Internet Engineering Task Force (IETF)                           H. Zhai
Request for Comments: 7357                                         F. Hu
Updates: 6325                                                        ZTE
Category: Standards Track                                     R. Perlman
ISSN: 2070-1721                                               Intel Labs
                                                         D. Eastlake 3rd
                                                                  Huawei
                                                               O. Stokes
                                                        Extreme Networks
                                                          September 2014
        
Internet Engineering Task Force (IETF)                           H. Zhai
Request for Comments: 7357                                         F. Hu
Updates: 6325                                                        ZTE
Category: Standards Track                                     R. Perlman
ISSN: 2070-1721                                               Intel Labs
                                                         D. Eastlake 3rd
                                                                  Huawei
                                                               O. Stokes
                                                        Extreme Networks
                                                          September 2014
        

Transparent Interconnection of Lots of Links (TRILL): End Station Address Distribution Information (ESADI) Protocol

大量链路的透明互连(TRILL):端站地址分配信息(ESADI)协议

Abstract

摘要

The IETF TRILL (Transparent Interconnection of Lots of Links) protocol provides least-cost pair-wise data forwarding without configuration in multi-hop networks with arbitrary topologies and link technologies. TRILL supports multipathing of both unicast and multicast traffic. Devices that implement the TRILL protocol are called TRILL switches or RBridges (Routing Bridges).

IETF TRILL(大量链路的透明互连)协议在具有任意拓扑和链路技术的多跳网络中提供无需配置的最低成本成对数据转发。TRILL支持单播和多播流量的多路径传输。实现TRILL协议的设备称为TRILL交换机或RBridge(路由桥)。

ESADI (End Station Address Distribution Information) is an optional protocol by which a TRILL switch can communicate, in a Data Label (VLAN or fine-grained label) scoped way, end station address and reachability information to TRILL switches participating in ESADI for the relevant Data Label. This document updates RFC 6325, specifically the documentation of the ESADI protocol, and is not backwards compatible.

ESADI(端站地址分布信息)是一种可选协议,通过该协议,TRILL交换机可以以数据标签(VLAN或细粒度标签)作用域的方式,将端站地址和可达性信息通信给参与ESADI的TRILL交换机,以获取相关数据标签。本文档更新了RFC 6325,特别是ESADI协议的文档,并且不向后兼容。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7357.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc7357.

Copyright Notice

版权公告

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2014 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

Table of Contents

目录

   1. Introduction ....................................................4
      1.1. Content and Precedence .....................................5
      1.2. Terminology ................................................5
   2. ESADI Protocol Overview .........................................6
      2.1. ESADI Virtual Link ........................................10
      2.2. ESADI Neighbor Determination ..............................10
      2.3. ESADI Payloads ............................................11
   3. ESADI DRB (Designated RBridge) Determination ...................11
   4. ESADI PDU Processing ...........................................12
      4.1. Unicasting ESADI PDUs .....................................12
      4.2. General Transmission of ESADI PDUs ........................13
      4.3. General Receipt of ESADI PDUs .............................14
      4.4. ESADI Reliable Flooding ...................................14
   5. End Station Addresses ..........................................15
      5.1. Learning Confidence Level .................................15
      5.2. Forgetting End Station Addresses ..........................16
      5.3. Duplicate MAC Address .....................................16
   6. ESADI-LSP Contents .............................................18
      6.1. ESADI Parameter Data ......................................19
      6.2. MAC-Reachability TLV ......................................20
      6.3. Default Authentication ....................................21
   7. IANA Considerations ............................................21
      7.1. ESADI Participation and Capability Flags ..................22
      7.2. TRILL GENINFO TLV .........................................23
   8. Security Considerations ........................................24
      8.1. Privacy Considerations ....................................25
   9. Acknowledgements ...............................................26
   10. References ....................................................26
      10.1. Normative References .....................................26
      10.2. Informative References ...................................28
   Appendix A. Interoperability and Changes to RFC 6325 ..............29
      A.1. ESADI PDU Changes .........................................29
      A.2. Unicasting Changes ........................................30
      A.3. Message Timing Changes and Suggestions ....................30
      A.4. Duplicate Address Reachability ............................30
        
   1. Introduction ....................................................4
      1.1. Content and Precedence .....................................5
      1.2. Terminology ................................................5
   2. ESADI Protocol Overview .........................................6
      2.1. ESADI Virtual Link ........................................10
      2.2. ESADI Neighbor Determination ..............................10
      2.3. ESADI Payloads ............................................11
   3. ESADI DRB (Designated RBridge) Determination ...................11
   4. ESADI PDU Processing ...........................................12
      4.1. Unicasting ESADI PDUs .....................................12
      4.2. General Transmission of ESADI PDUs ........................13
      4.3. General Receipt of ESADI PDUs .............................14
      4.4. ESADI Reliable Flooding ...................................14
   5. End Station Addresses ..........................................15
      5.1. Learning Confidence Level .................................15
      5.2. Forgetting End Station Addresses ..........................16
      5.3. Duplicate MAC Address .....................................16
   6. ESADI-LSP Contents .............................................18
      6.1. ESADI Parameter Data ......................................19
      6.2. MAC-Reachability TLV ......................................20
      6.3. Default Authentication ....................................21
   7. IANA Considerations ............................................21
      7.1. ESADI Participation and Capability Flags ..................22
      7.2. TRILL GENINFO TLV .........................................23
   8. Security Considerations ........................................24
      8.1. Privacy Considerations ....................................25
   9. Acknowledgements ...............................................26
   10. References ....................................................26
      10.1. Normative References .....................................26
      10.2. Informative References ...................................28
   Appendix A. Interoperability and Changes to RFC 6325 ..............29
      A.1. ESADI PDU Changes .........................................29
      A.2. Unicasting Changes ........................................30
      A.3. Message Timing Changes and Suggestions ....................30
      A.4. Duplicate Address Reachability ............................30
        
1. Introduction
1. 介绍

The TRILL (Transparent Interconnection of Lots of Links) protocol [RFC6325] provides least-cost pair-wise data forwarding without configuration in multi-hop networks with arbitrary topologies and link technologies, safe forwarding even during periods of temporary loops, and support for multipathing of both unicast and multicast traffic. TRILL accomplishes this with the IS-IS (Intermediate System to Intermediate System) [IS-IS] [RFC1195] [RFC7176] link-state routing protocol using a header with a hop count. The design supports optimization of the distribution of multi-destination frames and two types of data labeling: VLANs (Virtual Local Area Networks) [RFC6325] and FGLs (fine-grained labels) [RFC7172]. Devices that implement TRILL are called TRILL switches or RBridges (Routing Bridges).

TRILL(大量链路的透明互连)协议[RFC6325]在具有任意拓扑和链路技术的多跳网络中提供无需配置的最低成本成对数据转发,即使在临时环路期间也能安全转发,并支持单播和多播流量的多路径传输。TRILL通过IS-IS(中间系统到中间系统)[IS-IS][RFC1195][RFC7176]链路状态路由协议,使用带有跳数的报头来实现这一点。该设计支持优化多目标帧的分布和两种类型的数据标签:VLAN(虚拟局域网)[RFC6325]和FGLs(细粒度标签)[RFC7172]。实现TRILL的设备称为TRILL交换机或RBridge(路由桥)。

There are five ways a TRILL switch can learn end station addresses, as described in Section 4.8 of [RFC6325]. One of these is the ESADI (End Station Address Distribution Information) protocol, which is an optional Data Label scoped way by which TRILL switches can communicate with each other information such as end station addresses and their TRILL switch of attachment. A TRILL switch that is announcing interest in a Data Label MAY use the ESADI protocol to announce the end station address of some or all of its attached end stations in that Data Label to other TRILL switches that are running ESADI for that Data Label. (In the future, ESADI may also be used for other address and reachability information.)

如[RFC6325]第4.8节所述,颤音开关可通过五种方式学习终端站地址。其中之一是ESADI(终端站地址分布信息)协议,这是一种可选的数据标签范围的方式,TRILL交换机可以通过该方式相互通信信息,例如终端站地址及其连接的TRILL交换机。宣布对数据标签感兴趣的TRILL交换机可使用ESADI协议向运行该数据标签ESADI的其他TRILL交换机宣布其在该数据标签中的部分或所有附加终端站的终端站地址。(将来,ESADI还可用于其他地址和可达性信息。)

By default, TRILL switches with connected end stations learn addresses from the data plane when ingressing and egressing native frames, although such learning can be disabled. The ESADI protocol's potential advantages over data plane learning include the following:

默认情况下,带有连接端站的TRILL交换机在进入和退出本机帧时从数据平面学习地址,尽管这种学习可以被禁用。ESADI协议相对于数据平面学习的潜在优势包括:

1. Security advantages:

1. 安全优势:

a) The ESADI protocol can be used to announce end stations with an authenticated enrollment (for example, enrollment authenticated by cryptographically based EAP (Extensible Authentication Protocol) [RFC3748] methods via [802.1X]).

a) ESADI协议可用于宣布具有经过认证的注册的终端站(例如,通过基于密码的EAP(可扩展认证协议)[RFC3748]方法通过[802.1X]认证的注册)。

b) The ESADI protocol supports cryptographic authentication of its message payloads for more secure transmission.

b) ESADI协议支持对其消息有效负载进行加密身份验证,以实现更安全的传输。

2. Fast update advantages: The ESADI protocol provides a fast update of end station MAC (Media Access Control) addresses and their TRILL switch of attachment. If an end station is unplugged from one TRILL switch and plugged into another, ingressed frames with that end station's MAC address as their destination can be

2. 快速更新优势:ESADI协议提供了终端站MAC(媒体访问控制)地址及其连接TRILL切换的快速更新。如果将一个终端站从一个TRILL交换机上拔下并插入另一个交换机,则可以使用该终端站的MAC地址作为其目的地的进入帧

black-holed. That is, they can be sent just to the older egress TRILL switch that the end station was connected to until cached address information at some remote ingress TRILL switch times out, possibly for tens of seconds [RFC6325].

黑洞。也就是说,它们可以只发送到终端站连接到的较旧的出口颤音交换机,直到某个远程入口颤音交换机的缓存地址信息超时,可能会持续数十秒[RFC6325]。

MAC address reachability information, some ESADI parameters, and optional authentication information are carried in ESADI packets rather than in the TRILL IS-IS protocol. As specified below, ESADI is, for each Data Label, a virtual logical topology overlay in the TRILL topology. An advantage of using ESADI over using TRILL IS-IS is that the end station attachment information is not flooded to all TRILL switches but only to TRILL switches advertising ESADI participation for the Data Label in which those end stations occur.

