers and publishers of all sizes. We expect that in particular for content dissemination, in both extreme as well as typical scenarios, can be specified by drawing data from current CDN deployments.

总之,这类场景的主要目的是实现内容传播的可伸缩性以及成本和性能属性。特别是,他们应该强调ICN扩展到数十亿个对象的能力,同时不超过现有内容传播解决方案(即CDN)的成本,并且在理想情况下提高性能。应以整体的方式展示这些内容,以改善信息消费者和各种规模的出版商的内容传播。我们希望,特别是对于内容传播,无论是在极端情况下还是在典型情况下,都可以通过从当前CDN部署中提取数据来指定。

2.6. Vehicular Networking
2.6. 车载网络

Users "on wheels" are interested in road safety, traffic efficiency, and infotainment applications that can be supported through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications. These applications exhibit unique features in terms of traffic generation patterns, delivery requirements, and spatial and temporal scope, which pose great challenges to traditional networking solutions. VANETs, by their nature, are characterized by challenges such as fast-changing topology, intermittent connectivity, and high node mobility, but also by the opportunity to combine information from different sources as each vehicle does not care about "who" delivers the named data objects.

“车轮上”的用户对道路安全、交通效率和信息娱乐应用感兴趣,这些应用可以通过车对车(V2V)和车对基础设施(V2I)无线通信得到支持。这些应用在流量生成模式、交付需求以及空间和时间范围方面表现出独特的特性,这对传统的网络解决方案提出了巨大的挑战。从本质上讲,VANET的特点是具有快速变化的拓扑结构、间歇性连接和高节点移动性等挑战,但也有机会组合来自不同来源的信息,因为每辆车都不关心“谁”提供指定的数据对象。

ICN is an attractive candidate solution for vehicular networking, as it has several advantages. First, ICN fits well to the nature of typical vehicular applications that are geography- and time-dependent (e.g., road traveler information, accident warning, point-of-interest advertisements) and usually target vehicles in a given area, regardless of their identity or IP address. These applications are likely to benefit from in-network and decentralized data caching and replication mechanisms. Second, content caching is particularly beneficial for intermittent on-the-road connectivity and can speed up data retrieval through content replication in several nodes. Caching can usually be implemented at relatively low cost in vehicles, as the energy demands of the ICN device are likely to be a negligible fraction of the total vehicle energy consumption, thus allowing for sophisticated processing, continuous communication, and adequate storage in the vehicle. Finally, ICN natively supports asynchronous

ICN是一种极具吸引力的车载网络候选解决方案,因为它有几个优点。首先,ICN非常符合典型车辆应用的性质,这些应用具有地理和时间依赖性(例如,道路出行者信息、事故警告、兴趣点广告),通常以给定区域内的车辆为目标,而不管其身份或IP地址如何。这些应用程序可能受益于网络内和分散的数据缓存和复制机制。其次,内容缓存对于道路上的间歇性连接特别有利,并且可以通过在多个节点中复制内容来加快数据检索。缓存通常可以在车辆中以相对较低的成本实现,因为ICN设备的能量需求可能是车辆总能量消耗的可忽略部分,因此允许在车辆中进行复杂的处理、连续通信和充分的存储。最后,ICN本机支持异步通信

data exchange between end-nodes. By using (and redistributing) cached named information objects, a mobile node can serve as a link between disconnected areas. In short, ICN can enable communication even under intermittent network connectivity, which is typical of vehicular environments with sparse roadside infrastructure and fast-moving nodes.

终端节点之间的数据交换。通过使用(并重新分发)缓存的命名信息对象,移动节点可以充当断开连接的区域之间的链接。简言之,ICN甚至可以在间歇性网络连接下实现通信,这是典型的具有稀疏路边基础设施和快速移动节点的车辆环境。

The advantages of ICN in vehicular networks were preliminarily discussed in [EWC] and [DMND], and additionally investigated in [DNV2V], [RTIND], [CCNHV], [CCDIVN], [CCNVANET], and [CRoWN]. For example, Bai and Krishnamachari [EWC] take advantage of the localized and dynamic nature of a VANET to explore how a road congestion notification application can be implemented. Wang et al. [DMND] consider data collection where Road-Side Units (RSUs) collect information from vehicles by broadcasting NDN-like Interest packets. The proposed architecture is evaluated using simulation in a grid topology and is compared against a host-centric alternative based on Mobile IP. See Figure 3 for an indicative example of an urban VANET topology. Their results indicate high efficiency for ICN even at high speeds. That said, this work is a preliminary exploration of ICN in vehicular environments, so various issues remain for evaluation. They include system scalability to large numbers of vehicles and the impact of vehicles that forward Interest packets or relay data to other vehicles.

在[EWC]和[DMND]中初步讨论了ICN在车辆网络中的优势,并在[DNV2V]、[RTIND]、[CCNHV]、[CCDIVN]、[CCNVANET]和[CRoWN]中进行了进一步研究。例如,Bai和Krishnamachari[EWC]利用VANET的本地化和动态特性来探索如何实现道路拥堵通知应用程序。Wang等人[DDND ]考虑数据收集,其中路边单元(RSUS)通过广播类NDN兴趣分组从车辆收集信息。在网格拓扑中使用仿真对所提出的体系结构进行评估,并与基于移动IP的以主机为中心的备选方案进行比较。城市VANET拓扑的指示性示例见图3。他们的结果表明,即使在高速情况下,ICN的效率也很高。这就是说,这项工作是对车辆环境中ICN的初步探索,因此各种问题仍有待评估。它们包括系统对大量车辆的可扩展性,以及转发感兴趣数据包或将数据中继到其他车辆的车辆的影响。

      + - - _- - -_- - - -_- - _- - - +
      |    /_\   /_\     /_\  /_\     |
      |    o o   o o     o o  o o     |
      |    +-------+     +-------+ _  |
      |    |       |     |       |/_\ |
      |  _ |       |     |       |o o |
      | /_\|       |    |       |     |
      | o o+--_----+\===/+--_----+    |
      |      /_\    |RSU|  /_\        |
      |      o o    /===\  o o        |
      |    +-------+     +-------+ _  |
      |    |       |     |       |/_\ |
      | _  |       |     |       |o o |
      |/_\ |       |     |       |    |
      |o o +_-----_+     +_-----_+    |
      |    /_\   /_\     /_\   /_\    |
      +_ _ o_o_ _o_o_ _ _o_o_ _o_o_ _ +
        
      + - - _- - -_- - - -_- - _- - - +
      |    /_\   /_\     /_\  /_\     |
      |    o o   o o     o o  o o     |
      |    +-------+     +-------+ _  |
      |    |       |     |       |/_\ |
      |  _ |       |     |       |o o |
      | /_\|       |    |       |     |
      | o o+--_----+\===/+--_----+    |
      |      /_\    |RSU|  /_\        |
      |      o o    /===\  o o        |
      |    +-------+     +-------+ _  |
      |    |       |     |       |/_\ |
      | _  |       |     |       |o o |
      |/_\ |       |     |       |    |
      |o o +_-----_+     +_-----_+    |
      |    /_\   /_\     /_\   /_\    |
      +_ _ o_o_ _o_o_ _ _o_o_ _o_o_ _ +
        

Figure 3. Urban Grid VANET Topology

图3。城市电网VANET拓扑

As mentioned in the previous section, due to the short communication duration between a vehicle and the RSU, and the typically short time of sustained connectivity between vehicles, VANETs may be a good

如前一节所述,由于车辆与RSU之间的通信持续时间较短,且车辆之间的持续连接时间通常较短,因此VANET可能是一个良好的选择

showcase for the ICN advantages with respect to content dissemination. Wang et al. [DNV2V], for instance, analyze the advantages of hierarchical naming for vehicular traffic information dissemination. Arnould et al. [CCNHV] apply ICN principles to safety information dissemination between vehicles with multiple radio interfaces. In [CCDIVN], TalebiFard and Leung use network coding techniques to improve content dissemination over multiple ICN paths. Amadeo et al. [CCNVANET] [CRoWN] propose an application-independent ICN framework for content retrieval and distribution where the role of provider can be played equivalently by both vehicles and RSUs. ICN forwarding is extended through path-state information carried in Interest and Data packets, stored in a new data structure kept by vehicular nodes, and exploited also to cope with node mobility.

展示ICN在内容传播方面的优势。例如,Wang等人[DNV2V]分析了分层命名在车辆交通信息传播中的优势。Arnold等人[CCNHV]将ICN原则应用于具有多个无线电接口的车辆之间的安全信息传播。在[CCDIVN]中,TalebiFard和Leung使用网络编码技术改进多ICN路径上的内容传播。Amadeo等人[CCNVANET][CRoWN]提出了一个独立于应用程序的ICN框架,用于内容检索和分发,其中提供者的角色可以由车辆和RSU同等发挥。ICN转发通过感兴趣的路径状态信息和数据包进行扩展,存储在车辆节点保留的新数据结构中,并用于处理节点移动性。

Typical scenarios for testing content distribution in VANETs may be highways with vehicles moving in straight lines, with or without RSUs along the road, as shown in Figure 4. With an NDN approach in mind, for example, RSUs may send Interest packets to collect data from vehicles [DMND], or vehicles may send Interest packets to collect data from other peers [RTIND] or from RSUs [CCNVANET]. Figure 2 applies to content dissemination in VANET scenarios as well, where C0 represents a vehicle that can obtain named information objects via multiple wireless peers and/or RSUs (I2 and I3 in the figure). Grid topologies such as the one illustrated in Figure 3 should be considered in urban scenarios with RSUs at the crossroads or co-located with traffic lights as in [CRoWN].

VANET中测试内容分布的典型场景可能是车辆沿直线行驶的高速公路,道路上有无RSU,如图4所示。考虑到NDN方法,例如,rsu可以发送兴趣包以从车辆[DMND]收集数据,或者车辆可以发送兴趣包以从其他对等方[RTIND]或rsu[CCNVANET]收集数据。图2也适用于VANET场景中的内容传播,其中C0表示可以通过多个无线对等点和/或RSU(图中的I2和I3)获取命名信息对象的车辆。如图3所示的网格拓扑应在城市场景中考虑,RSU位于十字路口或与交通灯位于同一位置,如[CRoWN]。

        \___/                    \___/
        |RSU|                    |RSU|
      ================================
           _     _     _     _
          /_\   /_\   /_\   /_\
      _ _ o_o_ _o_o_ _o_o_ _o_o_ _ _ _
           _     _     _     _
          /_\   /_\   /_\   /_\
          o o   o o   o o   o o
      ================================
        
        \___/                    \___/
        |RSU|                    |RSU|
      ================================
           _     _     _     _
          /_\   /_\   /_\   /_\
      _ _ o_o_ _o_o_ _o_o_ _o_o_ _ _ _
           _     _     _     _
          /_\   /_\   /_\   /_\
          o o   o o   o o   o o
      ================================
        

Figure 4. Highway VANET Topology

图4。公路车辆网络拓扑

To summarize, VANET scenarios aim to exercise ICN deployment from various perspectives, including scalability, caching, transport, and mobility issues. There is a need for further investigation in (i) challenging scenarios (e.g., disconnected segments); (ii) scenarios involving both consumer and provider mobility; (iii) smart caching techniques that take into consideration node mobility patterns, spatial and temporal relevance, content popularity, and social relationships between users/vehicles; (iv) identification of new

总之,VANET场景旨在从多个角度实施ICN部署,包括可伸缩性、缓存、传输和移动性问题。需要进一步调查(i)具有挑战性的场景(如断开的路段);(ii)涉及消费者和提供商移动性的场景;(iii)考虑节点移动模式、空间和时间相关性、内容流行度以及用户/车辆之间的社会关系的智能缓存技术;(四)确定新的

applications (beyond data dissemination and traffic monitoring) that could benefit from the adoption of an ICN paradigm in vehicular networks (e.g., mobile cloud, social networking).

可从车辆网络(如移动云、社交网络)中采用ICN模式中获益的应用(数据传播和交通监控除外)。

2.7. Delay- and Disruption-Tolerance
2.7. 延迟和中断容忍度

Delay- and Disruption-Tolerant Networking (DTN) originated as a means to extend the Internet to interplanetary communications [DTN]. However, it was subsequently found to be an appropriate architecture for many terrestrial situations as well. Typically, this was where delays were greater than protocols such as TCP could handle, and where disruptions to communications were the norm rather than occasional annoyances, e.g., where an end-to-end path does not necessarily exist when communication is initiated. DTN has now been applied to many situations, including opportunistic content sharing, handling infrastructural issues during emergency situations (e.g., earthquakes) and providing connectivity to remote rural areas without existing Internet provision and little or no communications or power infrastructure.

延迟和中断容忍网络(DTN)起源于将互联网扩展到星际通信的一种手段[DTN]。然而,后来发现它也是许多地面情况下的合适架构。通常,在这种情况下,延迟大于TCP等协议所能处理的延迟,通信中断是常态,而不是偶尔出现的麻烦,例如,通信启动时不一定存在端到端路径。DTN现在已应用于许多情况,包括机会主义内容共享、在紧急情况下处理基础设施问题(如地震)以及在没有现有互联网供应、几乎没有或根本没有通信或电力基础设施的情况下提供到偏远农村地区的连接。

The DTN architecture [RFC4838] is based on a "store, carry, and forward" paradigm that has been applied extensively to situations where data is carried between network nodes by a "data mule", which carries bundles of data stored in some convenient storage medium (e.g., a USB memory stick). With the advent of sensor and peer-to-peer (P2P) networks between mobile nodes, DTN is becoming a more commonplace type of networking than originally envisioned. Since ICN also does not rely on the familiar end-to-end communications paradigm, there are clear synergies [DTNICN]. It could therefore be argued that many of the key principles embodied within DTN also exist in ICN, as we explain next.

DTN体系结构[RFC4838]基于“存储、携带和转发”范式,该范式已广泛应用于通过“数据骡”在网络节点之间携带数据的情况,该“数据骡”携带存储在某些方便存储介质(例如USB记忆棒)中的数据束。随着移动节点之间传感器和对等(P2P)网络的出现,DTN正在成为比最初设想的更常见的网络类型。由于ICN也不依赖于熟悉的端到端通信模式,因此存在明显的协同效应[DTNICN]。因此,可以认为DTN中包含的许多关键原则也存在于ICN中,我们将在下面进行解释。

First, both approaches rely on in-network storage. In the case of DTN, bundles are stored temporarily on devices on a hop-by-hop basis. In the case of ICN, information objects are also cached on devices in a similar fashion. As such, both paradigms must provision storage within the network.

首先,这两种方法都依赖于网络存储。在DTN的情况下,捆绑包以逐跳的方式临时存储在设备上。在ICN的情况下,信息对象也以类似的方式缓存在设备上。因此,这两种模式都必须在网络中提供存储。

Second, both approaches espouse late binding of names to locations due to the potentially large interval between request and response generation. In the case of DTN, it is often impossible to predict the exact location (in a disconnected topology) where a node will be found. Similarly, in the case of ICN, it is also often impossible to predict where an information object might be found. As such, the binding of a request/bundle to a destination (or routing locator) must be performed as late as possible.