MAC地址可达性信息、一些ESADI参数和可选身份验证信息在ESADI数据包中而不是在TRILL IS-IS协议中携带。如下所述,对于每个数据标签,ESADI都是TRILL拓扑中的虚拟逻辑拓扑覆盖。与TRILL IS-IS相比,使用ESADI的一个优点是,终端站连接信息不会被淹没到所有TRILL交换机,而只会被淹没到TRILL交换机,这些交换机为这些终端站所在的数据标签宣传ESADI参与。

1.1. Content and Precedence
1.1. 内容和优先权

This document updates [RFC6325], the TRILL base protocol specification, replacing the description of the TRILL ESADI protocol (Section 4.2.5 of [RFC6325], including all subsections), providing more detail on ESADI, updating other ESADI-related sections of [RFC6325], and prevailing over [RFC6325] in any case where they conflict. For this reason, familiarity with [RFC6325] is particularly assumed. These changes include a change to the format of ESADI-LSPs (ESADI Link State Protocol Data Units) that is not backwards compatible; this change is justified by the substantially increased amount of information that can be carried and in light of the very limited, if any, deployment of RFC 6325 ESADI. These changes are further discussed in Appendix A.

本文件更新了TRILL基本协议规范[RFC6325],取代了TRILL ESADI协议的说明(包括所有小节)[RFC6325]第4.2.5节),提供了关于ESADI的更多详细信息,更新了[RFC6325]中与ESADI相关的其他章节,并在与[RFC6325]冲突的任何情况下优先于[RFC6325]。出于这个原因,特别假设熟悉[RFC6325]。这些变更包括对ESADI LSP(ESADI链路状态协议数据单元)格式的变更,该格式不向后兼容;由于可携带的信息量大幅增加,以及RFC 6325 ESADI的部署非常有限(如有),这一变化是合理的。附录A进一步讨论了这些变化。

Section 2 of this document is the ESADI protocol overview. Section 3 specifies ESADI DRB (Designated RBridge) determination. Section 4 discusses the processing of ESADI PDUs. Section 5 discusses interaction with other modes of end station address learning. Section 6 describes the ESADI-LSP and its contents.

本文件第2节为ESADI协议概述。第3节规定了ESADI DRB(指定RBridge)的确定。第4节讨论了ESADI PDU的处理。第5节讨论了与终端站地址学习的其他模式的交互。第6节描述了ESADI-LSP及其内容。

1.2. Terminology
1.2. 术语

This document uses the acronyms defined in [RFC6325], in addition to the following:

除以下内容外,本文件使用[RFC6325]中定义的首字母缩略词:

Data Label: VLAN or FGL.

数据标签:VLAN或FGL。

ESADI RBridge: An RBridge that is participating in ESADI for one or more Data Labels.

ESADI RBridge:参与一个或多个数据标签的ESADI的RBridge。

FGL: Fine-Grained Label [RFC7172].

FGL:细粒度标签[RFC7172]。

LSP: Link State PDU [IS-IS].

LSP:链路状态PDU[IS-IS]。

LSP number zero: A Link State PDU with fragment number equal to zero.

LSP编号为零:片段编号等于零的链路状态PDU。

PDU: Protocol Data Unit.

协议数据单元。

TRILL switch: An alternative name for an RBridge.

颤音开关:RBridge的另一个名称。

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

Capitalized IANA-related terms such as "IETF Review" are to be interpreted as described in [RFC5226].

大写的IANA相关术语,如“IETF审查”,应按照[RFC5226]中所述进行解释。

2. ESADI Protocol Overview
2. ESADI协议概述

ESADI is a Data Label scoped way for TRILL switches (also known as RBridges) to announce and learn end station addresses rapidly and securely. An RBridge that is announcing participation in ESADI for one or more Data Labels is called an ESADI RBridge.

ESADI是一种用于TRILL交换机(也称为RBridges)的数据标签范围的方式,用于快速、安全地宣布和学习终端站地址。宣布参与一个或多个数据标签的ESADI的RBridge称为ESADI RBridge。

ESADI is an optional protocol that is separate from the mandatory TRILL IS-IS implemented by all RBridges in a campus. There is a separate ESADI instance for each Data Label (VLAN or FGL) if ESADI is being used for that Data Label. In essence, for each such Data Label, there is a modified instance of the IS-IS reliable flooding mechanism in which ESADI RBridges may choose to participate. (These are not the instances specified in [RFC6822].) Multiple ESADI instances may share implementation components within an RBridge as long as that sharing preserves the independent operation of each instance of the ESADI protocol. For example, the ESADI link state database could be a single database with a field in each record indicating the Data Label to which it applies, or it could be a separate database per Data Label. However, the ESADI update process operates separately for each ESADI instance and independently from the TRILL IS-IS update process.

ESADI是一项可选协议,与校园内所有RBridge实施的强制性TRILL is-is分离。如果ESADI用于每个数据标签(VLAN或FGL),则每个数据标签都有一个单独的ESADI实例。本质上,对于每个这样的数据标签,都有一个is-is可靠泛洪机制的修改实例,ESADI RBridges可以选择参与其中。(这些不是[RFC6822]中指定的实例)。多个ESADI实例可以共享RBridge中的实现组件,只要该共享保持ESADI协议的每个实例的独立操作。例如,ESADI链路状态数据库可以是单个数据库,每个记录中都有一个字段,指示其应用的数据标签,也可以是每个数据标签的单独数据库。但是,ESADI更新过程对每个ESADI实例单独运行,并且独立于TRILL IS-IS更新过程。

ESADI does no routing calculations, so there is no reason for pseudonodes in ESADI and none are created. (Pseudonodes [IS-IS] are a construct for optimizing routing calculations.) Furthermore, a relatively large amount of ESADI data will have to be distributed, under some circumstances, using ESADI mechanisms; this would require a large number of ESADI-LSP fragments. ESADI-LSP, ESADI-CSNP, and ESADI-PSNP (ESADI Link State PDU, Complete Sequence Number PDU, and Partial Sequence Number PDU) payloads are therefore formatted as Extended Level 1 Circuit Scope (E-L1CS) PDUs [RFC7356] (see also Section 6). This allows up to 2**16 fragments but does not support link state data associated with pseudonodes.

ESADI不进行路由计算,因此没有理由在ESADI中使用伪节点,也不会创建任何伪节点。(伪节点[IS-IS]是一种用于优化路由计算的结构。)此外,在某些情况下,必须使用ESADI机制分发相对大量的ESADI数据;这将需要大量ESADI-LSP片段。因此,ESADI-LSP、ESADI-CSNP和ESADI-PSNP(ESADI链路状态PDU、完整序列号PDU和部分序列号PDU)有效载荷被格式化为扩展1级电路范围(E-L1CS)PDU[RFC7356](另见第6节)。这允许最多2**16个片段,但不支持与伪节点关联的链路状态数据。

After the TRILL Header, ESADI packets have an inner Ethernet header with the Inner.MacDA of "All-Egress-RBridges" (formerly called "All-ESADI-RBridges"), an inner Data Label specifying the VLAN or FGL of interest, and the "L2-IS-IS" Ethertype followed by the ESADI payload, as shown in Figure 1.

在TRILL报头之后,ESADI数据包有一个内部以太网报头,其inner.MacDA为“所有出口RBridges”(以前称为“所有ESADI RBridges”)、一个指定感兴趣的VLAN或FGL的内部数据标签,以及“L2-IS-IS”以太类型,后跟ESADI有效负载,如图1所示。

                     +--------------------------------+
                     |          Link Header           |
                     +--------------------------------+
                     |       TRILL Data Header        |
                     +--------------------------------+
                     |   Inner Ethernet Addresses     |
                     +--------------------------------+
                     |           Data Label           |
                     +--------------------------------+
                     |       L2-IS-IS Ethertype       |
                     +--------------------------------+
                     |         ESADI Payload          |
                     +--------------------------------+
                     |          Link Trailer          |
                     +--------------------------------+
        
                     +--------------------------------+
                     |          Link Header           |
                     +--------------------------------+
                     |       TRILL Data Header        |
                     +--------------------------------+
                     |   Inner Ethernet Addresses     |
                     +--------------------------------+
                     |           Data Label           |
                     +--------------------------------+
                     |       L2-IS-IS Ethertype       |
                     +--------------------------------+
                     |         ESADI Payload          |
                     +--------------------------------+
                     |          Link Trailer          |
                     +--------------------------------+
        

Figure 1: TRILL ESADI Packet Overview

图1:TRILL ESADI数据包概述

TRILL ESADI packets sent on an Ethernet link are structured as shown in Figure 2. The outer VLAN tag will not be present if it was not included by the Ethernet port that sent the packet.

在以太网链路上发送的TRILL ESADI数据包的结构如图2所示。如果发送数据包的以太网端口未包含外部VLAN标记,则外部VLAN标记将不存在。

   Outer Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Next Hop Destination Address                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Next Hop Destination Addr.    | Sending RBridge Port MAC Addr.|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Sending RBridge Port MAC Address              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ...Ethernet frame tagging including optional Outer.VLAN tag...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype = TRILL      0x22F3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   TRILL Header:                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                      | V | R |M|Op-Length| Hop Count |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Egress Nickname               | Ingress (Origin) Nickname     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Inner Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      All-Egress-RBridges                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | All-Egress-RBridges (cont.)   | Origin RBridge MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Origin RBridge MAC Address (continued)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  VLAN or FGL Data Label (4 or 8 bytes) [RFC7172] ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype = L2-IS-IS   0x22F4 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ESADI Payload (formatted as IS-IS):
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | IS-IS Common Header, IS-IS PDU Specific Fields, IS-IS TLVs    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Frame Check Sequence:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  FCS (Frame Check Sequence)                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   Outer Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Next Hop Destination Address                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Next Hop Destination Addr.    | Sending RBridge Port MAC Addr.|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Sending RBridge Port MAC Address              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ...Ethernet frame tagging including optional Outer.VLAN tag...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype = TRILL      0x22F3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   TRILL Header:                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                      | V | R |M|Op-Length| Hop Count |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Egress Nickname               | Ingress (Origin) Nickname     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Inner Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      All-Egress-RBridges                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | All-Egress-RBridges (cont.)   | Origin RBridge MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Origin RBridge MAC Address (continued)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  VLAN or FGL Data Label (4 or 8 bytes) [RFC7172] ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype = L2-IS-IS   0x22F4 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ESADI Payload (formatted as IS-IS):
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | IS-IS Common Header, IS-IS PDU Specific Fields, IS-IS TLVs    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Frame Check Sequence:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  FCS (Frame Check Sequence)                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 2: ESADI Ethernet Link Packet Format

图2:ESADI以太网链路数据包格式

The Next Hop Destination Address or Outer.MacDA is the All-RBridges multicast address if the ESADI PDU is being multicast. If it is being unicast, the Next Hop Destination Address is the unicast address of the next-hop RBridge. The VLAN for the Outer.VLAN

如果ESADI PDU正在进行多播,则下一跳目标地址或Outer.MacDA是所有RBridges多播地址。如果是单播,则下一跳目标地址是下一跳RBridge的单播地址。外部VLAN的VLAN。VLAN

information, if present, will be the Designated VLAN for the link on which the packet is sent. The V and R fields will be zero while the M bit will be one, unless the ESADI PDU was unicast, in which case the M bit will be zero. The Data Label specified will be the VLAN or FGL to which the ESADI packet applies. The Origin RBridge MAC Address or Inner.MacSA MUST be a MAC address unique across the campus owned by the RBridge originating the ESADI packet -- for example, any of its port MAC addresses if it has any Ethernet ports -- and each ESADI RBridge MUST use the same Inner.MacSA for all of the ESADI packets it originates.

信息(如果存在)将是发送数据包的链路的指定VLAN。V和R字段将为零,而M位将为1,除非ESADI PDU是单播的,在这种情况下,M位将为零。指定的数据标签将是ESADI数据包应用的VLAN或FGL。源RBridge MAC地址或Inner.MacSA必须是发起ESADI数据包的RBridge所拥有的校园内唯一的MAC地址,例如,其任何端口MAC地址(如果有以太网端口),并且每个ESADI RBridge必须对其发起的所有ESADI数据包使用相同的Inner.MacSA。

TRILL ESADI packets sent on a PPP link are structured as shown in Figure 3 [RFC6361].

在PPP链路上发送的TRILL ESADI数据包的结构如图3所示[RFC6361]。

   PPP Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | PPP = TNP (TRILL Data) 0x005D |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   TRILL Header:                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                      | V | R |M|Op-Length| Hop Count |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Egress Nickname               | Ingress (Origin) Nickname     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Inner Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      All-Egress-RBridges                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | All-Egress-RBridges (cont.)   | Origin RBridge MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Origin RBridge MAC Address (continued)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  VLAN or FGL Data Label (4 or 8 bytes) [RFC7172] ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype = L2-IS-IS   0x22F4 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ESADI Payload (formatted as IS-IS):
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | IS-IS Common Header, IS-IS PDU Specific Fields, IS-IS TLVs    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   PPP Check Sequence:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       PPP Check Sequence                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
   PPP Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | PPP = TNP (TRILL Data) 0x005D |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   TRILL Header:                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                      | V | R |M|Op-Length| Hop Count |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Egress Nickname               | Ingress (Origin) Nickname     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Inner Ethernet Header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      All-Egress-RBridges                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | All-Egress-RBridges (cont.)   | Origin RBridge MAC Address    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               Origin RBridge MAC Address (continued)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  VLAN or FGL Data Label (4 or 8 bytes) [RFC7172] ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Ethertype = L2-IS-IS   0x22F4 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ESADI Payload (formatted as IS-IS):
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | IS-IS Common Header, IS-IS PDU Specific Fields, IS-IS TLVs    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   PPP Check Sequence:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       PPP Check Sequence                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Figure 3: ESADI PPP Link Packet Format

图3:ESADI PPP链路数据包格式

2.1. ESADI Virtual Link
2.1. ESADI虚拟链路

All RBridges forward ESADI packets as if they were ordinary TRILL Data packets. Because of this forwarding, it appears to an instance of the ESADI protocol at an RBridge that it is directly connected by a multi-access virtual link to all RBridges in the campus that are "data reachable" from it (see Section 2 of [RFC7180]) and are running ESADI for that Data Label. No "routing" calculation (least-cost path or distribution tree construction) ever has to be performed by ESADI. An ESADI RBridge merely transmits the ESADI packets it originates on this virtual link as described for TRILL Data packets in [RFC6325] and [RFC7172]. For multicast ESADI packets, it may use any distribution tree that it might use for an ordinary multi-destination TRILL Data packet. RBridges that do not implement the ESADI protocol, do not have it enabled, or are not participating in the ESADI protocol for the Data Label of an ESADI packet do not decapsulate or locally process the ESADI packet. Thus, ESADI packets are transparently tunneled through transit RBridges.

所有RBridge转发ESADI数据包,就好像它们是普通TRILL数据包一样。由于这种转发,在RBridge上的ESADI协议实例看来,它通过多址虚拟链路直接连接到校园中的所有RBridge,这些RBridge可以从它“访问数据”(参见[RFC7180]第2节),并且正在为该数据标签运行ESADI。ESADI无需执行任何“路由”计算(最低成本路径或配电树构建)。ESADI RBridge仅传输其在该虚拟链路上发起的ESADI数据包,如[RFC6325]和[RFC7172]中对TRILL数据包所述。对于多播ESADI数据包,它可以使用它可能用于普通多目的地TRILL数据包的任何分发树。未实施ESADI协议、未启用ESADI协议或未参与ESADI数据包数据标签的ESADI协议的RBridge不会解除ESADI数据包的封装或本地处理ESADI数据包。因此,ESADI数据包透明地通过传输桥进行隧道传输。

2.2. ESADI Neighbor Determination
2.2. ESADI邻域测定

The ESADI instance for Data Label X at an RBridge RB1 determines who its adjacent ESADI neighbors are by examining the TRILL IS-IS link state database for RBridges that are data reachable from RB1 (see Section 2 of [RFC7180]) and are announcing their participation in Data Label X ESADI. When an RBridge RB2 becomes data unreachable from RB1 or the relevant entries for RB2 are purged from the core IS-IS link state database, it is lost as a neighbor and also dropped from any ESADI instances from the point of view of RB1, and when RB2 is no longer announcing participation in Data Label X ESADI, it ceases to be a neighbor for any Data Label X ESADI instance. All these considerations are Data Label scoped. Because of these mechanisms whereby an ESADI instance at an ESADI RBridge can determine its ESADI adjacencies by examining the TRILL IS-IS link state database, there are no "Hellos" sent in ESADI and no adjacency information is carried in ESADI-LSPs.

RBridge RB1上数据标签X的ESADI实例通过检查RBridge的TRILL IS-IS链路状态数据库确定其相邻ESADI邻居,该RBridge的数据可从RB1访问(见[RFC7180]第2节),并宣布其参与数据标签X ESADI。当RBridge RB2变得无法从RB1访问数据,或者RB2的相关条目从核心IS-IS链路状态数据库中清除时,从RB1的角度来看,它将作为邻居丢失,并从任何ESADI实例中删除,并且当RB2不再宣布参与数据标签X ESADI时,它不再是任何数据标签X ESADI实例的邻居。所有这些注意事项都属于数据标签范围。由于ESADI RBridge上的ESADI实例可以通过检查TRILL IS-IS链路状态数据库来确定其ESADI邻接的这些机制,因此ESADI中没有发送“Hello”,ESADI LSP中也没有邻接信息。

A participation announcement in a VLAN scoped ESADI instance is generated by setting a flag bit in the Interested VLANs sub-TLV, and an announcement for an FGL scoped ESADI instance is generated by setting a flag bit in the Interested Labels sub-TLV [RFC7176] (see Section 7.1).

VLAN作用域ESADI实例中的参与公告通过在相关VLAN子TLV中设置标志位生成,FGL作用域ESADI实例的公告通过在相关标签子TLV[RFC7176]中设置标志位生成(见第7.1节)。

2.3. ESADI Payloads
2.3. ESADI有效载荷

TRILL ESADI packet payloads are structured like IS-IS Extended Level 1 Circuit Scope (E-L1CS) LSP, CSNP, and PSNP PDUs [RFC7356], except as indicated below, but are always TRILL encapsulated on the wire as if they were TRILL Data packets. The information distributed by the ESADI protocol includes a list of local end station MAC addresses connected to the originating RBridge and, for each such address, a 1-octet unsigned "Confidence" rating in the range 0-254 (see Section 6.2). It is entirely up to the originating RBridge which locally connected MAC addresses it wishes to advertise via ESADI and with what Confidence. It MAY advertise all, some, or none of such addresses. In addition, some ESADI parameters of the advertising RBridge (see Section 6.1) and, optionally, authentication information (see Section 6.3) are included. Future uses of ESADI may distribute other similar address and reachability information.

TRILL ESADI数据包有效载荷的结构类似于IS-IS扩展1级电路范围(E-L1CS)LSP、CSNP和PSNP PDU[RFC7356],如下所示除外,但始终将TRILL封装在电线上,就像它们是TRILL数据包一样。ESADI协议分发的信息包括连接到原始RBridge的本地终端站MAC地址列表,以及对于每个此类地址,0-254范围内的1-octet无符号“置信度”评级(见第6.2节)。这完全取决于发起RBridge的本地连接MAC地址,它希望通过ESADI进行宣传,并且有多大的信心。它可能会公布所有、部分或全部地址。此外,还包括广告RBridge的一些ESADI参数(见第6.1节)和(可选)认证信息(见第6.3节)。ESADI的未来使用可能会分发其他类似的地址和可达性信息。

TRILL ESADI-LSPs MUST NOT contain a Data Label ID in their payload. The Data Label to which the ESADI data applies is the Data Label of the TRILL Data packet enclosing the ESADI payload. If a Data Label ID could occur within the payload, it might conflict with that TRILL Data packet Data Label and could conflict with any future Data Label mapping scheme that may be adopted [VLANmapping]. If a VLAN or FGL ID field within an ESADI-LSP PDU does include a value, that field's contents MUST be ignored.

TRILL ESADI LSP的有效负载中不得包含数据标签ID。ESADI数据适用的数据标签是包含ESADI有效载荷的TRILL数据包的数据标签。如果有效负载中可能出现数据标签ID,则它可能与该TRILL数据包数据标签冲突,并且可能与将来可能采用的任何数据标签映射方案冲突[VLANmapping]。如果ESADI-LSP PDU中的VLAN或FGL ID字段包含值,则必须忽略该字段的内容。

3. ESADI DRB (Designated RBridge) Determination
3. ESADI DRB(指定RBridge)测定

Because ESADI does no adjacency announcement or routing, the ESADI-DRB never creates a pseudonode. However, a DRB [RFC7177] is still needed to issue ESADI-CSNP PDUs and respond to ESADI-PSNP PDUs for ESADI-LSP synchronization.