其次,由于请求和响应生成之间可能存在较大的间隔,这两种方法都支持将名称延迟绑定到位置。在DTN的情况下,通常无法预测节点的确切位置(在断开连接的拓扑中)。类似地,在ICN的情况下,通常也不可能预测在哪里可以找到信息对象。因此,请求/捆绑包到目的地(或路由定位器)的绑定必须尽可能晚地执行。

Finally, both approaches treat data as a long-lived component that can exist in the network for extended periods of time. In the case of DTN, bundles are carried by nodes until appropriate next hops are discovered. In the case of ICN, information objects are typically cached until storage is exhausted. As such, both paradigms require a direct shift in the way applications interact with the network.

最后,这两种方法都将数据视为可以在网络中长期存在的长寿命组件。在DTN的情况下,包由节点承载,直到发现适当的下一跳。在ICN的情况下,信息对象通常被缓存,直到存储耗尽。因此,这两种模式都需要应用程序与网络交互方式的直接转变。

Through these similarities, it becomes possible to identify many DTN principles that are already in existence within ICN architectures. For example, ICN nodes will often retain information objects locally, making them accessible later on, much as DTN bundles are handled. Consequently, these synergies suggest strong potential for marrying the two technologies. This could include, for instance, building new integrated Information-Centric Delay Tolerant Network (ICDTN) protocols or, alternatively, building ICN schemes over existing DTN protocols (and vice versa).

通过这些相似性,可以识别ICN体系结构中已经存在的许多DTN原则。例如,ICN节点通常会在本地保留信息对象,使它们以后可以访问,就像处理DTN包一样。因此,这些协同效应表明,将这两种技术结合起来的潜力巨大。这可能包括,例如,构建新的以信息为中心的综合延迟容忍网络(ICDTN)协议,或者,在现有DTN协议上构建ICN方案(反之亦然)。

The above similarities suggest that integration of the two principles would be feasible. Beyond this, there are also a number of identifiable direct benefits. Through caching and replication, ICN offers strong information resilience, whilst, through store-and-forward, DTN offers strong connectivity resilience. As such, both architectures could benefit greatly from each other. Initial steps have already been taken in the DTN community to integrate ICN principles, e.g., the Bundle Protocol Query Block [BPQ] has been proposed for the DTN Bundle Protocol [RFC5050]. Similarly, initial steps have also been taken in the ICN community, such as [SLINKY]. In fact, the Scalable and Adaptive Internet Solutions (SAIL) project has developed a prototype implementation of NetInf running over the DTN Bundle Protocol.

上述相似之处表明,将这两项原则结合起来是可行的。除此之外,还有许多可识别的直接好处。ICN通过缓存和复制提供了强大的信息恢复能力,而DTN通过存储和转发提供了强大的连接恢复能力。因此,这两种体系结构可以从彼此中受益匪浅。DTN社区已经采取了初步步骤来集成ICN原则,例如,已经为DTN捆绑协议[RFC5050]提出了捆绑协议查询块[BPQ]。同样,ICN社区也采取了初步措施,如[SLINKY]。事实上,可扩展和自适应互联网解决方案(SAIL)项目已经开发了一个运行在DTN捆绑协议上的NetInf原型实现。

Of course, in many circumstances, information-centricity is not appropriate for use in delay- and disruption-tolerant environments. This is particularly the case when information is not the key communications atom transmitted. Further, situations where a single sink is always used for receiving information may not warrant the identification and routing of independent information objects. However, there are a number of key scenarios where clear benefits could be gained by introducing information-centric principles into DTNs, two of which we describe later in this section.

当然,在许多情况下,以信息为中心不适合在容忍延迟和中断的环境中使用。当信息不是传输的关键通信原子时,情况尤其如此。此外,始终使用单个接收器接收信息的情况可能不保证独立信息对象的识别和路由。然而,在许多关键场景中,通过将以信息为中心的原则引入DTN可以获得明显的好处,我们将在本节后面介绍其中两种。

For the purpose of evaluating the use of ICNs in a DTN setting, two key scenarios are identified in this document. (Note the rest of this section uses the term "ICDTN".) These are both prominent use cases that are currently active in both the ICN and DTN communities. The first is opportunistic content sharing, whilst the second is the use of ad hoc networks during disaster recovery (e.g., earthquakes). We discuss both types of scenarios in the context of a simulation-

为了评估DTN设置中ICN的使用情况,本文件确定了两个关键场景。(注意,本节其余部分使用术语“ICDTN”。)这些都是当前在ICN和DTN社区都很活跃的突出用例。第一种是机会主义内容共享,第二种是在灾难恢复(如地震)期间使用自组织网络。我们将在模拟的上下文中讨论这两种类型的场景-

based evaluation: due to the scale and mobility of DTN-like setups, this is the primary method of evaluation used. Within the DTN community, the majority of simulations are performed using the Opportunistic Network Environment (ONE) simulator [ONE], which is referred to in this document. Before exploring the two scenarios, the key shared components of their simulation are discussed. This is separated into the two primary inputs that are required: the environment and the workload.

基于评估:由于类似DTN的设置的规模和移动性,这是使用的主要评估方法。在DTN社区内,大多数模拟是使用本文档中提到的机会主义网络环境(ONE)模拟器[ONE]执行的。在探索这两个场景之前,将讨论它们模拟的关键共享组件。这被分为两个需要的主要输入:环境和工作负载。

In both types of scenarios the environment can be abstractly modeled by a time series of active connections between device pairs. Unlike other scenarios in this document, an ICDTN scenario therefore does not depend on (relatively) static topologies but, rather, a set of time-varying disconnected topologies. In opportunistic networks, these topologies are actually products of the mobility of users. For example, if two users walk past each other, an opportunistic link can be created. There are two methods used to generate these mobility patterns and, in turn, the time series of topologies. The first is synthetic, whereby a (mathematical) model of user behavior is created in an agent-based fashion, e.g., random waypoint, Gauss-Markov. The second is trace-driven, whereby the mobility of real users is recorded and used. In both cases, the output is a sequence of time-stamped "contacts", i.e., periods of time in which two devices can communicate. An important factor missing from typical mobility traces, however, is the capacity of these contacts: how much data can be transferred? In both approaches to modeling mobility, links are usually configured as Bluetooth or Wi-Fi (ONE easily allows this, although lower-layer considerations are ignored, e.g., interference). This is motivated by the predominance of these technologies on mobile phones.

在这两种类型的场景中,环境都可以通过设备对之间活动连接的时间序列进行抽象建模。与本文档中的其他场景不同,ICDTN场景因此不依赖于(相对)静态拓扑,而是一组时变的断开连接拓扑。在机会主义网络中,这些拓扑实际上是用户移动性的产物。例如,如果两个用户从对方身边走过,就可以创建一个机会主义链接。有两种方法用于生成这些移动性模式,进而生成拓扑的时间序列。第一种是合成的,即以基于代理的方式创建用户行为的(数学)模型,例如,随机航路点、高斯-马尔可夫模型。第二种是跟踪驱动,即记录和使用真实用户的移动性。在这两种情况下,输出都是带有时间戳的“触点”序列,即两个设备可以通信的时间段。然而,典型移动轨迹中缺少的一个重要因素是这些触点的容量:可以传输多少数据?在这两种建模移动性的方法中,链路通常配置为蓝牙或Wi-Fi(其中一种很容易实现,但忽略了较低层的考虑因素,例如干扰)。这是由于这些技术在手机上的优势。

The workload in an ICDTN is modeled much like the workload within the other scenarios. It involves object creation/placement and object retrieval. Object creation/placement can either be done statically at the beginning of the simulations or, alternatively, dynamically based on a model of user behavior. In both cases, the latter is focused on, as it models far better the characteristics of the scenarios.

ICDTN中的工作负载与其他场景中的工作负载非常相似。它涉及对象创建/放置和对象检索。对象创建/放置可以在模拟开始时静态完成,也可以根据用户行为模型动态完成。在这两种情况下,后者都是重点,因为它能更好地模拟场景的特征。

Once the environment and workload have been configured, the next step is to decide the key metrics for the study. Unlike traditional networking, the QoS expectation is typically far lower in an ICDTN, thereby moving away from metrics such as throughput. At a high level, it is of clear interest to evaluate different ICN approaches with respect to both their delay- and disruption-tolerance (i.e., how effective is the approach when used in an environment subject to significant delay and/or disruption) and to their active support for operations in a DTN environment.

一旦配置了环境和工作负载,下一步就是确定研究的关键指标。与传统网络不同,ICDTN中的QoS期望通常要低得多,因此不再使用吞吐量等指标。在高层次上,评估不同的ICN方法的延迟和中断容忍度(即,在受到重大延迟和/或中断的环境中使用该方法时的有效性)以及它们对DTN环境中操作的积极支持,显然是有意义的。

The two most prominent metrics considered in a host-centric DTN are delivery probability and delivery delay. The former relates to the probability by which a sent message will be received within a certain delay bound, whilst the latter captures the average length of time it takes for nodes to receive the message. These metrics are similarly important in an ICDTN, although they are slightly different due to the request-response nature of ICN. Therefore, the two most prominent evaluative metrics are satisfaction probability and satisfaction delay. The former refers to the probability by which an information request (e.g., Interest) will be satisfied (i.e., how often a Data response will be received). Satisfaction delay refers to the length of time it takes an information request to be satisfied.

以主机为中心的DTN中考虑的两个最显著的指标是交付概率和交付延迟。前者涉及在特定延迟范围内接收已发送消息的概率,而后者捕获节点接收消息所需的平均时间长度。这些指标在ICDTN中同样重要,但由于ICN的请求-响应性质,它们略有不同。因此,两个最突出的评估指标是满意度概率和满意度延迟。前者指满足信息请求(例如,兴趣)的概率(即,接收数据响应的频率)。满足延迟是指满足信息请求所需的时间长度。

Note that the key difference between the host-centric and information-centric metrics is the need for a round-trip rather than a one-way communication. Beyond this, depending on the focus of the work, other elements that may be investigated include name resolution, routing, and forwarding in disconnected parts of the network; support for unidirectional links; number of round trips needed to complete a data transfer; long-term content availability (or resilience); efficiency in the face of disruption; and so on. It is also important to weigh these performance metrics against the necessary overheads. In the case of an ICDTN, this is generally measured by the number of message replicas required to access content. Note that routing in a DTN is often replication based, which leads to many copies of the same message.

请注意,以主机为中心的指标和以信息为中心的指标之间的关键区别在于需要双向通信,而不是单向通信。除此之外,根据工作重点,可能调查的其他因素包括名称解析、路由和网络断开部分的转发;支持单向链路;完成数据传输所需的往返次数;长期内容可用性(或恢复能力);面对干扰时的效率;等等将这些性能指标与必要的开销进行权衡也很重要。对于ICDTN,这通常通过访问内容所需的消息副本数量来衡量。请注意,DTN中的路由通常基于复制,这会导致同一消息的多个副本。

2.7.1. Opportunistic Content Sharing
2.7.1. 机会主义内容共享

The first key baseline scenario in this context is opportunistic content sharing. This occurs when mobile nodes create opportunistic links between each other to share content of interest. For example, people riding on an underground train can pass news items between their mobile phones. Equally, content generated on the phones (e.g., tweets [TWIMIGHT]) could be stored for later forwarding (or even forwarded amongst interested passengers on the train). Such scenarios, clearly, must be based around either the altruistic or incentivized interaction amongst users. The latter is a particularly active area of research. These networks are often termed "pocket-switched networks", as they are independently formed between the user devices. Here, the evaluative scenario of ICDTN microblogging is proposed. As previously discussed, the construction of such an evaluative scenario requires a formalization of its environment and workload. Fortunately, there exist a number of datasets that offer exactly this information required for microblogging.

这种情况下的第一个关键基线场景是机会主义内容共享。当移动节点在彼此之间创建机会链接以共享感兴趣的内容时,就会发生这种情况。例如,乘坐地铁的人可以通过手机传递新闻。同样,手机上生成的内容(如tweets[twimay])也可以存储起来,以便以后转发(甚至可以转发给列车上感兴趣的乘客)。显然,这些场景必须基于用户之间的利他主义或激励性交互。后者是一个特别活跃的研究领域。这些网络通常被称为“口袋交换网络”,因为它们在用户设备之间独立形成。本文提出了ICDTN微博的评价方案。如前所述,构建这种评估性场景需要对其环境和工作负载进行形式化。幸运的是,有许多数据集正好提供了微博所需的这些信息。

In terms of the environment (i.e., mobility patterns), the Haggle project produced contact traces based on conference attendees using Bluetooth. These traces are best targeted at application scenarios in which a small group of (50-100) people are in a relatively confined space. In contrast, larger-scale traces are also available, most notably MIT's Reality Mining project. These are better suited for cases where longer-term movement patterns are of interest.

在环境(即移动模式)方面,Haggle项目基于会议与会者使用蓝牙技术生成了联系人跟踪。这些痕迹最适合于一小群(50-100)人处于相对受限空间的应用场景。相比之下,更大范围的痕迹也可用,最著名的是麻省理工学院的现实挖掘项目。这些更适合于对长期运动模式感兴趣的情况。

The second input, workload, relates to the creation and consumption of microblogs (e.g., tweets). This can be effectively captured because subscriptions conveniently formalize who consumes what. For bespoke purposes, specific data can be directly collected from Twitter for trace-driven simulations. Several Twitter datasets are already available to the community containing a variety of data, ranging from Tweets to follower graphs. See <http://www.tweetarchivist.com> and <http://socialcomputing.asu.edu/datasets/Twitter>. These datasets can therefore be used to extract information production, placement, and consumption.

第二个输入,工作量,与微博(如推特)的创建和消费有关。这可以有效地捕获,因为订阅可以方便地将谁消费什么形式化。出于定制目的,可以直接从Twitter收集特定数据,用于跟踪驱动模拟。社区已经可以使用几个Twitter数据集,其中包含各种数据,从推特到关注者图表。看<http://www.tweetarchivist.com>及<http://socialcomputing.asu.edu/datasets/Twitter>. 因此,这些数据集可用于提取生产、放置和消费的信息。

2.7.2. Emergency Support and Disaster Recovery
2.7.2. 紧急支助和灾后恢复

The second key baseline scenario in this context relates to the use of ICDTNs in emergency scenarios. In these situations, it is typical for infrastructure to be damaged or destroyed, leading to the collapse of traditional forms of communications (e.g., cellular telephone networks). This has been seen in the recent North Indian flooding, as well as the 2011 Tohoku earthquake and tsunami. Power problems often exacerbate the issue, with communication failures lasting for days. Therefore, in order to address this, DTNs have been used due to their high levels of resilience and independence from fixed infrastructure. The most prominent use of DTNs in disaster areas would be the dissemination of information, e.g., warnings and evacuation maps. Unlike the previous scenario, it can be assumed that certain users (e.g., emergency responders) are highly altruistic. However, it is likely many other users (e.g., endangered civilians) might become far more conservative in how they use their devices for battery-conserving purposes. Here, we focus on the dissemination of standard broadcast information that should be received by all parties; generally, this is something led by emergency responders.

这方面的第二个关键基线场景涉及在紧急场景中使用ICDTN。在这些情况下,基础设施通常会遭到破坏,导致传统通信形式(如蜂窝电话网络)崩溃。最近的北印度洪灾以及2011年东北地震和海啸就是明证。电源问题通常会加剧问题,通信故障会持续数天。因此,为了解决这一问题,DTN因其高弹性和独立于固定基础设施而被使用。DTN在灾区最突出的用途是传播信息,例如警告和疏散地图。与前面的场景不同,可以假设某些用户(例如紧急响应者)是高度利他的。然而,许多其他用户(如濒危平民)可能会更加保守地使用他们的设备来节约电池。在这方面,我们侧重于传播各方应接收的标准广播信息;一般来说,这是由应急响应人员领导的。

For the environmental setup, there are no commonly used mobility traces for disaster zones, unlike in the previous scenario. This is clearly due to the difficultly (near impossibility) of acquiring them in a real setting. That said, various synthetic models are available. The Post-Disaster Mobility Model [MODEL1] models civilians and emergency responders after a disaster has occurred,

对于环境设置,与前面的场景不同,灾区没有常用的移动轨迹。这显然是因为在真实环境中很难(几乎不可能)获得它们。也就是说,各种合成模型都可用。灾后流动模型[MODEL1]模拟了灾害发生后的平民和应急响应人员,

with people attempting to reach evacuation points (this has also been implemented in the ONE simulator). Aschenbruck et al. [MODEL2] focus on emergency responders, featuring the removal of nodes from the disaster zone, as well as things like obstacles (e.g., collapsed buildings). Cabrero et al. [MODEL3] also look at emergency responders but focus on patterns associated with common procedures. For example, command and control centers are typically set up with emergency responders periodically returning. Clearly, the mobility of emergency responders is particularly important in this setting because they usually are the ones who will "carry" information into the disaster zone. It is recommended that one of these emergency-specific models be used during any evaluations, due to the inaccuracy of alternate models used for "normal" behavior.

人们试图到达疏散点(这也在ONE模拟器中实现)。Aschenbruck等人[MODEL2]专注于应急响应人员,其特点是从灾区移除节点,以及障碍物(例如倒塌的建筑物)。Cabrero等人[MODEL3]也关注应急响应者,但重点关注与普通程序相关的模式。例如,指挥和控制中心通常由应急响应人员定期返回。显然,在这种情况下,应急响应人员的流动性尤其重要,因为他们通常是将信息“携带”到灾区的人。由于用于“正常”行为的替代模型不准确,建议在任何评估期间使用这些特定于紧急情况的模型之一。

The workload input in this evaluative scenario is far simpler than for the previous scenario. In emergency cases, the dissemination of individual pieces of information to all parties is the norm. This is often embodied using things like the Common Alert Protocol (CAP), which is an XML standard for describing warning message. It is currently used by various systems, including the Integrated Public Alert & Warning System and Google Crisis Response. As such, small objects (e.g., 512 KB to 2 MB) are usually generated containing text and images; note that the ONE simulator offers utilities to easily generate these. These messages are also always generated by central authorities, therefore making the placement problem easier (they would be centrally generated and given to emergency responders to disseminate as they pass through the disaster zone). The key variable is therefore the generation rate, which is synonymous with the rate that microblogs are written in the previous scenario. This will largely be based on the type of disaster occurring; however, hourly updates would be an appropriate configuration. Higher rates can also be tested, based on the rate at which situations change (landslides, for example, can exhibit highly dynamic properties).

此评估场景中的工作负载输入比前一个场景中的工作负载输入简单得多。在紧急情况下,向各方传播个别信息是常态。这通常通过使用公共警报协议(CAP)来实现,CAP是用于描述警告消息的XML标准。它目前被各种系统使用,包括综合公共警报和警告系统和谷歌危机响应系统。因此,通常生成包含文本和图像的小对象(例如512 KB到2 MB);请注意,“一个模拟器”提供了一些实用程序,可以轻松生成这些。这些信息也总是由中央当局生成,因此更容易解决安置问题(这些信息将由中央生成,并在紧急响应人员通过灾区时分发)。因此,关键变量是生成率,它与之前场景中微博的写入率同义。这在很大程度上取决于发生的灾害类型;但是,每小时更新将是一种适当的配置。根据情况变化的速率(例如,滑坡可能表现出高度动态特性),也可以测试更高的速率。

To summarize, this section has highlighted the applicability of ICN principles to existing DTN scenarios. Two evaluative setups have been described in detail, namely, mobile opportunistic content sharing (microblogging) and emergency information dissemination.

总而言之,本节强调了ICN原则对现有DTN场景的适用性。详细描述了两种评估设置,即移动机会主义内容共享(微博)和紧急信息传播。

2.8. Internet of Things
2.8. 物联网

Advances in electronics miniaturization combined with low-power wireless access technologies (e.g., ZigBee, Near Field Communication (NFC), Bluetooth, and others) have enabled the coupling of interconnected digital services with everyday objects. As devices with sensors and actuators connect into the network, they become "smart objects" and form the foundation for the so-called Internet of

电子设备小型化的进步与低功耗无线接入技术(如ZigBee、近场通信(NFC)、蓝牙等)相结合,实现了互联数字服务与日常物体的耦合。随着传感器和执行器连接到网络中的设备,它们成为“智能对象”,并形成所谓的“互联网”的基础。

Things (IoT). IoT is expected to increase significantly the amount of content carried by the network due to machine-to-machine (M2M) communication as well as novel user-interaction possibilities.

物联网。由于机器对机器(M2M)通信以及新颖的用户交互可能性,物联网有望显著增加网络承载的内容量。

Yet, the full potential of IoT does not lie in simple remote access to smart object data. Instead, it is the intersection of Internet services with the physical world that will bring about the most dramatic changes. Burke [IoTEx], for instance, makes a very good case for creating everyday experiences using interconnected things through participatory sensing applications. In this case, inherent ICN capabilities for data discovery, caching, and trusted communication are leveraged to obtain sensor information and enable content exchange between mobile users, repositories, and applications.

然而,物联网的全部潜力并不在于对智能对象数据的简单远程访问。相反,互联网服务与物理世界的交叉将带来最戏剧性的变化。例如,Burke[IoTEx]通过参与式传感应用程序,利用相互关联的事物创造日常体验。在这种情况下,利用数据发现、缓存和可信通信的固有ICN功能来获取传感器信息,并实现移动用户、存储库和应用程序之间的内容交换。

Kutscher and Farrell [IWMT] discuss the benefits that ICN can provide in these environments in terms of naming, caching, and optimized transport. The Named Information URI scheme (ni) [RFC6920], for instance, could be used for globally unique smart object identification, although an actual implementation report is not currently available. Access to information generated by smart objects can be of varied nature and often vital for the correct operation of large systems. As such, supporting timestamping, security, scalability, and flexibility need to be taken into account.

Kutscher和Farrell[IWMT]讨论了ICN在这些环境中在命名、缓存和优化传输方面可以提供的好处。例如,命名信息URI方案(ni)[RFC6920]可以用于全局唯一的智能对象标识,尽管目前还没有实际的实现报告。对智能对象生成的信息的访问可能具有多种性质,对于大型系统的正确运行通常至关重要。因此,需要考虑支持时间戳、安全性、可伸缩性和灵活性。

Ghodsi et al. [NCOA] examine hierarchical and self-certifying naming schemes and point out that ensuring reliable and secure content naming and retrieval may pose stringent requirements (e.g., the necessity for employing PKI), which can be too demanding for low-powered nodes, such as sensors. That said, earlier work by Heidemann et al. [nWSN] shows that, for dense sensor network deployments, disassociating sensor naming from network topology and using named content at the lowest level of communication in combination with in-network processing of sensor data is feasible in practice and can be more efficient than employing a host-centric binding between node locator and the content existing therein.

Ghodsi等人[NCOA]研究了分层和自认证命名方案,并指出确保可靠和安全的内容命名和检索可能会提出严格的要求(例如,采用PKI的必要性),这对于低功耗节点(如传感器)来说可能要求过高。也就是说,Heidemann等人[nWSN]的早期工作表明,对于密集传感器网络部署,将传感器命名与网络拓扑分离,并在最低通信级别使用命名内容与传感器数据的网络内处理相结合,在实践中是可行的,并且可以比在节点定位器和其中存在的内容之间采用以主机为中心的绑定更有效。

Burke et al. [NDNl] describe the implementation of a building automation system for lighting control where the security, naming, and device discovery NDN mechanisms are leveraged to provide configuration, installation, and management of residential and industrial lighting control systems. The goal is an inherently resilient system, where even smartphones can be used for control. Naming reflects fixtures with evolved identification and node-reaching capabilities, thus simplifying bootstrapping, discovery, and user interaction with nodes. The authors report that this ICN-based system requires less maintenance and troubleshooting than typical IP-based alternatives.

Burke等人[NDNl]描述了用于照明控制的楼宇自动化系统的实施,其中利用安全、命名和设备发现NDN机制提供住宅和工业照明控制系统的配置、安装和管理。我们的目标是建立一个固有的弹性系统,即使是智能手机也可以用于控制。命名反映了具有改进的标识和节点到达功能的装置,从而简化了引导、发现和用户与节点的交互。作者报告说,与典型的基于IP的替代方案相比,这种基于ICN的系统需要更少的维护和故障排除。

Biswas et al. [CIBUS] visualize ICN as a contextualized information-centric bus (CIBUS) over which diverse sets of service producers and consumers coexist with different requirements. ICN is leveraged to unify different platforms to serve consumer-producer interaction in both infrastructure and ad hoc settings. Ravindran et al. [Homenet] show the application of this idea in the context of a home network, where consumers (residents) require policy-driven interactions with diverse services such as climate control, surveillance systems, and entertainment systems. Name-based protocols are developed to enable zero-configuration node and service discovery, contextual service publishing and subscription, policy-based routing and forwarding with name-based firewall, and hoc device-to-device communication.

Biswas等人[CIBUS]将ICN视为一种情境化的信息中心总线(CIBUS),在该总线上,不同的服务生产者和消费者以不同的需求共存。ICN被用来统一不同的平台,以在基础设施和临时设置中为消费者-生产者交互提供服务。Ravindran等人[Homenet]展示了这一理念在家庭网络中的应用,在家庭网络中,消费者(居民)需要与气候控制、监控系统和娱乐系统等多种服务进行政策驱动的交互。开发了基于名称的协议,以实现零配置节点和服务发现、上下文服务发布和订阅、基于策略的路由和转发以及基于名称的防火墙以及hoc设备到设备通信。

IoT exposes ICN concepts to a stringent set of requirements that are exacerbated by the quantity of nodes, as well as by the type and volume of information that must be handled. A way to address this is proposed in [IoTScope], which tackles the problem of mapping named information to an object, diverting from the currently typical centralized discovery of services and leveraging the intrinsic ICN scalability capabilities for naming. It extends the base [PURSUIT] design with hierarchically based scopes, facilitating lookup, access, and modifications of only the part of the object information that the user is interested in. Another important aspect is how to efficiently address resolution and location of the information objects, particularly when large numbers of nodes are connected, as in IoT deployments. In [ICN-DHT], Katsaros et al. propose a Distributed Hash Table (DHT) that is compared with the Data-Oriented Network Architecture described in [DONA]. Their results show how topological routing information has a positive impact on resolution, at the expense of memory and processing overhead.

物联网将ICN概念暴露于一系列严格的要求之下,这些要求因节点数量以及必须处理的信息类型和数量而加剧。[IoTScope]中提出了一种解决方法,解决了将命名信息映射到对象的问题,摆脱了目前典型的集中式服务发现,并利用固有的ICN可伸缩性功能进行命名。它使用基于层次结构的范围扩展了基本[PURSUIT]设计,便于查找、访问和修改用户感兴趣的部分对象信息。另一个重要方面是如何有效地解决信息对象的分辨率和位置问题,特别是当大量节点连接时,如在物联网部署中。在[ICN-DHT]中,Katsaros等人提出了一种分布式哈希表(DHT),并将其与[DONA]中描述的面向数据的网络体系结构进行了比较。他们的结果表明,拓扑路由信息对分辨率有着积极的影响,但会牺牲内存和处理开销。

The use of ICN mechanisms in IoT scenarios faces the most dynamic and heterogeneous type of challenges, when taking into consideration the requirements and objectives of such integration. The disparity in technologies (not only in access technologies, but also in terms of end-node diversity such as sensors, actuators, and their characteristics) as well as in the information that is generated and consumed in such scenarios, will undoubtedly bring about many of the considerations presented in the previous sections. For instance, IoT shares similarities with the constraints and requirements applicable to vehicular networking. Here, a central problem is the deployment of mechanisms that can use opportunistic connectivity in unreliable networking environments (similar to the vehicular networking and DTN scenarios).

当考虑到这种集成的要求和目标时,物联网场景中ICN机制的使用面临着最具动态性和异构性的挑战。技术上的差异(不仅在接入技术上,而且在终端节点多样性方面,如传感器、执行器及其特性)以及在此类场景中生成和使用的信息上的差异,无疑将带来前面章节中介绍的许多考虑因素。例如,物联网与适用于车辆联网的约束和要求具有相似性。在这里,一个中心问题是在不可靠的网络环境(类似于车辆网络和DTN场景)中部署可以使用机会主义连接的机制。

However, one important concern in IoT scenarios, also motivated by this strongly heterogeneous environment, is how content dissemination will be affected by the different semantics of the disparate

然而,物联网场景中的一个重要问题也是由这种高度异构的环境所驱动的,即内容传播将如何受到不同对象的不同语义的影响

information and content being shared. In fact, this is already a difficult problem that goes beyond the scope of ICN [SEMANT]. With the ability of the network nodes to cache forwarded information to improve future requests, a challenge arises regarding whether the ICN fabric should be involved in any kind of procedure (e.g., tagging) that facilitates the relationship or the interpretation of the different sources of information.

正在共享的信息和内容。事实上,这已经是一个超出ICN[SEMANT]范围的难题。由于网络节点能够缓存转发的信息以改进未来的请求,因此出现了一个挑战,即ICN结构是否应该参与任何类型的过程(例如,标记),以促进不同信息源的关系或解释。

Another issue lies with the need for having energy-efficiency mechanisms related to the networking capabilities of IoT infrastructures. Often, the devices in IoT deployments have limited battery capabilities, and thus need low power consumption schemes working at multiple levels. In principle, energy efficiency gains should be observed from the inherent in-network caching capability. However, this might not be the most usual case in IoT scenarios, where the information (particularly from sensors or controlling actuators) is more akin to real-time traffic, thus reducing the scale of potential savings due to ubiquitous in-network caching.

另一个问题在于需要有与物联网基础设施联网能力相关的能效机制。通常,物联网部署中的设备电池容量有限,因此需要在多个级别工作的低功耗方案。原则上,能源效率的提高应该从网络缓存的固有能力来观察。然而,这可能不是物联网场景中最常见的情况,在物联网场景中,信息(特别是来自传感器或控制执行器的信息)更类似于实时流量,从而降低了由于无处不在的网络缓存而带来的潜在节约规模。

ICN approaches, therefore, should be evaluated with respect to their capacity to handle the content produced and consumed by extremely large numbers of diverse devices. IoT scenarios aim to exercise ICN deployment from different aspects, including ICN node design requirements, efficient naming, transport, and caching of time-restricted data. Scalability is particularly important in this regard as the successful deployment of IoT principles could increase both device and content numbers dramatically beyond all current expectations.