由于ESADI不进行邻接通告或路由,因此ESADI-DRB从不创建伪节点。但是,仍然需要DRB[RFC7177]来发出ESADI-CSNP PDU并响应ESADI-PSNP PDU以进行ESADI-LSP同步。

Generally speaking, the DRB election on the ESADI virtual link (see Section 2.1) operates similarly to the DRB election on a TRILL IS-IS broadcast link, as described in Section 4.2.1 ("DRB Election Details") of [RFC7177], with the following exceptions: in the Data Label X ESADI-DRB election at RB1 on an ESADI virtual link, the candidates are the local ESADI instance for Data Label X and all remote ESADI instances at RBridges that are (1) data reachable from RB1 [RFC7180] and (2) announcing in their TRILL IS-IS LSP that they are participating in ESADI for Data Label X. The winner is the instance with the highest ESADI Parameter 7-bit priority field with ties broken by the System ID, comparing fields as unsigned integers with the larger magnitude considered higher priority. "SNPA/MAC address" (Subnetwork Point of Attachment / MAC address) is not considered in this tiebreaking, and there is no "Port ID".

一般而言,ESADI虚拟链路上的DRB选择(见第2.1节)的操作与[RFC7177]第4.2.1节(“DRB选择详情”)中所述的TRILL IS-IS广播链路上的DRB选择类似,但以下例外情况除外:在ESADI虚拟链路上RB1的数据标签X ESADI-DRB选择中,候选实例是数据标签X的本地ESADI实例和RBridges上的所有远程ESADI实例,它们(1)可以从RB1[RFC7180]和(2)访问数据在TRILL IS-IS LSP中宣布,他们正在参与数据标签X的ESADI。获胜者是具有最高ESADI参数7位优先级字段的实例,该字段由系统ID断开,将字段作为无符号整数进行比较,并将其视为具有更高优先级的较大数值。“SNPA/MAC地址”(子网连接点/MAC地址)不在本分接中考虑,并且没有“端口ID”。

4. ESADI PDU Processing
4. ESADI PDU处理

Data Label X ESADI neighbors are usually not connected directly by a physical link but are always logically connected by a virtual link (see Section 2.1). There could be hundreds or thousands of ESADI RBridges (TRILL switches) on the virtual link. The only PDUs used in ESADI are the ESADI-LSP, ESADI-CSNP, and ESADI-PSNP PDUs. In particular, there are no Hello or MTU PDUs, because ESADI does not build a topology, does not do any routing calculations, and does not determine MTU. Instead, ESADI uses the distribution trees and the Sz campus minimum link MTU determined by the core TRILL IS-IS (see [RFC6325] and [RFC7180]).

数据标签X ESADI邻居通常不通过物理链路直接连接,而是通过虚拟链路进行逻辑连接(见第2.1节)。虚拟链路上可能有数百或数千个ESADI RBridge(颤音开关)。ESADI中使用的唯一PDU是ESADI-LSP、ESADI-CSNP和ESADI-PSNP PDU。特别是,没有Hello或MTU PDU,因为ESADI不构建拓扑,不进行任何路由计算,也不确定MTU。相反,ESADI使用分布树和由核心TRILL IS-IS确定的Sz校园最小链路MTU(参见[RFC6325]和[RFC7180])。

4.1. Unicasting ESADI PDUs
4.1. 单播ESADI PDU

For [IS-IS], PDU multicasting is normal on a local link and no effort is made to optimize to unicast, because on the typical physical link for which IS-IS was designed (commonly a piece of multi-access Ethernet cable), any frame made the link busy for that frame time. However, to ESADI instances, what appears to be a simple multi-access link is generally a set of multi-hop distribution trees that may or may not be pruned. Thus, transmitting a multicast frame on such a tree can impose a substantially greater load than transmitting a unicast frame. This load may be justified if there are likely to be multiple listeners but may not be justified if there is only one recipient of interest. For this reason, under some circumstances, ESADI PDUs MAY be TRILL unicast if it is confirmed that the destination RBridge supports receiving unicast ESADI PDUs (see Section 6.1).

对于[IS-IS],PDU多播在本地链路上是正常的,并且没有努力优化为单播,因为在为其设计IS-IS的典型物理链路上(通常是一根多址以太网电缆),任何帧都会使链路在该帧时间内忙。然而,对于ESADI实例来说,看似简单的多址链路通常是一组多跳分布树,可以修剪也可以不修剪。因此,在这样的树上传输多播帧可以施加比传输单播帧更大的负载。如果可能有多个侦听器,则此负载可能是合理的,但如果只有一个感兴趣的接收者,则此负载可能是不合理的。因此,在某些情况下,如果确认目的地RBridge支持接收单播ESADI PDU,则ESADI PDU可能为TRILL单播(见第6.1节)。

The format of a unicast ESADI packet is the format of a multicast TRILL ESADI packet as described in Section 2 above, except as follows:

单播ESADI数据包的格式为上文第2节所述的多播TRILL ESADI数据包的格式,以下情况除外:

o On an Ethernet link, in the outer Ethernet header the Outer.MacDA is the unicast address of the next-hop RBridge.

o 在以太网链路上,在外部以太网报头中,outer.MacDA是下一跳RBridge的单播地址。

o In the TRILL Header, the M bit is set to zero and the Egress Nickname is the nickname of the destination RBridge.

o 在TRILL报头中,M位设置为零,出口昵称是目的地RBridge的昵称。

To support unicasting of ESADI PDUs, Section 4.6.2.2 of [RFC6325] is replaced with the following:

为支持ESADI PDU的单播,[RFC6325]第4.6.2.2节替换为以下内容:

4.6.2.2. TRILL ESADI Packets

4.6.2.2. TRILL-ESADI包

If M = 1, the egress nickname designates the distribution tree. The packet is forwarded as described in Section 4.6.2.5. In addition, if (1) the forwarding RBridge is interested in the specified VLAN or fine-grained label [RFC7172], (2) the forwarding RBridge implements the TRILL ESADI protocol, and (3) ESADI is enabled for the specified VLAN or fine-grained label, then the inner frame is decapsulated and provided to that local ESADI protocol.

如果M=1,则出口昵称指定分布树。按照第4.6.2.5节所述转发数据包。此外,如果(1)转发RBridge对指定的VLAN或细粒度标签[RFC7172]感兴趣,(2)转发RBridge实现TRILL ESADI协议,以及(3)为指定的VLAN或细粒度标签启用ESADI,则内部帧被解封装并提供给该本地ESADI协议。

If M = 0 and the egress nickname is not that of the receiving RBridge, the packet is forwarded as for known unicast TRILL Data frames as described in Section 4.6.2.4. If M = 0 and the egress nickname is that of the receiving RBridge, and the receiving RBridge supports unicast ESADI PDUs, then the ESADI packet is decapsulated and processed if it meets the three numbered conditions in the paragraph above; otherwise, it is discarded.

如果M=0且出口昵称不是接收RBridge的昵称,则按照第4.6.2.4节中所述的已知单播TRILL数据帧转发分组。如果M=0并且出口昵称是接收RBridge的出口昵称,并且接收RBridge支持单播ESADI pdu,则如果ESADI分组满足上述段落中的三个编号条件,则对其进行去封装和处理;否则,它将被丢弃。

The references to "4.6.2.2", "4.6.2.4", and "4.6.2.5" above refer to those sections in [RFC6325].

上文提及的“4.6.2.2”、“4.6.2.4”和“4.6.2.5”指的是[RFC6325]中的章节。

4.2. General Transmission of ESADI PDUs
4.2. ESADI PDU的一般传输

Following the usual [IS-IS] rules, an ESADI instance does not transmit any ESADI PDUs if it has no ESADI adjacencies. Such transmission would just be a waste of bandwidth.

按照通常的[IS-IS]规则,如果ESADI实例没有ESADI邻接,则不会传输任何ESADI PDU。这样的传输只会浪费带宽。

The MTU available to ESADI payloads is at least 24 bytes less than that available to TRILL IS-IS because of the additional fields required ( 2(TRILL Ethertype) + 6(TRILL Header) + 6(Inner.MacDA) + 6(Inner.MacSA) + 4/8(Data Label) bytes ). Thus, the inner ESADI payload, starting with the Intradomain Routeing Protocol Discriminator byte, MUST NOT exceed Sz minus 24 for a VLAN ESADI instance or Sz minus 28 for an FGL ESADI instance; however, if a larger payload is received, it is processed normally (see [RFC6325] and [RFC7180] for discussions of Sz and MTU).

由于需要额外的字段(2(TRILL Ethertype)+6(TRILL Header)+6(Inner.MacDA)+6(Inner.MacSA)+4/8(数据标签)字节),因此ESADI有效负载可用的MTU至少比TRILL is-is可用的MTU少24字节。因此,内部ESADI有效载荷(从域内路由协议鉴别器字节开始)对于VLAN ESADI实例不得超过Sz减24,对于FGL ESADI实例不得超过Sz减28;但是,如果收到较大的有效载荷,则会正常处理(有关Sz和MTU的讨论,请参见[RFC6325]和[RFC7180])。

In all cases where this document says that an ESADI PDU is multicast, if the transmitting RBridge has only one neighbor and that neighbor advertises support for unicast, the PDU MAY be unicast (see Section 4.1).

在本文件规定ESADI PDU为多播的所有情况下,如果传输RBridge只有一个邻居且该邻居宣传支持单播,则PDU可能为单播(见第4.1节)。

A priority bit to indicate that an LSP fragment should be flooded with high priority is provided by [RFC7356]. This bit SHOULD be set on ESADI-LSP fragment zero because it is important that the ESADI Parameter APPsub-TLV get through promptly. This bit SHOULD NOT be set on other ESADI-LSP fragments to avoid giving undue priority to less urgent PDUs.

[RFC7356]提供了一个优先级位,用于指示LSP片段应被高优先级淹没。该位应设置在ESADI-LSP片段零上,因为ESADI参数APPsub TLV必须及时通过。不应在其他ESADI-LSP片段上设置此位,以避免对不太紧急的PDU给予不适当的优先级。

4.3. General Receipt of ESADI PDUs
4.3. ESADI PDU的一般收据

In contrast with Layer 3 IS-IS PDU acceptance tests, which check the source inner and outer SNPA/MAC in order to verify that a PDU is from an adjacent TRILL switch, in TRILL ESADI adjacency is based on the system ID, so the system ID inside the PDU is all that is tested for.