因此,应评估ICN方法处理大量不同设备产生和消费的内容的能力。物联网场景旨在从不同方面实施ICN部署,包括ICN节点设计要求、有效命名、传输和缓存时间受限数据。在这方面,可扩展性尤其重要,因为成功部署物联网原则可能会大幅增加设备和内容数量,超出当前所有预期。

2.9. Smart City
2.9. 智慧城市

The rapid increase in urbanization sets the stage for the most compelling and challenging environments for networking. By 2050 the global population will reach nine billion people, 75% of which will dwell in urban areas. In order to cope with this influx, many cities around the world have started their transformation toward the "smart city" vision. Smart cities will be based on the following innovation axes: smart mobility, smart environment, smart people, smart living, and smart governance. In development terms, the core goal of a smart city is to become a business-competitive and attractive environment, while serving citizen well-being [CPG].

城市化的快速增长为最具吸引力和挑战性的网络环境奠定了基础。到2050年,全球人口将达到90亿,其中75%将居住在城市地区。为了应对这种涌入,世界各地的许多城市已经开始向“智慧城市”愿景转型。智能城市将基于以下创新轴:智能移动、智能环境、智能人、智能生活和智能治理。就发展而言,智慧城市的核心目标是成为一个具有商业竞争力和吸引力的环境,同时服务于公民福祉[CPG]。

In a smart city, ICT plays a leading role and acts as the glue bringing together all actors, services, resources (and their interrelationships) that the urban environment is willing to host and provide [MVM]. ICN appears particularly suitable for these scenarios. Domains of interest include intelligent transportation systems, energy networks, health care, A/V communications, peer-to-

在智能城市中,ICT发挥着主导作用,并充当粘合剂,将城市环境愿意主办和提供的所有参与者、服务、资源(及其相互关系)聚集在一起[MVM]。ICN似乎特别适合这些场景。感兴趣的领域包括智能交通系统、能源网络、医疗保健、A/V通信、点对点通信-

peer and collaborative platforms for citizens, social inclusion, active participation in public life, e-government, safety and security, and sensor networks. Clearly, this scenario has close ties to the vision of IoT, discussed in the previous section, as well as to vehicular networking.

针对公民、社会包容、积极参与公共生活、电子政务、安全和安保以及传感器网络的对等和协作平台。显然,该场景与上一节讨论的物联网愿景以及车辆网络有着密切的联系。

Nevertheless, the road to build a real information-centric digital ecosystem will be long, and more coordinated effort is required to drive innovation in this domain. We argue that smart-city needs and ICN technologies can trigger a virtuous innovation cycle toward future ICT platforms. Recent concrete ICN-based contributions have been formulated for home energy management [iHEMS], geo-localized services [ACC], smart-city services [IB], and traffic information dissemination in vehicular scenarios [RTIND]. Some of the proposed ICN-based solutions are implemented in real testbeds, while others are evaluated through simulation.

然而,构建真正以信息为中心的数字生态系统的道路将是漫长的,需要更加协调的努力来推动这一领域的创新。我们认为,智慧城市的需求和ICN技术可以触发未来ICT平台的良性创新循环。最近,针对家庭能源管理[iHEMS]、地理本地化服务[ACC]、智能城市服务[IB]和车辆场景中的交通信息传播[RTIND],制定了基于ICN的具体贡献。一些基于ICN的解决方案是在真实的测试床上实现的,而其他的则是通过模拟来评估的。

Zhang et al. [iHEMS] propose a secure publish-subscribe architecture for handling the communication requirements of Home Energy Management Systems (HEMS). The objective is to safely and effectively collect measurement and status information from household elements, aggregate and analyze the data, and ultimately enable intelligent control decisions for actuation. They consider a simple experimental testbed for their proof-of-concept evaluation, exploiting open source code for the ICN implementation, and emulating some node functionality in order to facilitate system operation.

Zhang等人[iHEMS]提出了一种安全的发布-订阅体系结构,用于处理家庭能源管理系统(HEMS)的通信需求。其目标是安全有效地收集来自家庭元件的测量和状态信息,汇总和分析数据,最终实现驱动智能控制决策。他们考虑了一个简单的实验测试平台,用于其概念证明评估,开发用于ICN实现的开放源码,并模拟一些节点功能,以便于系统操作。

A different scenario is considered in [ACC], where DHTs are employed for distributed, scalable, and geographically aware service lookup in a smart city. Also in this case, the ICN application is validated by considering a small-scale testbed: a small number of nodes are emulated with simple embedded PCs or specific hardware boards (e.g., for some sensor nodes); other nodes (which connect the principal actors of the tests) are emulated with workstations. The proposal in [IB] draws from a smart-city scenario (mainly oriented towards waste collection management) comprising sensors and moving vehicles, as well as a cloud-computing system that supports data retrieval and storage operations. The main aspects of this proposal are analyzed via simulation using open source code that is publicly available. Some software applications are designed on real systems (e.g., PCs and smartphones).

[ACC]中考虑了不同的场景,其中DHT用于智能城市中的分布式、可扩展和地理感知服务查找。同样在这种情况下,ICN应用程序通过考虑小型试验台进行验证:使用简单的嵌入式PC或特定硬件板(例如,对于某些传感器节点)模拟少量节点;其他节点(连接测试的主要参与者)通过工作站进行仿真。[IB]中的提案来自智能城市场景(主要面向废物收集管理),包括传感器和移动车辆,以及支持数据检索和存储操作的云计算系统。该方案的主要方面通过使用公开的开源代码进行模拟分析。一些软件应用程序是在真实系统(如PC和智能手机)上设计的。

With respect to evaluating ICN approaches in smart-city scenarios, it is necessary to consider generic metrics useful to track and monitor progress on services results and also for comparing localities between themselves and learn from the best [ISODIS]. In particular, it is possible to select a specific set of Key Performance Indicators (KPIs) for a given project in order to evaluate its success. These

关于评估智能城市场景中的ICN方法,有必要考虑通用度量来跟踪和监视服务结果的进展,并且还比较它们之间的位置,并从最好的[ ISODISIS ]中学习。特别是,可以为给定项目选择一组特定的关键绩效指标(KPI),以评估其成功。这些

KPIs may reflect the city's environmental and social goals, as well as its economic objectives, and they can be calculated at the global, regional, national, and local levels. Therefore, it is not possible to define a unique set of interesting metrics, but in the context of smart cities, the KPIs should be characterized with respect to the developed set of services offered by using the ICN paradigm.

KPI可以反映城市的环境和社会目标以及经济目标,可以在全球、区域、国家和地方各级进行计算。因此,不可能定义一组独特的有趣指标,但在智能城市的背景下,KPI应根据使用ICN范式提供的已开发服务集进行表征。

To sum up, smart-city scenarios aim to exercise several ICN aspects in an urban environment. In particular, they can be useful to (i) analyze the capacity of using ICN for managing extremely large data sets; (ii) study ICN performance in terms of scalability in distributed services; (iii) verify the feasibility of ICN in a very complex application like vehicular communication systems; and (iv) examine the possible drawbacks related to privacy and security issues in complex networked environments.

综上所述,智能城市场景旨在在城市环境中实施几个ICN方面。特别是,它们有助于(i)分析使用ICN管理超大数据集的能力;(ii)从分布式服务的可扩展性方面研究ICN性能;(iii)验证ICN在车辆通信系统等非常复杂的应用中的可行性;以及(iv)研究复杂网络环境中与隐私和安全问题相关的可能缺陷。

3. Cross-Scenario Considerations
3. 跨场景考虑

This section discusses considerations that span multiple scenarios.

本节讨论跨越多个场景的注意事项。

3.1. Multiply Connected Nodes and Economics
3.1. 多连通节点与经济学

The evolution of, in particular, wireless networking technologies has resulted in a convergence of the bandwidth and capabilities of various different types of network. Today, a leading-edge mobile telephone or tablet computer will typically be able to access a Wi-Fi access point, a 4G cellular network, and the latest generation of Bluetooth local networking. Until recently, a node would usually have a clear favorite network technology appropriate to any given environment. The choice would, for example, be primarily determined by the available bandwidth with cost as a secondary determinant. Furthermore, it is normally the case that a device only uses one of the technologies at a time for any particular application.

特别是无线网络技术的发展导致了各种不同类型网络的带宽和能力的融合。如今,领先的移动电话或平板电脑通常能够访问Wi-Fi接入点、4G蜂窝网络和最新一代蓝牙本地网络。直到最近,一个节点通常都会有一个适合任何给定环境的明确的喜爱的网络技术。例如,选择将主要由可用带宽决定,成本是次要决定因素。此外,通常情况下,对于任何特定应用,设备一次仅使用其中一种技术。

It seems likely that this situation will change so that nodes are able to use all of the available technologies in parallel. This will be further encouraged by the development of new capabilities in cellular networks including Small Cell Networks [SCN] and Heterogeneous Networks [HetNet]. Consequently, mobile devices will have similar choices to wired nodes attached to multiple service providers allowing "multihoming" via the various different infrastructure networks as well as potential direct access to other mobile nodes via Bluetooth or a more capable form of ad hoc Wi-Fi.

这种情况很可能会改变,这样节点就能够并行使用所有可用的技术。蜂窝网络(包括小蜂窝网络[SCN]和异构网络[HetNet])中新功能的开发将进一步鼓励这一点。因此,移动设备将具有与连接到多个服务提供商的有线节点类似的选择,允许通过各种不同的基础设施网络进行“多归属”,以及通过蓝牙或更具能力的特设Wi-Fi形式直接访问其他移动节点。

Infrastructure networks are generally under the control of separate economic entities that may have different policies about the information of an ICN deployed within their network caches. As ICN shifts the focus from nodes to information objects, the interaction

基础设施网络通常由不同的经济实体控制,这些经济实体可能对其网络缓存中部署的ICN的信息有不同的政策。随着ICN将重点从节点转移到信息对象,交互

between networks will likely evolve to capitalize on data location independence, efficient and scalable in-network named object availability, and access via multiple paths. These interactions become critical in evaluating the technical and economic impact of ICN architectural choices, as noted in [ArgICN]. Beyond simply adding diversity in deployment options, these networks have the potential to alter the incentives among existing (and future, we may add) network players, as noted in [EconICN].

网络间可能会演变为利用数据位置独立性、网络命名对象可用性中的高效和可扩展性以及通过多条路径的访问。这些相互作用对于评估ICN架构选择的技术和经济影响至关重要,如[ArgICN]所述。除了简单地增加部署选项的多样性之外,这些网络还有可能改变现有(以及未来,我们可能会增加)网络参与者之间的激励机制,如[EconICN]中所述。

Moreover, such networks enable more numerous internetwork relationships where exchange of information may be conditioned on a set of multilateral policies. For example, shared SCNs are emerging as a cost-effective way to address coverage of complex environments such as sports stadiums, large office buildings, malls, etc. Such networks are likely to be a complex mix of different cellular and WLAN access technologies (such as HSPA, LTE, and Wi-Fi) as well as ownership models. It is reasonable to assume that access to content generated in such networks may depend on contextual information such as the subscription type, timing, and location of both the owner and requester of the content. The availability of such contextual information across diverse networks can lead to network inefficiencies unless data management can benefit from an information-centric approach. The "Event with Large Crowds" demonstrator created by the SAIL project investigated this kind of scenario; more details are available in [SAIL-B3].

此外,这种网络使更多的网络间关系成为可能,在这种关系中,信息交换可能以一套多边政策为条件。例如,共享SCN正在成为解决复杂环境(如体育场馆、大型办公楼、商场等)覆盖问题的一种经济高效的方式。此类网络可能是不同蜂窝和WLAN接入技术(如HSPA、LTE和Wi-Fi)以及所有权模式的复杂组合。可以合理地假设,对在此类网络中生成的内容的访问可能取决于上下文信息,例如订阅类型、时间和内容所有者和请求者的位置。除非数据管理可以从以信息为中心的方法中获益,否则跨不同网络提供此类上下文信息可能会导致网络效率低下。由赛欧项目创建的“大型人群活动”演示者调查了这种情况;更多详情请参见[SAIL-B3]。

Jacobson et al. [CCN] include interactions between networks in their overall system design and mention both "an edge-driven, bottom-up incentive structure" and techniques based on evolutions of existing mechanisms both for ICN router discovery by the end-user and for interconnecting between Autonomous Systems (ASes). For example, a BGP extension for domain-level content prefix advertisement can be used to enable efficient interconnection between ASes. Liu et al. [MLDHT] proposed to address the "suffix-hole" issue found in prefix-based name aggregation through the use of a combination of Bloom-filter-based aggregation and multi-level DHT.

Jacobson等人[CCN]在其总体系统设计中包括了网络之间的交互,并提到了“一种边缘驱动、自底向上的激励结构”和基于现有机制演变的技术,这两种机制都用于最终用户发现ICN路由器和自治系统(ASE)之间的互连。例如,可以使用用于域级内容前缀广告的BGP扩展来实现ASE之间的高效互连。Liu等人[MLDHT]建议通过结合使用基于Bloom过滤器的聚合和多级DHT,解决基于前缀的名称聚合中存在的“后缀漏洞”问题。

Name aggregation has been discussed for a flat naming design, for example, in [NCOA], in which the authors note that based on estimations in [DONA] flat naming may not require aggregation. This is a point that calls for further study. Scenarios evaluating name aggregation, or lack thereof, should take into account the amount of state (e.g., size of routing tables) maintained in edge routers as well as network efficiency (e.g., amount of traffic generated).

例如,在[NCOA]中讨论了平面命名设计的名称聚合,其中作者指出,基于[DONA]中的估计,平面命名可能不需要聚合。这一点需要进一步研究。评估名称聚合或缺少名称聚合的场景应考虑边缘路由器中维护的状态量(例如,路由表的大小)以及网络效率(例如,生成的流量量)。

                 +---------------+
     +---------->| Popular Video |
     |           +---------------+
     |             ^           ^
     |             |           |
     |           +-+-+ $0/MB +-+-+
     |           | A +-------+ B |
     |           ++--+       +-+-+
     |            | ^         ^ |
     |      $8/MB | |         | | $10/MB
     |            v |         | v
   +-+-+  $0/MB  +--+---------+--+
   | D +---------+       C       |
   +---+         +---------------+
        
                 +---------------+
     +---------->| Popular Video |
     |           +---------------+
     |             ^           ^
     |             |           |
     |           +-+-+ $0/MB +-+-+
     |           | A +-------+ B |
     |           ++--+       +-+-+
     |            | ^         ^ |
     |      $8/MB | |         | | $10/MB
     |            v |         | v
   +-+-+  $0/MB  +--+---------+--+
   | D +---------+       C       |
   +---+         +---------------+
        

Figure 5. Relationships and Transit Costs between Networks A to D

图5。网络A到D之间的关系和运输成本

DiBenedetto et al. [RP-NDN] study policy knobs made available by NDN to network operators. New policies that are not feasible in the current Internet are described, including a "cache sharing peers" policy, where two peers have an incentive to share content cached in, but not originating from, their respective network. The simple example used in the investigation considers several networks and associated transit costs, as shown in Figure 5 (based on Figure 1 of [RP-NDN]). Agyapong and Sirbu [EconICN] further establish that ICN approaches should incorporate features that foster (new) business relationships. For example, publishers should be able to indicate their willingness to partake in the caching market, proper reporting should be enabled to avoid fraud, and content should be made cacheable as much as possible to increase cache hit ratios.

DiBenedetto等人[RP-NDN]研究NDN向网络运营商提供的政策旋钮。描述了在当前因特网中不可行的新策略,包括“缓存共享对等点”策略,其中两个对等点具有共享缓存在其各自网络中但不源自其各自网络的内容的激励。调查中使用的简单示例考虑了几个网络和相关的运输成本,如图5所示(基于[RP-NDN]的图1)。Agyapong和Sirbu[EconICN]进一步确定,ICN方法应包含促进(新)业务关系的功能。例如,出版商应该能够表明他们愿意参与缓存市场,应该启用适当的报告以避免欺诈,并且应该尽可能使内容可缓存以提高缓存命中率。

Kutscher et al. [SAIL-B3] enable network interactions in the NetInf architecture using a name resolution service at domain edge routers and a BGP-like routing system in the NetInf Default-Free Zone. Business models and incentives are studied in [SAIL-A7] and [SAIL-A8], including scenarios where the access network provider (or a virtual CDN) guarantees QoS to end users using ICN. Figure 6 illustrates a typical scenario topology from this work that involves an interconnectivity provider.

Kutscher等人。[SAIL-B3]使用域边缘路由器上的名称解析服务和NetInf默认自由区中类似BGP的路由系统,在NetInf体系结构中启用网络交互。[SAIL-A7]和[SAIL-A8]中研究了业务模型和激励,包括接入网络提供商(或虚拟CDN)使用ICN向最终用户保证QoS的场景。图6展示了这项工作中涉及互连提供者的典型场景拓扑。

   +----------+     +-----------------+     +------+
   | Content  |     | Access Network/ |     | End  |
   | Provider +---->|  ICN Provider   +---->| User |
   +----------+     +-+-------------+-+     +------+
                      |             |
                      |             |
                      v             v
   +-------------------+     +----------------+       +------+
   | Interconnectivity |     | Access Network |       | End  |
   |     Provider      +---->|     Provider   +------>| User |
   +-------------------+     +----------------+       +------+
        
   +----------+     +-----------------+     +------+
   | Content  |     | Access Network/ |     | End  |
   | Provider +---->|  ICN Provider   +---->| User |
   +----------+     +-+-------------+-+     +------+
                      |             |
                      |             |
                      v             v
   +-------------------+     +----------------+       +------+
   | Interconnectivity |     | Access Network |       | End  |
   |     Provider      +---->|     Provider   +------>| User |
   +-------------------+     +----------------+       +------+
        

Figure 6. Setup and Operating Costs of Network Entities

图6。网络实体的设置和运营成本

Jokela et al. [LIPSIN] propose a two-layer approach where additional rendezvous systems and topology formation functions are placed logically above multiple networks and enable advertising and routing content between them. Visala et al. [LANES] further describe an ICN architecture based on similar principles, which, notably, relies on a hierarchical DHT-based rendezvous interconnect. Rajahalme et al. [PSIRP1] describe a rendezvous system using both a BGP-like routing protocol at the edge and a DHT-based overlay at the core. Their evaluation model is centered around policy-compliant path stretch, latency introduced by overlay routing, caching efficacy, and load distribution.

Jokela等人[LIPSIN]提出了一种两层方法,将额外的会合系统和拓扑形成功能逻辑地置于多个网络之上,并在它们之间启用广告和路由内容。Visala等人[LANES]进一步描述了基于类似原理的ICN体系结构,该体系结构尤其依赖于基于DHT的分层交会互连。Rajahalme等人[PSIRP1]描述了一种会合系统,在边缘使用类似BGP的路由协议,在核心使用基于DHT的覆盖。他们的评估模型以策略兼容的路径拉伸、覆盖路由引入的延迟、缓存效率和负载分布为中心。

Rajahalme et al. [ICCP] point out that ICN architectural changes may conflict with the current tier-based peering model. For example, changes leading to shorter paths between ISPs are likely to meet resistance from Tier-1 ISPs. Rajahalme [IDMcast] shows how incentives can help shape the design of specific ICN aspects, and in [IDArch] he presents a modeling approach to exploit these incentives. This includes a network model that describes the relationship between Autonomous Systems based on data inferred from the current Internet, a traffic model taking into account business factors for each AS, and a routing model integrating the valley-free model and policy compliance. A typical scenario topology is illustrated in Figure 7, which is redrawn here based on Figure 1 of [ICCP]. Note that it relates well with the topology illustrated in Figure 1 of this document.

Rajahalme等人[ICCP]指出,ICN架构更改可能与当前基于层的对等模型相冲突。例如,导致ISP之间路径缩短的变化可能会遇到来自一级ISP的阻力。Rajahalme[IDMcast]展示了激励如何帮助塑造特定ICN方面的设计,在[IDArch]中,他提出了利用这些激励的建模方法。这包括一个网络模型,该模型基于从当前互联网推断的数据描述自治系统之间的关系,一个考虑到每个AS的业务因素的流量模型,以及一个集成无谷模型和策略遵从性的路由模型。典型的场景拓扑如图7所示,此处根据[ICCP]的图1重新绘制。注意,它与本文档图1中所示的拓扑关系良好。

                        o-----o
                  +-----+  J  +-----+
                  |     o--*--o     |
                  |        *        |
               o--+--o     *     o--+--o
               |  H  +-----------+  I  |
               o-*-*-o     *     o-*-*-o
                 * *       *       * *
            ****** ******* * ******* *******
            *            * * *             *
         o--*--o        o*-*-*o         o--*--o
         |  E  +--------+  F  +---------+  G  +
         o-*-*-o        o-----o         o-*-*-o
           * *                            * *
      ****** *******                 ****** ******
      *            *                 *           *
   o--*--o      o--*--o           o--*--o     o--*--o
   |  A  |      |  B  +-----------+  C  |     |  D  |
   o-----o      o--+--o           o--+--o     o----+o
                   |                 |         ^^  | route
             data  |            data |    data ||  | to
                   |                 |         ||  | data
               o---v--o          o---v--o     o++--v-o
               | User |          | User |     | Data |
               o------o          o------o     o------o
        
                        o-----o
                  +-----+  J  +-----+
                  |     o--*--o     |
                  |        *        |
               o--+--o     *     o--+--o
               |  H  +-----------+  I  |
               o-*-*-o     *     o-*-*-o
                 * *       *       * *
            ****** ******* * ******* *******
            *            * * *             *
         o--*--o        o*-*-*o         o--*--o
         |  E  +--------+  F  +---------+  G  +
         o-*-*-o        o-----o         o-*-*-o
           * *                            * *
      ****** *******                 ****** ******
      *            *                 *           *
   o--*--o      o--*--o           o--*--o     o--*--o
   |  A  |      |  B  +-----------+  C  |     |  D  |
   o-----o      o--+--o           o--+--o     o----+o
                   |                 |         ^^  | route
             data  |            data |    data ||  | to
                   |                 |         ||  | data
               o---v--o          o---v--o     o++--v-o
               | User |          | User |     | Data |
               o------o          o------o     o------o
        
   Legend:
   *****  Transit link
   +---+  Peering link
   +--->  Data delivery or route to data
        
   Legend:
   *****  Transit link
   +---+  Peering link
   +--->  Data delivery or route to data
        

Figure 7. Tier-Based Set of Interconnections between AS A to J

图7。AS A到J之间基于层的互连集

To sum up, the evaluation of ICN architectures across multiple network types should include a combination of technical and economic aspects, capturing their various interactions. These scenarios aim to illustrate scalability, efficiency, and manageability, as well as traditional and novel network policies. Moreover, scenarios in this category should specifically address how different actors have proper incentives, not only in a pure ICN realm, but also during the migration phase towards this final state.

综上所述,跨多种网络类型的ICN体系结构评估应包括技术和经济方面的组合,捕获它们的各种交互作用。这些场景旨在说明可伸缩性、效率和可管理性,以及传统和新颖的网络策略。此外,这一类别中的情景应具体说明不同行为者如何获得适当的激励,不仅是在纯粹的ICN领域,而且是在向这一最终状态过渡的阶段。

3.2. Energy Efficiency
3.2. 能源效率

ICN has prominent features that can be taken advantage of in order to significantly reduce the energy footprint of future communication networks. Of course, one can argue that specific ICN network elements may consume more energy than today's conventional network

ICN具有显著的特点,可以利用这些特点显著降低未来通信网络的能耗。当然,可以说,特定的ICN网络元件可能比今天的传统网络消耗更多的能量

equipment due to the potentially higher energy demands for named-data processing en route. On balance, however, ICN introduces an architectural approach that may compensate on the whole and can even achieve higher energy efficiency rates when compared to the host-centric paradigm.

由于命名数据处理在途中可能需要更高的能源,因此需要更多的设备。然而,总的来说,ICN引入了一种体系结构方法,与以主机为中心的模式相比,它可以在整体上进行补偿,甚至可以实现更高的能效。

We elaborate on the energy efficiency potential of ICN based on three categories of ICN characteristics. Namely, we point out that a) ICN does not rely solely on end-to-end communication, b) ICN enables ubiquitous caching, and c) ICN brings awareness of user requests (as well as their corresponding responses) at the network layer thus permitting network elements to better schedule their transmission patterns.

我们根据三类ICN特性阐述了ICN的能源效率潜力。也就是说,我们指出a)ICN不完全依赖于端到端通信,b)ICN支持无处不在的缓存,c)ICN在网络层提供对用户请求(及其相应响应)的感知,从而允许网络元素更好地调度其传输模式。

First, ICN does not mandate perpetual end-to-end communication, which introduces a whole range of energy consumption inefficiencies due to the extensive signaling, especially in the case of mobile and wirelessly connected devices. This opens up new opportunities for accommodating sporadically connected nodes and could be one of the keys to an order-of-magnitude decrease in energy consumption compared to the potential contributions of other technological advances. For example, web applications often need to maintain state at both ends of a connection in order to verify that the authenticated peer is up and running. This introduces keep-alive timers and polling behavior with a high toll on energy consumption. Pentikousis [EEMN] discusses several related scenarios and explains why the current host-centric paradigm, which employs perpetual end-to-end connections, introduces built-in energy inefficiencies, and argues that patches to make currently deployed protocols energy-aware cannot provide for an order-of-magnitude increase in energy efficiency.

首先,ICN不强制要求永久性的端到端通信,由于广泛的信令,尤其是在移动和无线连接设备的情况下,这会导致一系列能源消耗效率低下。这为适应偶尔连接的节点打开了新的机会,与其他技术进步的潜在贡献相比,这可能是能耗降低一个数量级的关键之一。例如,web应用程序通常需要维护连接两端的状态,以便验证经过身份验证的对等方是否已启动并正在运行。这引入了保持活动的计时器和轮询行为,对能耗造成了很大的损失。Pentikousis[EEMN]讨论了几个相关的场景,并解释了为什么当前以主机为中心的模式(采用永久的端到端连接)引入了内置的能源效率低下,并认为使当前部署的协议具有能源意识的补丁无法提供一个数量级的能源效率提高。

Second, ICN network elements come with built-in caching capabilities, which is often referred to as "ubiquitous caching". Pushing data objects to caches closer to end-user devices, for example, could significantly reduce the amount of transit traffic in the core network, thereby reducing the energy used for data transport. Guan et al. [EECCN] study the energy efficiency of a CCNx architecture (based on their proposed energy model) and compare it with conventional content dissemination systems such as CDNs and P2P. Their model is based on the analysis of the topological structure and the average hop length from all consumers to the nearest cache location. Their results show that an information-centric approach can be more energy efficient in delivering popular and small-size content. In particular, they also note that different network-element design choices (e.g., the optical bypass approach) can be more energy efficient in delivering infrequently accessed content.

其次,ICN网元具有内置缓存功能,通常称为“无处不在的缓存”。例如,将数据对象推送到离最终用户设备更近的缓存可以显著减少核心网络中的传输流量,从而减少用于数据传输的能量。Guan等人[EECCN]研究了CCNx体系结构的能源效率(基于他们提出的能源模型),并将其与传统的内容传播系统(如CDN和P2P)进行了比较。他们的模型基于对拓扑结构和从所有使用者到最近缓存位置的平均跳跃长度的分析。他们的研究结果表明,以信息为中心的方法在提供受欢迎的小型内容方面可以更加节能。特别是,他们还注意到,不同的网元设计选择(例如,光旁路方法)在交付不经常访问的内容时可以更节能。

Lee et al. [EECD] investigate the energy efficiency of various network devices deployed in access, metro, and core networks for both CDNs and ICN. They use trace-based simulations to show that an ICN approach can substantially improve the network energy efficiency for content dissemination mainly due to the reduction in the number of hops required to obtain a data object, which can be served by intermediate nodes in ICN. They also emphasize that the impact of cache placement (in incremental deployment scenarios) and local/cooperative content replacement strategies needs to be carefully investigated in order to better quantify the energy efficiencies arising from adopting an ICN paradigm.

Lee等人[EECD]研究了CDN和ICN接入网、城域网和核心网中部署的各种网络设备的能效。他们使用基于跟踪的模拟来表明,ICN方法可以显著提高内容传播的网络能量效率,这主要是由于获得数据对象所需的跳数减少,ICN中的中间节点可以为数据对象提供服务。他们还强调,需要仔细研究缓存放置(在增量部署场景中)和本地/协作内容替换策略的影响,以便更好地量化采用ICN范式所产生的能源效率。

Third, ICN elements are aware of the user request and its corresponding data response; due to the nature of name-based routing, they can employ power consumption optimization processes for determining their transmission schedule or powering down inactive network interfaces. For example, network coding [NCICN] or adaptive video streaming [COAST] can be used in individual ICN elements so that redundant transmissions, possibly passing through intermediary networks, could be significantly reduced, thereby saving energy by avoiding carrying redundant traffic.

第三,ICN元素知道用户请求及其相应的数据响应;由于基于名称的路由的性质,它们可以采用功耗优化过程来确定传输计划或关闭非活动网络接口。例如,可以在各个ICN元素中使用网络编码[NCICN]或自适应视频流[COAST],以便可以显著减少可能通过中间网络的冗余传输,从而通过避免携带冗余业务来节省能量。

Alternatively, approaches that aim to simplify routers, such as [PURSUIT], could also reduce energy consumption by pushing routing decisions to a more energy-efficient entity. Along these lines, Ko et al. [ICNDC] design a data center network architecture based on ICN principles and decouple the router control-plane and data-plane functionalities. Thus, data forwarding is performed by simplified network entities, while the complicated routing computation is carried out in more energy-efficient data centers.

或者,旨在简化路由器的方法,如[PURSUIT],也可以通过将路由决策推给更节能的实体来降低能耗。沿着这些思路,Ko等人[ICNDC]基于ICN原理设计了一个数据中心网络架构,并将路由器控制平面和数据平面功能解耦。因此,数据转发由简化的网络实体执行,而复杂的路由计算则在更节能的数据中心执行。

To summarize, energy efficiency has been discussed in ICN evaluation studies, but most published work is preliminary in nature. Thus, we suggest that more work is needed in this front. Evaluating energy efficiency does not require the definition of new scenarios or baseline topologies, but does require the establishment of clear guidelines so that different ICN approaches can be compared not only in terms of scalability, for example, but also in terms of power consumption.