与第3层IS-IS PDU验收测试相反,第3层IS-IS PDU验收测试检查源内部和外部SNPA/MAC,以验证PDU是否来自相邻的TRILL交换机,而TRILL ESADI邻接基于系统ID,因此PDU内的系统ID是所有测试的对象。

If an ESADI instance believes that it has no ESADI neighbors, it ignores any ESADI PDUs it receives.

如果ESADI实例认为它没有ESADI邻居,它将忽略它接收到的任何ESADI PDU。

4.4. ESADI Reliable Flooding
4.4. ESADI可靠注水

The IS-IS reliable flooding mechanism (the Update Process) is modified for ESADI in the ways listed below. Except as otherwise stated, the ESADI update process works as described in [IS-IS], [RFC1195], and [RFC7356].

IS-IS可靠泛洪机制(更新过程)针对ESADI进行了如下修改。除非另有说明,否则ESADI更新过程按照[IS-IS]、[RFC1195]和[RFC7356]中的说明工作。

When an ESADI instance sees that it has a new ESADI neighbor, its self-originated ESADI-LSP fragments are scheduled to be sent and MAY be unicast to that neighbor if the neighbor is announcing in its LSP that it supports unicast ESADI (see Section 6.1). If all the other ESADI instances for the same Data Label send their self-originated ESADI-LSPs immediately, there may be a surge of traffic to that new neighbor. Therefore, the ESADI instances SHOULD wait an interval of time before sending their ESADI-LSP(s) to a new neighbor. The interval time value is up to the device implementation. One suggestion is that the interval time can be assigned a random value with a range based on the RBridge's nickname (or any one of its nicknames, if it holds more than one), such as ( 2000 * nickname / 2**16 ) milliseconds, assuming "nickname" to be an unsigned quantity.

当一个ESADI实例发现它有一个新的ESADI邻居时,它的自创ESADI-LSP片段将被安排发送,如果邻居在其LSP中宣布它支持单播ESADI,则可以单播到该邻居(参见第6.1节)。如果同一数据标签的所有其他ESADI实例立即发送其自创的ESADI LSP,则可能会有大量流量流向该新邻居。因此,ESADI实例在向新邻居发送ESADI-LSP之前应该等待一段时间。间隔时间值取决于设备实现。一个建议是,可以根据RBridge的昵称(或其任何一个昵称,如果它拥有多个昵称)为间隔时间分配一个随机值,例如(2000*昵称/2**16)毫秒,假设“昵称”为无符号量。

All the TRILL switches participating in an ESADI instance for some Data Label appear to ESADI to be adjacent. Thus, the originator of any active ESADI-LSP fragment always appears to be on link and, to spread the burden of such a response, could be the RBridge to respond to any ESADI-CSNP or PSNP request for that fragment. However, under very rare circumstances, it could be that some version of the LSP fragment with a higher sequence number is actually held by another ESADI RBridge on the link, so non-originators need to be able to respond eventually. Thus, when the receipt of a CSNP or PSNP causes the SRMflag (Send Routing Message flag [IS-IS]) to be set for an LSP

在ESADI看来,参与某个数据标签的ESADI实例的所有TRILL开关都是相邻的。因此,任何活动ESADI-LSP片段的发起人似乎总是处于链接状态,为了分散此类响应的负担,可能是响应该片段的任何ESADI-CSNP或PSNP请求的RBridge。然而,在非常罕见的情况下,可能是具有更高序列号的LSP片段的某些版本实际上由链路上的另一个ESADI RBridge持有,因此非发起人最终需要能够作出响应。因此,当接收CSNP或PSNP导致为LSP设置SRMflag(发送路由消息标志[IS-IS])时

fragment, action is as specified in [IS-IS] for the originating ESADI RBridge of the fragment; however, at a non-originating ESADI RBridge, when changing the SRMflag from 0 to 1, the lastSent timestamp [IS-IS] is also set to the current time minus

片段,作用如[is-is]中针对片段的原始ESADI RBridge所规定;然而,在非始发ESADI RBridge,当将SRMflag从0更改为1时,lastSent时间戳[IS-IS]也设置为当前时间减

minimumLSPTransmissionInterval * Random (Jitter) / 100

最小LSPTTransmissionInterval*随机(抖动)/100

(where minimumLSPTransmissionInterval, Random, and Jitter are as in [IS-IS]). This will delay and jitter the transmission of the LSP fragment by non-originators. This gives the originator more time to send the fragment and provides more time for such an originator-transmitted copy to traverse the likely multi-hop path to non-originators and clear the SRMflag for the fragment at non-originators.

(其中最小LSPTTransmissionInterval、Random和Jitter与[IS-IS]中的值相同)。这将延迟和抖动非发起者的LSP片段传输。这为发端人提供了更多的时间来发送片段,并为此类发端人传输的副本提供了更多的时间来穿越可能的多跳路径到达非发端人,并清除非发端人处片段的SRMflag。

The multi-hop distribution tree method with Reverse Path Forwarding Check used for multicast distribution by TRILL will typically be less reliable than transmission over a single local broadcast link hop. For LSP synchronization robustness, in addition to sending ESADI-CSNPs as usual when it is the DRB, an ESADI RBridge SHOULD also transmit an ESADI-CSNP for an ESADI instance if all of the following conditions are met:

通过TRILL用于多播分发的具有反向路径转发检查的多跳分发树方法通常比通过单个本地广播链路跳的传输更不可靠。对于LSP同步稳健性,除了在作为DRB时像往常一样发送ESADI CSNP外,如果满足以下所有条件,ESADI RBridge还应为ESADI实例发送ESADI-CSNP:

o it sees one or more ESADI neighbors for that instance, and

o 它看到该实例的一个或多个ESADI邻居,并且

o it does not believe it is the DRB for the ESADI instance, and

o 它不相信它是ESADI实例的DRB,并且

o it has not received or sent an ESADI-CSNP PDU for the instance for the average of the CSNP Time (see Section 6.1) of the DRB and its CSNP Time.

o 就DRB的平均CSNP时间(见第6.1节)及其CSNP时间而言,其尚未收到或发送实例的ESADI-CSNP PDU。

5. End Station Addresses
5. 终端站地址

The subsections below discuss end station address considerations in the context of ESADI.

以下小节讨论了ESADI背景下的终端站地址注意事项。

5.1. Learning Confidence Level
5.1. 学习信心水平

The Confidence level mechanism [RFC6325] allows an RBridge campus manager to cause certain address learning sources to prevail over others. MAC address information learned through a registration protocol, such as [802.1X] with a cryptographically based EAP [RFC3748] method, might be considered more reliable than information learned through the mere observation of data traffic. When such authenticated learned address information is transmitted via the ESADI protocol, the use of authentication in the TRILL ESADI-LSP packets could make tampering with it in transit very difficult. As a result, it might be reasonable to announce such authenticated

置信水平机制[RFC6325]允许RBridge校园经理使某些地址学习来源优于其他来源。通过注册协议(例如使用基于加密的EAP[RFC3748]方法的[802.1X]获取的MAC地址信息可能被认为比通过仅仅观察数据流量获取的信息更可靠。当通过ESADI协议传输此类认证的学习地址信息时,在TRILL ESADI-LSP数据包中使用认证可能会使在传输过程中对其进行篡改变得非常困难。因此,宣布这一消息可能是合理的

information via the ESADI protocol with a high Confidence, so it would be used in preference to any alternative learning from data observation.

通过ESADI协议获得的信息具有很高的可信度,因此它将优先用于从数据观察中获得的任何替代学习。

5.2. Forgetting End Station Addresses
5.2. 忘记端站地址

The end station addresses learned through the TRILL ESADI protocol should be forgotten through changes in ESADI-LSPs. The timeout of the learned end station address is up to the originating RBridge that decides when to remove such information from its ESADI-LSPs (or up to ESADI protocol timeouts if the originating RBridge becomes unreachable).

通过TRILL ESADI协议学习的终端站地址应通过ESADI LSP中的更改而忘记。读入的终端站地址的超时取决于发起RBridge,该RBridge决定何时从其ESADI LSP中删除此类信息(或者,如果无法访问发起RBridge,则取决于ESADI协议超时)。

If RBridge RBn participating in the TRILL ESADI protocol for Data Label X no longer wishes to participate in ESADI, it ceases to participate by (1) clearing the ESADI Participation bit in the appropriate Interested VLANs or Interested Labels sub-TLV and (2) sending a final ESADI-LSP nulling out its ESADI-LSP information.

如果参与数据标签X的TRILL ESADI协议的RBridge RBn不再希望参与ESADI,它将通过(1)清除相应相关VLAN或相关标签子TLV中的ESADI参与位和(2)发送最终ESADI-LSP使其ESADI-LSP信息无效而停止参与。

5.3. Duplicate MAC Address
5.3. 重复MAC地址

With ESADI, it is possible to persistently see occurrences of the same MAC address in the same Data Label being advertised as reachable by two or more RBridges. The specification of how to handle this situation in [RFC6325] is updated by this document, by replacing the last sentence of the last paragraph of Section 4.2.6 of [RFC6325] as shown below to provide better traffic-spreading while avoiding possible address flip-flopping.

使用ESADI,可以持久地看到相同数据标签中相同MAC地址的出现被广告为可由两个或多个RBridge访问。本文件更新了[RFC6325]中关于如何处理这种情况的规范,替换了[RFC6325]第4.2.6节最后一段的最后一句,如下所示,以提供更好的流量扩展,同时避免可能的地址翻转。

As background, assume some end station or set of end stations ESn have two or more ports with the same MAC address in the same Data Label with the ports connected to different RBridges (RB1, RB2, ...) by separate links. With ESADI, some other RBridge, RB0, can persistently see that MAC address in that Data Label connected to multiple RBridges. When RB0 ingresses a frame, say from ES0, destined for that MAC and label, the current [RFC6325] text permits a wide range of behavior. In particular, [RFC6325] would permit RB0 to use some rule, such as "always encapsulate to the egress with the lowest System ID", which would put all of this traffic through only one of the egress RBridges and one of the end station ports. With that behavior, there would be no load-spreading, even if there were multiple different ingress RBridges and/or different MAC addresses with the same reachability. [RFC6325] would also permit RB0 to send different traffic to different egresses by doing ECMP (Equal Cost Multipath) at a flow level, which would likely result in return traffic for RB0 to egress to ES0 from various of RB1, RB2, ... for the same MAC and label. The resulting address reachability flip-flopping perceived at RB0 could cause problems.