总之,ICN评估研究中已经讨论了能源效率,但大多数已发表的工作本质上是初步的。因此,我们建议在这方面需要做更多的工作。评估能源效率不需要定义新的场景或基线拓扑,但需要建立明确的指导方针,以便不仅可以在可扩展性方面比较不同的ICN方法,例如,还可以在功耗方面进行比较。

3.3. Operation across Multiple Network Paradigms
3.3. 跨多个网络范例的操作

Today the overwhelming majority of networks are integrated with the well-connected Internet with IP at the "waist" of the technology hourglass. However, there is a large amount of ongoing research into alternative paradigms that can cope with conditions other than the standard set assumed by the Internet. Perhaps the most advanced of these is Delay- and Disruption-Tolerant Networking (DTN). DTN is

今天,绝大多数网络都与连接良好的互联网集成,IP位于技术沙漏的“腰部”。然而,有大量正在进行的关于替代范式的研究,这些范式可以应对互联网所假设的标准集以外的条件。也许其中最先进的是延迟和中断容忍网络(DTN)。DTN是

considered as one of the scenarios for the deployment in Section 2.7, but here we consider how ICN can operate in an integrated network that has essentially disjoint "domains" (a highly overloaded term!) or regions that use different network paradigms and technologies, but with gateways that allow interoperation.

考虑到在第2.7节中部署的场景之一,但是这里我们考虑ICN如何在一个本质上不相交的“域”(一个高度过载的术语)或使用不同网络范式和技术的区域,但是允许互操作的网关的集成网络中操作。

ICN operates in terms of named data objects so that requests and deliveries of information objects can be independent of the networking paradigm. Some researchers have contemplated some form of ICN becoming the new waist of the hourglass as the basis of a future reincarnation of the Internet, e.g., [ArgICN], but there are a large number of problems to resolve, including authorization, access control, and transactional operation for applications such as banking, before some form of ICN can be considered as ready to take over from IP as the dominant networking technology. In the meantime, ICN architectures will operate in conjunction with existing network technologies as an overlay or in cooperation with the lower layers of the "native" technology.

ICN根据命名数据对象进行操作,因此信息对象的请求和交付可以独立于网络模式。一些研究人员已经设想,某种形式的ICN将成为沙漏的新腰部,作为互联网未来转世的基础,例如[ArgICN],但仍有大量问题需要解决,包括银行等应用程序的授权、访问控制和交易操作,在此之前,某种形式的ICN可以被认为已经准备好从IP接管,成为主导的网络技术。同时,ICN架构将与现有网络技术一起作为覆盖层运行,或与“本地”技术的较低层合作运行。

It seems likely that as the reach of the "Internet" is extended, other technologies such as DTN will be needed to handle scenarios such as space communications where inherent delays are too large for TCP/IP to cope with effectively. Thus, demonstrating that ICN architectures can work effectively in and across the boundaries of different networking technologies will be important.

似乎随着“互联网”的普及,需要DTN等其他技术来处理空间通信等固有延迟过大的情况,TCP/IP无法有效应对。因此,证明ICN体系结构能够在不同网络技术中有效工作并跨越不同网络技术的边界是非常重要的。

The NetInf architecture, in particular, targets the inter-domain scenario by the use of a convergence-layer architecture [SAIL-B3], and Publish-Subscribe Internet Routing Paradigm (PSIRP) and/or Publish-Subscribe Internet Technology (PURSUIT) is envisaged as a candidate for an IP replacement.

尤其是,NetInf体系结构通过使用汇聚层体系结构[SAIL-B3]针对域间场景,发布-订阅互联网路由范式(PSIRP)和/或发布-订阅互联网技术(PURSUIT)被设想为IP替换的候选方案。

The key items for evaluation over and above the satisfactory operation of the architecture in each constituent domain will be to ensure that requests and responses can be carried across the network boundaries with adequate performance and do not cause malfunctions in applications or infrastructure because of the differing characteristics of the gatewayed domains.

除了架构在每个组成域中的令人满意的运行之外,评估的关键项目将是确保请求和响应能够以足够的性能跨网络边界进行,并且不会因为架构的不同特性而导致应用程序或基础设施出现故障网关域。

4. Summary
4. 总结

This document presents a wide range of different application areas in which the use of information-centric network designs have been evaluated in the peer-reviewed literature. Evidently, this broad range of scenarios illustrates the capability of ICN to potentially address today's problems in an alternative and better way than host-centric approaches as well as to point to future scenarios where ICN may be applicable. We believe that by putting different ICN systems

本文件介绍了广泛的不同应用领域,同行评审文献中对以信息为中心的网络设计的使用进行了评估。显然,这一广泛的场景说明了ICN有能力以一种比以主机为中心的方法更好的替代方法解决当前的问题,并指出ICN可能适用的未来场景。我们相信通过放置不同的ICN系统

to the test in diverse application areas, the community will be better equipped to judge the potential of a given ICN proposal and therefore subsequently invest more effort in developing it further. It is worth noting that this document collected different kinds of considerations, as a result of our ongoing survey of the literature and the discussion within ICNRG, which we believe would have otherwise remained unnoticed in the wider community. As a result, we expect that this document can assist in fostering the applicability and future deployment of ICN over a broader set of operations, as well as possibly influencing and enhancing the base ICN proposals that are currently available and possibly assist in defining new scenarios where ICN would be applicable.

为了在不同的应用领域进行测试,社区将能够更好地判断给定ICN提案的潜力,并因此投入更多精力进一步开发。值得注意的是,由于我们正在进行的文献调查和ICNRG内部的讨论,本文件收集了不同类型的考虑因素,我们认为,如果没有这些考虑因素,更广泛的社区将不会注意到。因此,我们希望本文件能够有助于促进ICN在更广泛的一系列行动中的适用性和未来部署,并可能影响和增强当前可用的基础ICN提案,并可能有助于定义适用ICN的新场景。

We conclude this document with a brief summary of the evaluation aspects we have seen across a range of scenarios.

在结束本文档时,我们简要总结了我们在一系列场景中看到的评估方面。

The scalability of different mechanisms in an ICN architecture stands out as an important concern (cf. Sections 2.1, 2.2, 2.5, 2.6, 2.8, 2.9, and 3.1) as does network, resource, and energy efficiency (cf. Sections 2.1, 2.3, 2.4, 3.1, and 3.2). Operational aspects such as network planing, manageability, reduced complexity and overhead (cf. Sections 2.2, 2.3, 2.4, 2.8, and 3.1) should not be neglected especially as ICN architectures are evaluated with respect to their potential for deployment in the real world. Accordingly, further research in economic aspects as well as in the communication, computation, and storage tradeoffs entailed in each ICN architecture is needed.

ICN体系结构中不同机制的可伸缩性是一个重要问题(参见第2.1、2.2、2.5、2.6、2.8、2.9和3.1节),网络、资源和能源效率也是如此(参见第2.1、2.3、2.4、3.1和3.2节)。不应忽视网络规划、可管理性、降低复杂性和开销(参见第2.2、2.3、2.4、2.8和3.1节)等运营方面,尤其是在评估ICN体系结构在现实世界中的部署潜力时。因此,需要在经济方面以及在每个ICN体系结构中涉及的通信、计算和存储权衡方面进行进一步研究。

With respect to purely technical requirements, support for multicast, mobility, and caching lie at the core of many scenarios (cf. Sections 2.1, 2.3, 2.5, and 2.6). ICN must also be able to cope when the Internet expands to incorporate additional network paradigms (cf. Section 3.3). We have also seen that being able to address stringent QoS requirements and increase reliability and resilience should also be evaluated following well-established methods (cf. Sections 2.2, 2.8, and 2.9).

就纯技术需求而言,对多播、移动性和缓存的支持是许多场景的核心(参见第2.1、2.3、2.5和2.6节)。ICN还必须能够应对互联网扩展以纳入其他网络模式的情况(参见第3.3节)。我们还看到,能够满足严格的QoS要求并提高可靠性和恢复能力也应按照成熟的方法进行评估(参见第2.2、2.8和2.9节)。

Finally, we note that new applications that significantly improve the end-user experience and forge a migration path from today's host-centric paradigm could be the key to a sustained and increasing deployment of the ICN paradigm in the real world (cf. Sections 2.2, 2.3, 2.6, 2.8, and 2.9).

最后,我们注意到,显著改善最终用户体验并从今天以主机为中心的模式中构建迁移路径的新应用程序可能是在现实世界中持续不断地部署ICN模式的关键(参见第2.2、2.3、2.6、2.8和2.9节)。

5. Security Considerations
5. 安全考虑

This document does not impact the security of the Internet.

本文档不会影响Internet的安全性。

6. Informative References
6. 资料性引用

[RFC5743] Falk, A., "Definition of an Internet Research Task Force (IRTF) Document Stream", RFC 5743, December 2009, <http://www.rfc-editor.org/info/rfc5743>.

[RFC5743]Falk,A.“互联网研究工作队(IRTF)文件流的定义”,RFC 57432009年12月<http://www.rfc-editor.org/info/rfc5743>.

[RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, November 2007, <http://www.rfc-editor.org/info/rfc5050>.

[RFC5050]Scott,K.和S.Burleigh,“捆绑协议规范”,RFC 50502007年11月<http://www.rfc-editor.org/info/rfc5050>.

[RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant Networking Architecture", RFC 4838, April 2007, <http://www.rfc-editor.org/info/rfc4838>.

[RFC4838]Cerf,V.,Burleigh,S.,Hooke,A.,Torgerson,L.,Durst,R.,Scott,K.,Fall,K.,和H.Weiss,“延迟容忍网络架构”,RFC 48382007年4月<http://www.rfc-editor.org/info/rfc4838>.

[RFC5568] Koodli, R., Ed., "Mobile IPv6 Fast Handovers", RFC 5568, July 2009, <http://www.rfc-editor.org/info/rfc5568>.

[RFC5568]Koodli,R.,Ed.,“移动IPv6快速切换”,RFC 5568,2009年7月<http://www.rfc-editor.org/info/rfc5568>.

[RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B., Keranen, A., and P. Hallam-Baker, "Naming Things with Hashes", RFC 6920, April 2013, <http://www.rfc-editor.org/info/rfc6920>.

[RFC6920]Farrell,S.,Kutscher,D.,Dannewitz,C.,Ohlman,B.,Keranen,A.,和P.Hallam Baker,“用哈希命名事物”,RFC 6920,2013年4月<http://www.rfc-editor.org/info/rfc6920>.

[NetInf] Ahlgren, B. et al., "Design considerations for a network of information", Proc. CoNEXT Re-Arch Workshop, ACM, 2008.

[NetInf]Ahlgren,B.等人,“信息网络的设计考虑”,Proc。CoNEXT研究研讨会,ACM,2008年。

[CCN] Jacobson, V., et al., "Networking Named Content", Proc. CoNEXT, ACM, 2009.

[CCN]Jacobson,V.等人,“网络命名内容”,Proc。CoNEXT,ACM,2009年。

[CCNx] Mosko, M., Solis, I., and E. Uzun, "CCN 1.0 Protocol Architecture", Project CCNx documentation, Xerox Palo Alto Research Center, 2013, <http://ccnx.org/pubs/ICN_CCN_Protocols.pdf>.

[CCNx]Mosko,M.,Solis,I.,和E.Uzun,“CCN 1.0协议架构”,CCNx项目文件,施乐帕洛阿尔托研究中心,2013年<http://ccnx.org/pubs/ICN_CCN_Protocols.pdf>.

[NDNP] Zhang, L., et al., "Named Data Networking (NDN) Project", NDN Technical Report NDN-0001, Oct. 2010, <http://named-data.net/publications/techreports/>.

[NDNP]Zhang,L.等,“命名数据网络(NDN)项目”,NDN技术报告NDN-0001,2010年10月<http://named-data.net/publications/techreports/>.

[PSI] Trossen, D. and G. Parisis, "Designing and realizing an information-centric internet", IEEE Commun. Mag., vol. 50, no. 7, July 2012.

[PSI]Trossen,D.和G.Parisis,“设计和实现以信息为中心的互联网”,IEEE Common。杂志,第50卷,第7期,2012年7月。

[DONA] Koponen, T., et al., "A Data-Oriented (and Beyond) Network Architecture", Proc. SIGCOMM, ACM, 2007.

[DONA]Koponen,T.等人,“面向数据(及更高层次)的网络架构”,Proc。SIGCOMM,ACM,2007年。

[SoA1] Ahlgren, B., et al., "A survey of information-centric networking", IEEE Commun. Mag., vol. 50, no. 7, July 2012.

[SoA1]Ahlgren,B.,等人,“以信息为中心的网络调查”,IEEE Common。杂志,第50卷,第7期,2012年7月。

[SoA2] Xylomenos, G., et al. "A survey of information-centric networking research", IEEE Communications Surveys and Tutorials (2013): 1-26.

[SoA2]Xylomenos,G.等人,“以信息为中心的网络研究调查”,IEEE通信调查和教程(2013):1-26。

[ICN-SN] Mathieu, B., et al., "Information-centric networking: a natural design for social network applications", IEEE Commun. Mag., vol. 50, no. 7, July 2012.

[ICN-SN]Mathieu,B.等人,“以信息为中心的网络:社交网络应用的自然设计”,IEEE Common。杂志,第50卷,第7期,2012年7月。

[VPC] Kim, J., et al., "Content Centric Network-based Virtual Private Community", Proc. ICCE, IEEE, 2011.

[VPC]Kim,J.等人,“基于内容中心网络的虚拟私有社区”,Proc。ICCE,IEEE,2011年。

[CBIS] Jacobson, V., et al., "Custodian-Based Information Sharing", IEEE Commun. Mag., vol. 50, no. 7, July 2012.

[CBIS]Jacobson,V.等人,“基于保管人的信息共享”,IEEE Common。杂志,第50卷,第7期,2012年7月。

[VPC2] Kim, D. and J. Lee, "CCN-based virtual private community for extended home media service", IEEE Trans. Consumer Electronics, vol. 57, no. 2, May 2011.

[VPC2]Kim,D.和J.Lee,“基于CCN的扩展家庭媒体服务虚拟私人社区”,IEEE Trans。消费电子,第57卷,第2期,2011年5月。

[CCR] Arianfar, S., et al., "On content-centric router design and implications", Proc. CoNEXT Re-Arch Workshop, ACM, 2010.

[CCR]Arianfar,S.等人,“关于以内容为中心的路由器设计和影响”,Proc。CoNEXT研究研讨会,ACM,2010年。

[VoCCN] Jacobson, V., et al., "VoCCN: Voice-over Content-Centric Networks", Proc. CoNEXT Re-Arch Workshop, ACM, 2009.

[VoCCN]Jacobson,V.等人,“VoCCN:以内容为中心的网络语音”,Proc。CoNEXT研究研讨会,ACM,2009年。

[NDNpb] Xuan, Y. and Z. Yan, "Enhancing Routing Efficiency in Named Data Network with Piggybacked Interest", Proc. CFI, ACM, 2013.

[NDNpb]Xuan,Y.和Z.Yan,“利用附带利益提高命名数据网络的路由效率”,Proc。CFI,ACM,2013年。

[ACT] Zhu, Z., et al., "ACT: Audio Conference Tool Over Named Data Networking", Proc. SIGCOMM ICN Workshop, ACM, 2011.

[ACT]Zhu,Z.等人,“ACT:命名数据网络上的音频会议工具”,Proc。SIGCOMM ICN研讨会,ACM,2011年。

[G-COPSS] Chen, J., et al., "G-COPSS: A Content Centric Communication Infrastructure for Gaming Applications", Proc. ICDCS, IEEE, 2012.

[G-COPS]Chen,J.等人,“G-COPS:游戏应用程序以内容为中心的通信基础设施”,Proc。ICDCS,IEEE,2012年。

[MMIN] Pentikousis, K., and P. Bertin., "Mobility Management in Infrastructure Networks", IEEE Internet Computing 17, no. 5 (2013): 74-79.

[MMIN]Pentikousis,K.和P.Bertin.,“基础设施网络中的移动性管理”,IEEE互联网计算17,第5期(2013):74-79。

[SCES] Allman, M., et al., "Enabling an Energy-Efficient Future Internet through Selectively Connected End Systems", Proc. HotNets-VI, ACM, 2007.

[SCES]Allman,M.等人,“通过选择性连接的终端系统实现节能型未来互联网”,Proc。HotNets VI,ACM,2007年。

[EEMN] Pentikousis, K., "In Search of Energy-Efficient Mobile Networking", IEEE Commun. Mag., vol. 48, no. 1, Jan. 2010.

[EEMN]Pentikousis,K.,“寻找节能移动网络”,IEEE Common。杂志,第48卷,第1期,2010年1月。

[MOBSURV] Tyson, G., et al., "A Survey of Mobility in Information-Centric Networks: Challenges and Research Directions", Proc. MobiHoc Workshop on Emerging Name-Oriented Mobile Networking Design, ACM, 2012.

[MOBSURV]Tyson,G.等人,“信息中心网络中的移动性调查:挑战和研究方向”,Proc。MobiHoc新兴名称导向移动网络设计研讨会,ACM,2012年。

[N-Scen] Dannewitz, C., et al., "Scenarios and research issues for a Network of Information", Proc. MobiMedia, ICST, 2012.

[N-Scen]Dannewitz,C.等人,“信息网络的场景和研究问题”,Proc。MobiMedia,ICST,2012年。

[DTI] Ott, J. and D. Kutscher, "Drive-thru Internet: IEEE 802.11b for 'automobile' users", Proc. INFOCOM, IEEE, 2004.

[DTI]Ott,J.和D.Kutscher,“驾车通过互联网:面向‘汽车’用户的IEEE 802.11b”,Proc。INFOCOM,IEEE,2004年。

[PSIMob] Xylomenos, G., et al., "Caching and Mobility Support in a Publish-Subscribe Internet Architecture", IEEE Commun. Mag., vol. 50, no. 7, July 2012.

[PSIMob]Xylomenos,G.等人,“发布-订阅互联网体系结构中的缓存和移动支持”,IEEE Common。杂志,第50卷,第7期,2012年7月。

[mNetInf] Pentikousis, K. and T. Rautio, "A Multiaccess Network of Information", Proc. WoWMoM, IEEE, 2010.

[mNetInf]Pentikousis,K.和T.Rautio,“信息的多址网络”,Proc。WoWMoM,IEEE,2010年。

[HybICN] Lindgren, A., "Efficient content distribution in an information-centric hybrid mobile networks", Proc. CCNC, IEEE, 2011.

[HybICN]Lindgren,A.,“以信息为中心的混合移动网络中的高效内容分发”,Proc。CCNC,IEEE,2011年。

[E-CHANET] M. Amadeo, et al., "E-CHANET: Routing, Forwarding and Transport in Information-Centric Multihop Wireless Networks", Computer Communications, Elsevier, Jan. 2013 online.

[E-CHANET]M.Amadeo等,“E-CHANET:以信息为中心的多跳无线网络中的路由、转发和传输”,计算机通信,爱思唯尔,2013年1月在线。

[MobiA] Meisel, M., et al., "Ad Hoc Networking via Named Data", Proc. MobiArch, ACM 2010.

[MobiA]Meisel,M.等人,“通过命名数据的临时网络”,Proc。MobiArch,ACM 2010。

[CCNMANET] Oh, S. Y., et al., "Content Centric Networking in Tactical and Emergency MANETs", Proc. Wireless Days, IFIP, 2010.

[CCNMANET]Oh,S.Y.,等人,“战术和应急移动自组网中以内容为中心的网络”,Proc。无线日,IFIP,2010年。

[RTIND] Wang, L., et al., "Rapid Traffic Information Dissemination Using Named Data", Proc. MobiHoc NoM workshop, ACM, 2012.

[RTIND]Wang,L.,等人,“使用命名数据快速传播交通信息”,Proc。MobiHoc NoM研讨会,ACM,2012年。

[CCNVANET] Amadeo, M., et al., "Content-Centric Networking: is that a Solution for Upcoming Vehicular Networks?", Proc. VANET, ACM, 2012.

[CCNVANET]Amadeo,M.等人,“以内容为中心的网络:这是未来车辆网络的解决方案吗?”,Proc。瓦内,ACM,2012年。

[ABC] Gustafsson, E., and A. Jonsson. "Always best connected", Wireless Communications, IEEE 10.1 (2003): 49-55.

[ABC]古斯塔夫森,E.和A.琼森。“始终最佳连接”,无线通信,IEEE 10.1(2003):49-55。

[SHARE] Muscariello, L., et al., "Bandwidth and storage sharing performance in information centric networking", Proc. SIGCOMM ICN Workshop, ACM, 2011.

[SHARE]Muscariello,L.等人,“以信息为中心的网络中的带宽和存储共享性能”,Proc。SIGCOMM ICN研讨会,ACM,2011年。

[CL4M] Chai, W. K., et al., "Cache 'Less for More' in Information-centric Networks", Proc. Networking, IFIP, 2012.

[CL4M]Chai,W.K.,等人,“以信息为中心的网络中的缓存“以少换多”,Proc。网络,IFIP,2012年。

[CCNCT] Psaras, I., et al., "Modelling and Evaluation of CCN-Caching Trees", In Proc. of the 10th international IFIP conference on Networking, Valencia, Spain, May 2011.

[CCNCT]Psaras,I.,等,“CCN缓存树的建模和评估”,在Proc。2011年5月在西班牙巴伦西亚举行的第十届国际互联网信息平台网络会议。

[BTCACHE] Tyson, G., et al., "A Trace-Driven Analysis of Caching in Content-Centric Networks", Proc. ICCCN, IEEE, 2012.

[BTCACHE]Tyson,G.等人,“以内容为中心的网络中缓存的跟踪驱动分析”,Proc。ICCCN,IEEE,2012年。

[CURLING] Chai, W. K., et al., "CURLING: Content-Ubiquitous Resolution and Delivery Infrastructure for Next-Generation Services", IEEE Commun. Mag., vol. 49, no. 3, Mar. 2011.

[CURLING]Chai,W.K.,等人,“CURLING:下一代服务的内容无所不在的解决方案和交付基础设施”,IEEE Common。杂志,第49卷,第3期,2011年3月。

[ACDICN] Fotiou, N., et al., "Access control enforcement delegation for information-centric networking architectures", Proc. SIGCOMM ICN Workshop, ACM, 2012.

[ACDICN]Fotiou,N.,等人,“以信息为中心的网络体系结构的访问控制强制授权”,Proc。SIGCOMM ICN研讨会,ACM,2012年。

[EWC] Bai, F. and B. Krishnamachari, "Exploiting the wisdom of the crowd: localized, distributed information-centric VANETs", IEEE Commun. Mag., vol. 48, no. 5, May 2010.

[EWC]Bai,F.和B.Krishnamachari,“利用人群的智慧:本地化、分布式的以信息为中心的VANET”,IEEE Commun。杂志,第48卷,第5期,2010年5月。

[DMND] Wang, J., R. Wakikawa, and L. Zhang, "DMND: Collecting data from mobiles using Named Data", Proc. Vehicular Networking Conference (VNC), IEEE, 2010.

[DMND]Wang,J.,R.Wakikawa和L.Zhang,“DMND:使用命名数据从手机收集数据”,Proc。车辆网络会议(VNC),IEEE,2010年。

[DNV2V] Wang, L., et al., "Data Naming in Vehicle-to-Vehicle Communications", Proc. INFOCOM NOMEN workshop, IEEE, 2012.

[DNV2V]Wang,L.等人,“车对车通信中的数据命名”,Proc。INFOCOM NOMEN研讨会,IEEE,2012年。

[CCNHV] Arnould, G., et al., "A Self-Organizing Content Centric Network Model for Hybrid Vehicular Ad-Hoc Networks". Proc. DIVANet, ACM, 2011.

[CCNHV]Arnold,G.等人,“混合车辆自组织内容中心网络模型”。过程。迪瓦内,ACM,2011年。

[CCDIVN] TalebiFard, P. and V.C.M. Leung, "A Content Centric Approach to Dissemination of Information in Vehicular Networks", Proc. DIVANet, ACM, 2012.

[CCDIVN]TalebiFard,P.和V.C.M.Leung,“以内容为中心的车载网络信息传播方法”,Proc。迪瓦内,ACM,2012年。

[CRoWN] Amadeo, M., et al., "CRoWN: Content-Centric Networking in Vehicular Ad Hoc Networks", IEEE Communications Letters, vol. 16, no. 9, Sept. 2012.

[CRoWN]Amadeo,M.等人,“CRoWN:车载自组织网络中以内容为中心的网络”,《IEEE通信快报》,第16卷,第9期,2012年9月。

[SCN] Hoydis, J., et al., "Green small-cell networks", IEEE Vehicular Technology Magazine, vol. 6, no.1, pp. 37-43, March 2011.

[SCN]Hoydis,J.等人,“绿色小细胞网络”,IEEE车辆技术杂志,第6卷,第1期,第37-43页,2011年3月。

[HetNet] Li, H., et al. "Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture", IEEE Wireless Communications, vol. 18, no.3, pp. 72-78, June 2011.

[HetNet]Li,H.等人,“使用宽带无线接入和光纤连接的大规模分布式天线架构实现高效HetNet”,IEEE无线通信,第18卷,第3期,第72-78页,2011年6月。

[ArgICN] Trossen, D., et al., "Arguments for an information centric internetworking architecture", ACM SIGCOMM CCR, 40:26-33, Apr. 2010.

[ArgICN]Trossen,D.等人,“以信息为中心的互联体系结构的论点”,ACM SIGCOMM CCR,40:26-332010年4月。

[EconICN] Agyapong, P. and M. Sirbu, "Economic Incentives in Information Centric Networking: Implications for Protocol Design and Public Policy", IEEE Commun. Mag., vol. 50, no. 12, Dec. 2012.

[EconICN]Agyapong,P.和M.Sirbu,“信息中心网络中的经济激励:对协议设计和公共政策的影响”,IEEE Common。杂志,第50卷,第12期,2012年12月。

[SAIL-B3] Kutscher, D., Ed., et al., "Final NetInf Architecture", SAIL Project Deliverable D-B.3, Jan. 2013, <http://www.sail-project.eu/deliverables/>.

[SAIL-B3]Kutscher,D.,Ed.,et al.,“最终NetInf架构”,SAIL项目交付成果D-B.3,2013年1月<http://www.sail-project.eu/deliverables/>.

[MLDHT] Liu, H., et al., "A multi-level DHT routing framework with aggregation", Proc. SIGCOMM ICN Workshop, ACM, 2012.

[MLDHT]Liu,H.等人,“具有聚合的多级DHT路由框架”,Proc。SIGCOMM ICN研讨会,ACM,2012年。

[NCOA] Ghodsi, A., et al., "Naming in Content-oriented Architectures", Proc. SIGCOMM ICN Workshop, ACM, 2011.

[NCOA]Ghodsi,A.等人,“面向内容的体系结构中的命名”,Proc。SIGCOMM ICN研讨会,ACM,2011年。

[RP-NDN] DiBenedetto, S., et al., "Routing policies in named data networking", Proc. SIGCOMM ICN Workshop, ACM, 2011.

[RP-NDN]DiBenedetto,S.等人,“命名数据网络中的路由策略”,Proc。SIGCOMM ICN研讨会,ACM,2011年。

[SAIL-A7] Salo, J., Ed., et al., "New business models and business dynamics of the future networks", SAIL Project Deliverable D-A.7, Aug. 2011, <http://www.sail-project.eu/deliverables/>.

[SAIL-A7]Salo,J.,Ed.,等人,“未来网络的新商业模式和商业动态”,SAIL项目交付成果D-A.7,2011年8月<http://www.sail-project.eu/deliverables/>.

[SAIL-A8] Zhang, N., Ed., et al., "Evaluation of business models", SAIL Project Deliverable D-A.8, Jan. 2013, <http://www.sail-project.eu/deliverables/>.

[SAIL-A8]Zhang,N.,Ed.,等,“商业模式评估”,SAIL项目交付成果D-A.8,2013年1月<http://www.sail-project.eu/deliverables/>.

[LIPSIN] Jokela, P., et al., "LIPSIN: line speed publish/subscribe inter-networking", Proc. of ACM SIGCOMM 2009.

[LIPSIN]Jokela,P.等人,“LIPSIN:线速发布/订阅互联网络”,Proc。2009年ACM SIGCOMM会议。

[LANES] Visala, K., et al., "LANES: An Inter-Domain Data-Oriented Routing Architecture", Proc. CoNEXT Re-Arch Workshop, ACM, 2009.

[LANES]Visala,K.等人,“LANES:一种面向域间数据的路由架构”,Proc。CoNEXT研究研讨会,ACM,2009年。

[PSIRP1] Rajahalme, J., et al., "Inter-Domain Rendezvous Service Architecture", PSIRP Technical Report TR09-003, Dec. 2009.

[PSIRP1]Rajahalme,J.等人,“域间会合服务架构”,PSIRP技术报告TR09-003,2009年12月。

[ICCP] Rajahalme J., et al., "Incentive-Compatible Caching and Peering in Data-Oriented Networks", Proc. CoNEXT Re-Arch Workshop, ACM, 2008.

[ICCP]Rajahalme J.,等,“面向数据网络中的激励兼容缓存和对等”,Proc。CoNEXT研究研讨会,ACM,2008年。

[IDMcast] Rajahalme, J., "Incentive-informed Inter-domain Multicast", Proc. Global Internet Symposium 2010.

[IDMcast]Rajahalme,J.,“激励信息域间多播”,Proc。2010年全球互联网研讨会。

[IDArch] Rajahalme, J., "Inter-domain incentives and Internet architecture", PhD. Dissertation, Aalto University, Aug. 2012.

[IDArch]Rajahalme,J.,“域间激励和互联网架构”,博士。论文,阿尔托大学,2012年8月。

[PURSUIT] Fotiou, N., et al., "Developing Information Networking Further: From PSIRP to PURSUIT", Proc. BROADNETS, ICST, 2010.

[PURSUIT]Fotiou,N.等人,“进一步发展信息网络:从PSIRP到PURSUIT”,Proc。BROADNETS,ICST,2010年。

[EECCN] Guan, K., et al., "On the Energy Efficiency of Content Delivery Architectures", Proc. ICC Workshops, IEEE, 2011.

[EECCN]Guan,K.,等人,“关于内容交付架构的能源效率”,Proc。国际商会研讨会,IEEE,2011年。

[EECD] Lee, U., Rimac, I., Kilper, D., and V. Hilt, "Toward energy-efficient content dissemination", IEEE Network, vol. 25, no. 2, March-April 2011.