作为背景,假设某个终端站或一组终端站ESn在同一数据标签中有两个或多个具有相同MAC地址的端口,这些端口通过单独的链路连接到不同的RBridge(RB1、RB2…)。使用ESADI,其他一些RBridge,RB0,可以持久地看到连接到多个RBridge的数据标签中的MAC地址。当RB0进入一个帧时,比如说从ES0进入一个帧,该帧的目的地是MAC和标签,当前的[RFC6325]文本允许广泛的行为。具体而言,[RFC6325]将允许RB0使用一些规则,例如“始终封装到具有最低系统ID的出口”,这将使所有这些通信量仅通过一个出口RBridge和一个终端站端口。通过这种行为,即使存在多个不同的入口和/或具有相同可达性的不同MAC地址,也不会出现负载扩展。[RFC6325]还允许RB0通过在流量级别执行ECMP(等成本多路径)将不同的流量发送到不同的出口,这可能会导致RB0从RB1、RB2、。。。对于相同的MAC和标签。在RB0处感知到的结果地址可达性触发器可能会导致问题。

This update to [RFC6325] avoids these potential difficulties by requiring that RB0 use one of the following two policies: (1) only encapsulate to one egress RBridge for any particular MAC and label, but select that egress pseudorandomly, based on the topology (including MAC reachability) or (2) if RB0 will not be disturbed by the returning TRILL Data packets showing the same MAC or by label flip-flopping between different ingresses, RB0 may use ECMP. Assuming multiple ingress RBridges and/or multiple MAC and label addresses, strategy 1 should result in load-spreading without address flip-flopping, while strategy 2 will produce better load-spreading than strategy 1 but with address flip-flopping from the point of view of RB0.

[RFC6325]的更新通过要求RB0使用以下两种策略之一来避免这些潜在困难:(1)对于任何特定MAC和标签,仅封装到一个出口RBridge,但根据拓扑(包括MAC可达性)或(2)伪随机选择该出口如果RB0不会被显示相同MAC的返回颤音数据包或不同入口之间的标签翻转所干扰,RB0可以使用ECMP。假设有多个入口RBridge和/或多个MAC和标签地址,策略1应导致负载扩展而不发生地址翻转,而策略2将产生比策略1更好的负载扩展,但从RB0的角度来看,具有地址翻转。

OLD [RFC6325] Section 4.2.6 text:

旧[RFC6325]第4.2.6节文本:

"... If confidences are also tied between the duplicates, for consistency it is suggested that RB2 direct all such frames (or all such frames in the same ECMP flow) toward the same egress RBridge; however, the use of other policies will not cause a network problem since transit RBridges do not examine the Inner.MacDA for known unicast frames."

“…如果副本之间也存在信任关系,为了一致性,建议RB2将所有此类帧(或同一ECMP流中的所有此类帧)指向同一出口RBridge;但是,使用其他策略不会导致网络问题,因为transit RBridge不会检查Inner.MacDA中的已知单播帧。”

NEW [RFC6325] Section 4.2.6 text:

新增[RFC6325]第4.2.6节文本:

"... If confidences are also tied between the duplicates, then RB2 MUST adopt one of the following two strategies:

“…如果副本之间也存在信任关系,则RB2必须采用以下两种策略之一:

1. In a pseudorandom way [RFC4086], select one of the egress RBridges that is least cost from RB2 and to which the destination MAC appears to be attached, and send all traffic for the destination MAC and VLAN (or FGL [RFC7172]) to that egress. This pseudorandom choice need only be changed when there is a change in campus topology or MAC attachment information. Such pseudorandom selection will, over a population of ingress RBridges, probabilistically spread traffic over the possible egress RBridges. Reasonable inputs to the pseudorandom selection are the ingress RBridge System ID and/or nickname, the VLAN or FGL, the destination MAC address, and a vector of the RBridges with connectivity to that MAC and VLAN or FGL. There is no need for different RBridges to use the same pseudorandom function.

1. 以伪随机方式[RFC4086]选择RB2成本最低且目标MAC似乎连接到的出口RBridge之一,并将目标MAC和VLAN(或FGL[RFC7172])的所有流量发送到该出口。仅当校园拓扑或MAC连接信息发生更改时,才需要更改此伪随机选择。这种伪随机选择将在入口rbridge的总体上概率地将业务分布在可能的出口rbridge上。伪随机选择的合理输入是入口RBridge系统ID和/或昵称、VLAN或FGL、目标MAC地址以及连接到该MAC和VLAN或FGL的RBridge向量。不同的RBridge不需要使用相同的伪随机函数。

As an example of such a pseudorandom function, if there are k egress RBridges (RB0, RB1, ..., RB(k-1)) all reporting attachment to address MACx in Data Label DLy, then an ingress RBridge RBin could select the one to which it will send all unicast TRILL Data packets addressed to MACx in DLy based on the following:

作为这种伪随机函数的一个示例,如果存在k个出口RBridge(RB0,RB1,…,RB(k-1))所有报告附件到数据标签DLy中的地址MACx,则入口RBridge RBin可以基于以下内容选择将所有单播TRILL数据包发送到DLy中的MACx的那个:

FNV-32(RBin | MACx | DLy | RB0 | RB1 | ... | RB(k-1)) mod k

FNV-32(RBin | MACx | DLy | RB0 | RB1 |…| RB(k-1))模块k

where the FNV (Fowler/Noll/Vo) algorithm is specified in [FNV], RBx means the nickname for RBridge RBx, "|" means concatenation, MACx is the destination MAC address, DLy is the Data Label, and "mod k" means the integer division remainder of the output of the FNV-32 function considered as a positive integer divided by k.

如果[FNV]中指定了FNV(Fowler/Noll/Vo)算法,则RBx表示RBridge RBx的昵称,“|”表示串联,MACx表示目标MAC地址,Dy表示数据标签,“mod k”表示FNV-32函数输出的整数除法余数,被视为正整数除以k。

2. If RB2 supports ECMP and will not be disturbed by return traffic from the same MAC and VLAN (or FGL [RFC7172]) coming from a variety of different RBridges, then it MAY send traffic using ECMP at the flow level to the egress RBridges that are least cost from RB2 and to which the destination MAC appears to be attached."

2. 如果RB2支持ECMP,并且不会受到来自不同RBRidge的相同MAC和VLAN(或FGL[RFC7172])的返回流量的干扰,则RB2可以在流量级别上使用ECMP将流量发送到出口RBRidge,这些出口RBRidge是RB2成本最低的,并且目标MAC似乎连接到该出口RBRidge。”

6. ESADI-LSP Contents
6. ESADI-LSP内容

The only PDUs used in ESADI are the ESADI-LSP, ESADI-CSNP, and ESADI-PSNP PDUs. Currently, the contents of an ESADI-LSP consist of zero or more MAC-Reachability TLVs, optionally an Authentication TLV, and exactly one ESADI parameter APPsub-TLV. Other similar data may be included in the future and, as in [IS-IS], an ESADI instance ignores any TLVs or sub-TLVs it does not understand. Because these PDUs are formatted as Extended Level 1 Circuit Scope (E-L1CS) PDUs [RFC7356], the Type and Length fields in the TLVs are 16-bit.

ESADI中使用的唯一PDU是ESADI-LSP、ESADI-CSNP和ESADI-PSNP PDU。目前,ESADI-LSP的内容由零个或多个MAC可达性TLV、可选的身份验证TLV和恰好一个ESADI参数APPsub TLV组成。将来可能会包括其他类似的数据,如[IS-IS]中所述,ESADI实例会忽略它不了解的任何TLV或子TLV。由于这些PDU的格式为扩展1级电路范围(E-L1CS)PDU[RFC7356],因此TLV中的类型和长度字段为16位。

This section specifies the format for the ESADI Parameter APPsub-TLV, gives the reference for the ESADI MAC-Reachability TLV, and discusses default authentication configuration.

本节规定了ESADI参数APPsub TLV的格式,给出了ESADI MAC可达性TLV的参考,并讨论了默认身份验证配置。

For robustness, the payload for an ESADI-LSP number zero and any ESADI-CSNP or ESADI-PSNP covering fragment zero MUST NOT exceed 1470 minus 24 bytes in length (1446 bytes) if it has an Inner.VLAN, or 1470 minus 28 bytes (1442 bytes) if it has an Inner.FGL. However, if an ESADI-LSP number zero or such an ESADI-CSNP or ESADI-PSNP is received that is longer, it is still processed normally. (As stated in Section 4.3.1 of [RFC6325], 1470 bytes was chosen to make it extremely unlikely that a TRILL control packet, even with reasonable additional headers, tags, and/or encapsulation, would encounter MTU problems on an inter-RBridge link.)

为确保健壮性,如果ESADI-LSP编号为零,则覆盖零段的任何ESADI-CSNP或ESADI-PSNP的有效负载长度不得超过1470减去24字节(1446字节),如果其具有Inner.VLAN,则不得超过1470减去28字节(1442字节),如果其具有Inner.FGL。但是,如果收到的ESADI-LSP编号为零或ESADI-CSNP或ESADI-PSNP更长,则仍会正常处理。(如[RFC6325]第4.3.1节所述,选择1470字节是为了使TRILL控制数据包(即使具有合理的附加头、标记和/或封装)在RBridge间链路上也极不可能遇到MTU问题。)

6.1. ESADI Parameter Data
6.1. ESADI参数数据

Figure 4 presents the format of the ESADI parameter data. This APPsub-TLV MUST be included in a TRILL GENINFO TLV in ESADI-LSP number zero. If it is missing from ESADI-LSP number zero or if ESADI-LSP number zero is not known, priority for the sending RBridge defaults to 0x40 and CSNP Time defaults to 30. If there is more than one occurrence in ESADI-LSP number zero, the first occurrence will be used. Occurrences of the ESADI Parameter APPsub-TLV in non-zero ESADI-LSP fragments are ignored.