[EECD]Lee,U.,Rimac,I.,Kilper,D.,和V.Hilt,“走向节能内容传播”,IEEE网络,第25卷,第2期,2011年3-4月。

[NCICN] Montpetit, M. J., Westphal, C., and D. Trossen, "Network coding meets information-centric networking: an architectural case for information dispersion through native network coding", Proc. MOBIHOC NoM Workshop, ACM, 2012.

[NCICN]Montpetit,M.J.,Westphal,C.和D.Trossen,“网络编码满足以信息为中心的网络:通过本机网络编码实现信息分散的架构案例”,Proc。MOBIHOC NoM研讨会,ACM,2012年。

[COAST] Gruneberg, K., et al., "File format specification and 3D video codec", COAST Project Deliverable D5.1, July 2011, <http://www.coast-fp7.eu/deliverables.html>.

[COAST]Gruneberg,K.,等人,“文件格式规范和3D视频编解码器”,COAST项目交付成果D5.11911年7月<http://www.coast-fp7.eu/deliverables.html>.

[ICNDC] Ko, B. J., Pappas, V., Raghavendra, R., Song, Y., Dilmaghani, R. B., Lee, K.-w., and D. Verma, "An information-centric architecture for data center networks", Proc. SIGCOMM ICN Workshop, ACM, 2012.

[ICNDC]Ko,B.J.,Pappas,V.,Raghavendra,R.,Song,Y.,Dilmaghani,R.B.,Lee,K.-w.,和D.Verma,“数据中心网络的以信息为中心的架构”,Proc。SIGCOMM ICN研讨会,ACM,2012年。

[DTN] Fall, K., "A delay-tolerant network architecture for challenged internets", Proc. SIGCOMM, ACM, 2003.

[DTN]Fall,K.,“挑战互联网的延迟容忍网络架构”,Proc。SIGCOMM,ACM,2003年。

[DTNICN] Tyson, G., Bigham, J., and E. Bodanese, "Towards an Information-Centric Delay-Tolerant Network", Proc. IEEE INFOCOM NOMEN 2013, Turin, Italy.

[DTNICN]Tyson,G.,Bigham,J.,和E.Bodanese,“迈向以信息为中心的延迟容忍网络”,Proc。IEEE INFOCOM NOMEN 2013,意大利都灵。

[BPQ] Farrell, S., Lynch, A., Kutscher, D., and A. Lindgren, "Bundle Protocol Query Extension Block", Work in Progress, draft-irtf-dtnrg-bpq-00, May 2012.

[BPQ]Farrell,S.,Lynch,A.,Kutscher,D.,和A.Lindgren,“捆绑协议查询扩展块”,正在进行的工作,草稿-irtf-dtnrg-BPQ-00,2012年5月。

[SLINKY] Kawadia, V., Riga, N., Opper, J., and D. Sampath, "Slinky: An adaptive protocol for content access in disruption-tolerant ad hoc networks", in Proc. MobiHoc Workshop on Tactical Mobile Ad Hoc Networking, 2011.

[SLINKY]Kawadia,V.,Riga,N.,Opper,J.,和D.Sampath,“SLINKY:一种用于抗干扰ad hoc网络中内容访问的自适应协议”,在Proc。MobiHoc战术移动自组网研讨会,2011年。

[ONE] "The Opportunistic Network Environment simulator", <http://www.netlab.tkk.fi/tutkimus/dtn/theone>.

[1]“机会主义网络环境模拟器”<http://www.netlab.tkk.fi/tutkimus/dtn/theone>.

[TWIMIGHT] Hossmann, T., et al. "Twitter in disaster mode: smart probing for opportunistic peers", Proc. 3rd ACM International Workshop on Mobile Opportunistic Networks, ACM, 2012.

[Twimay]Hossmann,T.等人,《灾难模式下的Twitter:机会主义同行的智能探测》,Proc。第三届ACM移动机会主义网络国际研讨会,ACM,2012年。

[MODEL1] Uddin, M.Y.S., Nicol, D.M., Abdelzaher, T.F., and R.H. Kravets, "A post-disaster mobility model for Delay Tolerant Networking", Simulation Conference (WSC), Proceedings of the 2009 Winter, pp. 2785-2796, 13-16 Dec. 2009.

[MODEL1]Uddin,M.Y.S.,Nicol,D.M.,Abdelzaher,T.F.和R.H.Kravets,“用于延迟容忍网络的灾后移动模型”,模拟会议(WSC),2009年冬季会议记录,第2785-2796页,2009年12月13-16日。

[MODEL2] Aschenbruck, N., Gerhards-Padilla, E., and P. Martini, "Modeling mobility in disaster area scenarios", Performance Evaluation 66, no. 12 (2009): 773-790.

[MODEL2]Aschenbruck,N.,Gerhards Padilla,E.,和P.Martini,“灾区情景下的流动性建模”,绩效评估66,第12期(2009):773-790。

[MODEL3] Cabrero, S., Paneda, X.G., Plagemann, T., Melendi, D., and R. Garcia, "An Overlay Routing Protocol for Video over sparse MANETs in Emergencies", Cadernos de Informatica 6, no. 1 (2011): 195-202.

[MODEL3]Cabrero,S.,Paneda,X.G.,Plagemann,T.,Melendi,D.,和R.Garcia,“紧急情况下稀疏移动自组网上的视频覆盖路由协议”,Cadernos de Informatica 6,第1期(2011):195-202。

[IoTEx] Burke, J., "Authoring Place-based Experiences with an Internet of Things: Tussles of Expressive, Operational, and Participatory Goals", Position Paper, Interconnecting Smart Objects with the Internet Workshop, IAB, 2011.

[IoTEx]Burke,J.,“利用物联网创作基于场所的体验:表达性、操作性和参与性目标的斗争”,立场文件,智能对象与互联网研讨会互联,IAB,2011年。

[IWMT] Kutscher, D. and S. Farrell, "Towards an Information-Centric Internet with more Things", Position Paper, Interconnecting Smart Objects with the Internet Workshop, IAB, 2011.

[IWMT]Kutscher,D.和S.Farrell,“迈向以信息为中心、拥有更多东西的互联网”,立场论文,智能对象与互联网互联研讨会,IAB,2011年。

[nWSN] Heidemann, J., et al., "Building efficient wireless sensor networks with low-level naming", Proc. SOSP, ACM, 2001.

[nWSN]Heidemann,J.等人,“利用低层命名构建高效的无线传感器网络”,Proc。SOSP,ACM,2001年。

[NDNl] Burke, J., et al., "Authenticated Lighting Control Using Named Data Networking", NDN Technical Report NDN-0011, Oct. 2012.

[NDNl]Burke,J.等人,“使用命名数据网络的认证照明控制”,NDN技术报告NDN-001112012年10月。

[CIBUS] Biswas, T., et al., "Contextualized Information-Centric Home Network", Proc. ACM SIGCOMM, ACM, 2013.

[CIBUS]Biswas,T.,等人,“情境化信息中心家庭网络”,Proc。ACM SIGCOMM,ACM,2013年。

[Homenet] Ravindran, R., et al., "Information-centric Networking based Homenet", Proc. International Workshop on Management of the Future Internet (ManFI), IFIP/IEEE, 2013.

[Homenet]Ravindran,R.等人,“基于Homenet的以信息为中心的网络”,Proc。未来互联网管理国际研讨会(ManFI),IFIP/IEEE,2013年。

[IoTScope] Marias, G.F., et al., "Efficient information lookup for the Internet of Things", Proc. WoWMoM, IEEE, 2012.

[IoScope]Marias,G.F.等人,“物联网的高效信息查找”,Proc。WoWMoM,IEEE,2012年。

[ICN-DHT] Katsaros, K., et al., "On inter-domain name resolution for information-centric networks", Proc. Networking, Springer, 2012.

[ICN-DHT]Katsaros,K.等人,“关于以信息为中心的网络的域名解析”,Proc。网络,斯普林格,2012年。

[SEMANT] Sheth, A., et al., "Semantic Sensor Web," Internet Computing, IEEE , vol. 12, no. 4, pp.78-83, July-Aug. 2008

[SEMANT]Sheth,A.,等人,“语义传感器网络”,互联网计算,IEEE,第12卷,第4期,第78-832008年7月至8月

[CPG] Cianci, I., et al., "Content Centric Services in Smart Cities", Proc. NGMAST, IEEE, 2012.

[CPG]Cianci,I.等人,“智能城市中以内容为中心的服务”,Proc。NGMAST,IEEE,2012年。

[MVM] Hernndez-Munoz, J.M., et al., "Smart cities at the forefront of the future Internet", The Future Internet, Springer, 2011.

[MVM]Hernndez Munoz,J.M.等,“未来互联网前沿的智慧城市”,未来互联网,斯普林格,2011年。

[iHEMS] Zhang, J., et al., "iHEMS: An Information-Centric Approach to Secure Home Energy Management", Proc. SmartGridComm, IEEE, 2012.

[iHEMS]Zhang,J.等人,“iHEMS:一种以信息为中心的安全家庭能源管理方法”,Proc。SmartGridComm,IEEE,2012年。

[ACC] Andreini, F., et al., "A scalable architecture for geo-localized service access in smart cities", Proc. Future Network and Mobile Summit, IEEE, 2011.

[ACC]Andreini,F.等人,“智能城市地理本地化服务接入的可扩展架构”,Proc。未来网络和移动峰会,IEEE,2011年。

[IB] Idowu, S. and N. Bari, "A Development Framework for Smart City Services, Integrating Smart City Service Components", Master's Thesis, Lulea University of Technology, 2012.

[IB ] Idowu、S.和N. Bari,“智能城市服务的发展框架,整合智能城市服务组件”,硕士论文,Lulea技术大学,2012。

[ISODIS] ISO/DIS, "Sustainable development and resilience of communities --Indicators for city services and quality of life", ISO/DIS 37120, 2013.

[ISODIS]ISO/DIS,“社区可持续发展和恢复力——城市服务和生活质量指标”,ISO/DIS 371202013。

[EVAL-METHOD] Pentikousis, K., Ed., Ohlman, B., Davies, E., Spirou, S., Boggia, G., and P. Mahadevan, "Information-centric Networking: Evaluation Methodology", Work in Progress, draft-irtf-icnrg-evaluation-methodology-00, July 2014.

[评估方法]Pentikousis,K.,Ed.,Ohlman,B.,Davies,E.,Spirou,S.,Boggia,G.,和P.Mahadevan,“以信息为中心的网络:评估方法”,正在进行的工作,草稿-irtf-icnrg-Evaluation-Methodology-00,2014年7月。

[CHALLENGES] Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I., Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch, "ICN Research Challenges", Work in Progress, draft-irtf-icnrg-challenges-01, February 2015.

[CHALLENGES]Kutscher,D.,Ed.,Eum,S.,Pentikousis,K.,Psaras,I.,Corujo,D.,Saucez,D.,Schmidt,T.,和M.Waehlisch,“ICN研究挑战”,进展中的工作,草稿-irtf-icnrg-CHALLENGES-012015年2月。

Acknowledgments

致谢

Dorothy Gellert contributed to an earlier draft version of this document.

Dorothy Gellert为本文件的早期草案做出了贡献。

This document has benefited from reviews, pointers to the growing ICN literature, suggestions, comments, and proposed text provided by the following members of the IRTF Information-Centric Networking Research Group (ICNRG), listed in alphabetical order: Marica Amadeo, Hitoshi Asaeda, Claudia Campolo, Luigi Alfredo Grieco, Myeong-Wuk Jang, Ren Jing, Will Liu, Hongbin Luo, Priya Mahadevan, Ioannis Psaras, Spiros Spirou, Dirk Trossen, Jianping Wang, Yuanzhe Xuan, and Xinwen Zhang.

本文件得益于IRTF信息中心网络研究小组(ICNRG)以下成员提供的评论、指向不断增长的ICN文献的指针、建议、评论和建议文本,按字母顺序排列:Marica Amadeo、Hitoshi Asaeda、Claudia Campolo、Luigi Alfredo Grieco、Myeong Wuk Jang、Ren Jing、,威尔•刘、罗洪斌、普里亚•马哈德万、伊奥尼斯•诗篇、斯皮罗斯•斯皮鲁、德克•特罗森、王建平、袁哲轩和张新文。

The authors would like to thank Mark Stapp, Juan Carlos Zuniga, and G.Q. Wang for their comments and suggestions as part of their open and independent review of this document within ICNRG.

作者要感谢Mark Stapp、Juan Carlos Zuniga和G.Q.Wang的评论和建议,作为ICNRG对本文件公开和独立审查的一部分。

Authors' Addresses

作者地址

Kostas Pentikousis (editor) EICT GmbH Torgauer Strasse 12-15 10829 Berlin Germany

Kostas Pentikousis(编辑)EICT GmbH Torgauer Strasse 12-15 10829德国柏林

   EMail: k.pentikousis@eict.de
        
   EMail: k.pentikousis@eict.de
        

Borje Ohlman Ericsson Research S-16480 Stockholm Sweden

Borje Ohlman Ericsson Research S-16480瑞典斯德哥尔摩

   EMail: Borje.Ohlman@ericsson.com
        
   EMail: Borje.Ohlman@ericsson.com
        

Daniel Corujo Instituto de Telecomunicacoes Campus Universitario de Santiago P-3810-193 Aveiro Portugal

丹尼尔·科鲁乔电信学院圣地亚哥大学校园P-3810-193葡萄牙阿维罗

   EMail: dcorujo@av.it.pt
        
   EMail: dcorujo@av.it.pt
        

Gennaro Boggia Dep. of Electrical and Information Engineering Politecnico di Bari Via Orabona 4 70125 Bari Italy

意大利巴里经Orabona 4 70125巴黎理工大学电气和信息工程系Gennaro Boggia

   EMail: g.boggia@poliba.it
        
   EMail: g.boggia@poliba.it
        

Gareth Tyson School and Electronic Engineering and Computer Science Queen Mary, University of London United Kingdom

Gareth Tyson School与电子工程与计算机科学,伦敦大学英国女王玛丽

   EMail: gareth.tyson@eecs.qmul.ac.uk
        
   EMail: gareth.tyson@eecs.qmul.ac.uk
        

Elwyn Davies Trinity College Dublin/Folly Consulting Ltd Dublin, 2 Ireland

都柏林艾尔温·戴维斯三一学院/富利咨询有限公司都柏林,2爱尔兰

   EMail: davieseb@scss.tcd.ie
        
   EMail: davieseb@scss.tcd.ie
        

Antonella Molinaro Dep. of Information, Infrastructures, and Sustainable Energy Engineering Universita' Mediterranea di Reggio Calabria Via Graziella 1 89100 Reggio Calabria Italy

Antonella Molinaro信息、基础设施和可持续能源工程副教授意大利雷吉奥卡拉布里亚医学院

   EMail: antonella.molinaro@unirc.it
        
   EMail: antonella.molinaro@unirc.it
        

Suyong Eum National Institute of Information and Communications Technology 4-2-1, Nukui Kitamachi, Koganei Tokyo 184-8795 Japan

Suyong Eum国家信息和通信技术研究所4-2-1,日本东京高加内北天町Nukui 184-8795

   Phone: +81-42-327-6582
   EMail: suyong@nict.go.jp
        
   Phone: +81-42-327-6582
   EMail: suyong@nict.go.jp