图4显示了ESADI参数数据的格式。此APPsub TLV必须包含在ESADI-LSP编号为零的TRILL GENINFO TLV中。如果ESADI-LSP编号0中缺少该信息,或者如果ESADI-LSP编号0未知,则发送RBridge的优先级默认为0x40,CSNP时间默认为30。如果ESADI-LSP编号0中出现多个事件,将使用第一个事件。ESADI参数APPsub TLV在非零ESADI-LSP片段中的出现将被忽略。

               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               | Type                          |   (2 bytes)
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               | Length                        |   (2 bytes)
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               |R| Priority    |                   (1 byte)
               +-+-+-+-+-+-+-+-+
               | CSNP Time     |                   (1 byte)
               +-+-+-+-+-+-+-+-+
               | Flags         |                   (1 byte)
               +---------------+
               | Reserved for expansion            (variable)
               +-+-+-+-...
        
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               | Type                          |   (2 bytes)
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               | Length                        |   (2 bytes)
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               |R| Priority    |                   (1 byte)
               +-+-+-+-+-+-+-+-+
               | CSNP Time     |                   (1 byte)
               +-+-+-+-+-+-+-+-+
               | Flags         |                   (1 byte)
               +---------------+
               | Reserved for expansion            (variable)
               +-+-+-+-...
        

Figure 4: ESADI Parameter APPsub-TLV

图4:ESADI参数APPsub TLV

Type: Set to ESADI-PARAM sub-TLV (TRILL APPsub-TLV type 0x0001). Two bytes, because this APPsub-TLV appears in an extended TLV [RFC7356].

类型:设置为ESADI-PARAM子TLV(TRILL APPsub TLV类型0x0001)。两个字节,因为此APPsub TLV显示在扩展TLV[RFC7356]中。

Length: Variable, with a minimum of 3, but must fit within the ESADI packet. This field is encoded as an unsigned integer in network byte order [RFC7356].

长度:可变,最小值为3,但必须适合ESADI数据包。此字段按网络字节顺序[RFC7356]编码为无符号整数。

R: A reserved bit that MUST be sent as zero and ignored on receipt.

R:一个保留位,必须作为零发送,并在接收时忽略。

Priority: Gives the originating RBridge's priority for being the DRB on the ESADI instance virtual link (see Section 3) for the Data Label in which the PDU containing the parameter data was sent. It is an unsigned 7-bit integer with the larger magnitude indicating higher priority. It defaults to 0x40 for an RBridge participating in ESADI for which it has not been configured.

优先级:为发送包含参数数据的PDU的数据标签的ESADI实例虚拟链路(见第3节)上的DRB提供原始RBridge的优先级。它是一个无符号7位整数,大小越大表示优先级越高。对于参与ESADI但尚未配置的RBridge,其默认值为0x40。

CSNP Time: An unsigned byte that gives the amount of time in seconds during which the originating RBridge, if it is the DRB on the ESADI virtual link, will send at least three ESADI-CSNP PDUs. It defaults to 30 seconds for an RBridge participating in ESADI for which it has not been configured.

CSNP时间:一个无符号字节,给出发起RBridge(如果是ESADI虚拟链路上的DRB)发送至少三个ESADI-CSNP PDU的时间量(以秒为单位)。对于参与ESADI但尚未配置的RBridge,其默认值为30秒。

Flags: A byte of flags associated with the originating ESADI instance, as follows:

标志:与原始ESADI实例关联的标志字节,如下所示:

                     0   1   2   3   4   5   6   7
                  +---+---+---+---+---+---+---+---+
                  | UN|           RESV            |
                  +---+---+---+---+---+---+---+---+
        
                     0   1   2   3   4   5   6   7
                  +---+---+---+---+---+---+---+---+
                  | UN|           RESV            |
                  +---+---+---+---+---+---+---+---+
        

The UN flag indicates that the RBridge originating the ESADI-LSP, including this ESADI parameter data, will accept and properly process ESADI PDUs sent by TRILL unicast (see Section 4.1). The remaining RESV bits are reserved for future use and MUST be sent as zero and ignored on receipt.

UN标志表示发起ESADI-LSP的RBridge(包括该ESADI参数数据)将接受并正确处理TRILL单播发送的ESADI PDU(见第4.1节)。剩余的RESV位保留供将来使用,必须作为零发送,并在收到时忽略。

Reserved for future expansion: Future versions of the ESADI Parameter APPsub-TLV may have additional information. A receiving ESADI RBridge ignores any additional data here, unless it implements such future expansion(s).

保留供将来扩展:ESADI参数APPsub TLV的未来版本可能包含其他信息。接收ESADI RBridge忽略此处的任何附加数据,除非它实现了此类未来扩展。

6.2. MAC-Reachability TLV
6.2. MAC可达性

The primary information in TRILL ESADI-LSP PDUs consists of MAC-Reachability (MAC-RI) TLVs specified in [RFC6165]. These TLVs contain one or more unicast MAC addresses of end stations that are both on a port and in a VLAN for which the originating RBridge is Appointed Forwarder, along with the 1-octet unsigned Confidence in this information with a value in the range 0-254. If such a TLV is received containing a Confidence of 255, it is treated as if the Confidence was 254. (This is to assure that any received address information can be overridden by local address information statically configured with a Confidence of 255.)

TRILL ESADI-LSP PDU中的主要信息包括[RFC6165]中规定的MAC可达性(MAC-RI)TLV。这些TLV包含一个或多个终端站的单播MAC地址,这些终端站既位于端口上,也位于发起RBridge被指定为转发器的VLAN中,以及该信息中的1-octet unsigned Confidence,其值范围为0-254。如果收到的TLV的置信度为255,则将其视为置信度为254。(这是为了确保任何接收到的地址信息都可以被置信度为255的静态配置的本地地址信息覆盖。)

The TLVs in TRILL ESADI PDUs, including the MAC-RI TLV, MUST NOT contain the Data Label ID. If a Data Label ID is present in the MAC-RI TLV, it is ignored. In the ESADI PDU, only the Inner.VLAN or Inner.FGL tag indicates the Data Label to which the ESADI-LSP applies.

TRILL ESADI PDU中的TLV(包括MAC-RI TLV)不得包含数据标签ID。如果MAC-RI TLV中存在数据标签ID,则忽略该ID。在ESADI PDU中,只有Inner.VLAN或Inner.FGL标记表示ESADI-LSP适用的数据标签。

6.3. Default Authentication
6.3. 默认身份验证

The Authentication TLV may be included in ESADI PDUs [RFC5310] [IS-IS]. The default for ESADI PDU authentication is based on the state of TRILL IS-IS shared secret authentication for TRILL IS-IS LSP PDUs. If TRILL IS-IS authentication and ESADI are implemented at a TRILL switch, then ESADI MUST be able to use the authentication algorithms implemented for TRILL IS-IS and implement the keying material derivation function given below. If ESADI authentication has been manually configured, that configuration is not restricted by the configuration of TRILL IS-IS security.

认证TLV可包括在ESADI PDU[RFC5310][IS-IS]中。ESADI PDU身份验证的默认设置基于TRILL is-is LSP PDU的TRILL is-is共享秘密身份验证状态。如果TRILL IS-IS认证和ESADI在TRILL交换机上实现,则ESADI必须能够使用为TRILL IS-IS实现的认证算法,并实现下面给出的键控材料推导功能。如果已手动配置ESADI身份验证,则该配置不受TRILL is-is安全配置的限制。

If TRILL IS-IS authentication is not in effect for LSP PDUs originated by a TRILL switch, then ESADI PDUs originated by that TRILL switch are by default also unsecured.

如果TRILL IS-IS身份验证对TRILL交换机发起的LSP PDU无效,则默认情况下,该TRILL交换机发起的ESADI PDU也是不安全的。

If such IS-IS LSP PDU authentication is in effect at a TRILL switch, then, unless configured otherwise, ESADI PDUs sent by that switch MUST use the same algorithm in their Authentication TLVs. The ESADI authentication keying material used is derived from the IS-IS LSP shared secret keying material as detailed below. However, such authentication MAY be configured to use some other keying material.

如果此类IS-IS LSP PDU身份验证在TRILL交换机上生效,则除非另有配置,否则该交换机发送的ESADI PDU必须在其身份验证TLV中使用相同的算法。使用的ESADI认证密钥材料源自is-is LSP共享密钥材料,详情如下。然而,这种认证可以被配置为使用一些其他密钥材料。

HMAC-SHA256 ( "TRILL ESADI", IS-IS-LSP-shared-key )

HMAC-SHA256(“TRILL ESADI”,是LSP共享密钥)

In the algorithm above, HMAC-SHA256 is as described in [FIPS180] and [RFC6234], and "TRILL ESADI" is the 11-byte US ASCII [ASCII] string indicated. IS-IS-LSP-shared-key is secret keying material being used by the originating TRILL switch for IS-IS LSP authentication.

在上述算法中,HMAC-SHA256如[FIPS180]和[RFC6234]所述,“TRILL ESADI”是所示的11字节US ASCII[ASCII]字符串。IS LSP共享密钥是原始TRILL交换机用于IS-IS LSP身份验证的密钥材料。

7. IANA Considerations
7. IANA考虑

IANA allocation and registry considerations are given below. Three new sub-registries have been created in the "Transparent Interconnection of Lots of Links (TRILL) Parameters" registry located at <http://www.iana.org/assignments/trill-parameters> -- two in Section 7.1 and one in Section 7.2 -- and various code points have been assigned.

IANA分配和注册注意事项如下所示。“大量链路透明互连(TRILL)参数”注册表中创建了三个新的子注册表,位于<http://www.iana.org/assignments/trill-parameters>--第7.1节中有两个,第7.2节中有一个--并分配了各种代码点。

7.1. ESADI Participation and Capability Flags
7.1. ESADI参与和能力标志

IANA Action 1:

IANA行动1:

IANA has created the following new sub-registry called "Interested VLANs Flag Bits" in the "Transparent Interconnection of Lots of Links (TRILL) Parameters" registry.

IANA在“大量链路的透明互连(TRILL)参数”注册表中创建了以下称为“感兴趣的VLAN标志位”的新子注册表。

Sub-registry: Interested VLANs Flag Bits

子注册表:感兴趣的VLAN标志位

Registration Procedures: IETF Review

注册程序:IETF审查

Note: These bits appear in the Interested VLANs record within the Interested VLANs and Spanning Tree Roots Sub-TLV (INT-VLAN) specified in [RFC7176].

注:这些位出现在[RFC7176]中指定的相关VLAN和生成树根子TLV(INT-VLAN)内的相关VLAN记录中。

References: [RFC7176], [RFC7357]

参考文献:[RFC7176],[RFC7357]

       Bit  Mnemonic  Description                      Reference
       ---  --------  -----------                      ---------
         0     M4     IPv4 Multicast Router Attached   [RFC7176]
         1     M6     IPv6 Multicast Router Attached   [RFC7176]
         2      -     Unassigned
         3     ES     ESADI Participation              [RFC7357]
        4-15    -     (used for a VLAN ID)             [RFC7176]
       16-19    -     Unassigned
       20-31    -     (used for a VLAN ID)             [RFC7176]
        
       Bit  Mnemonic  Description                      Reference
       ---  --------  -----------                      ---------
         0     M4     IPv4 Multicast Router Attached   [RFC7176]
         1     M6     IPv6 Multicast Router Attached   [RFC7176]
         2      -     Unassigned
         3     ES     ESADI Participation              [RFC7357]
        4-15    -     (used for a VLAN ID)             [RFC7176]
       16-19    -     Unassigned
       20-31    -     (used for a VLAN ID)             [RFC7176]
        

The creation of this sub-registry (as immediately above) assigned bit 3 as the ESADI Participation bit in the Interested VLANs and Spanning Tree Roots sub-TLV. If The ESADI Participation bit is a one, it indicates that the originating RBridge is participating in ESADI for the indicated Data Label(s).

创建此子注册表(如上所述)时,将位3指定为相关VLAN和生成树根子TLV中的ESADI参与位。如果ESADI参与位为1,则表示发起RBridge正在参与所示数据标签的ESADI。

IANA Action 2:

IANA行动2:

IANA has created the following new sub-registry called "Interested Labels Flag Bits" in the "Transparent Interconnection of Lots of Links (TRILL) Parameters" registry.

IANA在“大量链接的透明互连(TRILL)参数”注册表中创建了以下新的子注册表,称为“感兴趣的标签标志位”。

Sub-registry: Interested Labels Flag Bits

子注册表:感兴趣的标签标志位

Registration Procedures: IETF Review

注册程序:IETF审查

Note: These bits appear in the Interested Labels record within the Interested Labels and Spanning Tree Roots Sub-TLV (INT-LABEL) specified in [RFC7176].

注:这些位出现在[RFC7176]中指定的相关标签和生成树根子TLV(INT-LABEL)中的相关标签记录中。

References: [RFC7176], [RFC7357]

参考文献:[RFC7176],[RFC7357]

      Bit  Mnemonic  Description                      Reference
      ---  --------  -----------                      ---------
        0     M4     IPv4 Multicast Router Attached   [RFC7176]
        1     M6     IPv6 Multicast Router Attached   [RFC7176]
        2     BM     Bit Map                          [RFC7176]
        3     ES     ESADI Participation              [RFC7357]
       4-7     -     Unassigned
        
      Bit  Mnemonic  Description                      Reference
      ---  --------  -----------                      ---------
        0     M4     IPv4 Multicast Router Attached   [RFC7176]
        1     M6     IPv6 Multicast Router Attached   [RFC7176]
        2     BM     Bit Map                          [RFC7176]
        3     ES     ESADI Participation              [RFC7357]
       4-7     -     Unassigned
        

The creation of this sub-registry (as immediately above) assigned bit 3 as the ESADI Participation bit in the Interested Labels and Spanning Tree Roots sub-TLV. If The ESADI Participation bit is a one, it indicates that the originating RBridge is participating in ESADI for the indicated Data Label(s).

创建此子注册表(如上所述)时,将位3指定为相关标签和生成树根子TLV中的ESADI参与位。如果ESADI参与位为1,则表示发起RBridge正在参与所示数据标签的ESADI。

7.2. TRILL GENINFO TLV
7.2. TRILL GENINFO TLV

IANA Action 3:

IANA行动3:

IANA has allocated the IS-IS Application Identifier 1 under the Generic Information TLV (#251) [RFC6823] for TRILL.

IANA已在TRILL的通用信息TLV(#251)[RFC6823]下分配IS-IS应用程序标识符1。

IANA Action 4:

IANA行动4:

IANA has created a sub-registry in the "Transparent Interconnection of Lots of Links (TRILL) Parameters" registry as follows:

IANA在“大量链接透明互连(TRILL)参数”注册表中创建了一个子注册表,如下所示:

Sub-registry: TRILL APPsub-TLV Types under IS-IS TLV 251 Application Identifier 1

子注册表:IS-IS TLV 251应用程序标识符1下的TRILL APPsub TLV类型

Registration Procedures: IETF Review with additional requirements on the documentation of the use being registered as specified in Section 7.2 of [RFC7357].

注册程序:IETF审查以及[RFC7357]第7.2节规定的注册使用文件的附加要求。

Note: Types greater than 255 are only usable in contexts permitting a type larger than one byte, such as extended TLVs [RFC7356].

注意:大于255的类型仅在允许大于一个字节的类型的上下文中可用,例如扩展TLV[RFC7356]。

Reference: [RFC7357]

参考文献:[RFC7357]

                Type      Name              Reference
             ----------  --------          -----------
                     0   Reserved          [RFC7357]
                     1   ESADI-PARAM       [RFC7357]
                 2-254   Unassigned        [RFC7357]
                   255   Reserved          [RFC7357]
             256-65534   Unassigned        [RFC7357]
                 65535   Reserved          [RFC7357]
        
                Type      Name              Reference
             ----------  --------          -----------
                     0   Reserved          [RFC7357]
                     1   ESADI-PARAM       [RFC7357]
                 2-254   Unassigned        [RFC7357]
                   255   Reserved          [RFC7357]
             256-65534   Unassigned        [RFC7357]
                 65535   Reserved          [RFC7357]
        

TRILL APPsub-TLV Types 2 through 254 and 256 through 65534 are available for assignment by IETF Review. The RFC causing such an assignment will also include a discussion of security issues and of the rate of change of the information being advertised. TRILL APPsub-TLVs MUST NOT alter basic IS-IS protocol operation including the establishment of adjacencies, the update process, and the decision process for TRILL IS-IS [IS-IS] [RFC1195] [RFC7177]. The TRILL Generic Information TLV MUST NOT be used in an IS-IS instance zero [RFC6822] LSP but may be used in Flooding Scoped LSPs (FS-LSPs) [RFC7356].

TRILL APPsub TLV类型2至254和256至65534可供IETF审查分配。引起此类分配的RFC还将包括对安全问题和所公布信息的变化率的讨论。TRILL APPsub TLV不得更改基本IS-IS协议操作,包括建立邻接、更新过程和TRILL IS-IS[IS-IS][RFC1195][RFC7177]的决策过程。TRILL通用信息TLV不得用于IS-IS实例零[RFC6822]LSP,但可用于泛洪作用域LSP(FS LSP)[RFC7356]。

The V, I, D, and S flags in the initial flags byte of a TRILL Generic Information TLV have the meanings specified in [RFC6823] but are not currently used, as TRILL operates as a Level 1 IS-IS area and no semantics are hereby assigned to the inclusion of an IPv4 and/or IPv6 address via the I and V flags. Thus, these I and V flags MUST be zero; however, if either or both are one, the space that should be taken by an IPv4 and/or IPv6 address, respectively, is skipped over and ignored. Furthermore, the use of multilevel IS-IS is an obvious extension for TRILL [MultiLevel], and future IETF Standards Actions may update or obsolete this specification to provide for the use of any or all of these flags in the TRILL GENINFO TLV.

TRILL通用信息TLV的初始标志字节中的V、I、D和S标志具有[RFC6823]中规定的含义,但目前未使用,因为TRILL作为1级IS-IS区域运行,因此未通过I和V标志为包含IPv4和/或IPv6地址分配语义。因此,这些I和V标志必须为零;但是,如果其中一个或两者都是一个,则将跳过并忽略IPv4和/或IPv6地址应分别占用的空间。此外,多级IS-IS的使用是TRILL[Multiple]的一个明显扩展,未来的IETF标准行动可能会更新或废弃本规范,以便在TRILL GENINFO TLV中使用任何或所有这些标志。

The ESADI Parameters information, for which TRILL APPsub-TLV 1 is hereby assigned, is compact and slow changing (see Section 6.1).

特此指定TRILL APPsub TLV 1的ESADI参数信息紧凑且变化缓慢(见第6.1节)。

For security considerations related to ESADI and the ESADI Parameter APPsub-TLV, see Section 8.

有关ESADI和ESADI参数APPsub TLV的安全注意事项,请参见第8节。

8. Security Considerations
8. 安全考虑

ESADI PDUs can be authenticated through the inclusion of the Authentication TLV [RFC5310]. Defaults for such authentication are described in Section 6.3.

ESADI PDU可以通过包含认证TLV[RFC5310]进行认证。第6.3节描述了此类认证的默认设置。

The ESADI-LSP data primarily announces MAC address reachability within a Data Label. Such reachability can, in some cases, be an authenticated registration (for example, a Layer 2 authenticated registration using cryptographically based EAP (Extensible

ESADI-LSP数据主要宣布数据标签内的MAC地址可达性。在某些情况下,这种可达性可以是经过身份验证的注册(例如,使用基于密码的EAP(可扩展)的第2层经过身份验证的注册)

Authentication Protocol [RFC3748]) methods via [802.1X]). The combination of these techniques can cause ESADI MAC reachability information to be substantially more trustworthy than MAC reachability learned from observation of the data plane. Nevertheless, ESADI still involves trusting all other RBridges in the TRILL campus, at least those that have the keying material necessary to construct a valid Authentication TLV.

通过[802.1X]的身份验证协议[RFC3748])方法。这些技术的组合可使ESADI MAC可达性信息比从数据平面的观察中获得的MAC可达性更可信。尽管如此,ESADI仍然需要信任TRILL校园中的所有其他RBridge,至少是那些拥有构建有效认证TLV所需的密钥材料的RBridge。

However, there may be cases where authenticated registration is used for end stations, because of a significant threat of forged packets on end station links, but it is not necessary to authenticate ESADI PDUs because that threat is not present for inter-RBridge trunks. For example, a TRILL campus with secure RBridges and inter-RBridge links configured as trunks but with some end stations connected via IEEE 802.11 wireless access links might use 802.11 authentication for the connection of such end stations but might not necessarily authenticate ESADI PDUs. Note that if the IS-IS LSPs in a TRILL campus are authenticated, perhaps due to a concern about forged packets, the ESADI PDUs will be authenticated by default as provided in Section 6.3.

然而,在某些情况下,由于终端站链路上存在伪造数据包的重大威胁,可能会对终端站使用经过身份验证的注册,但没有必要对ESADI PDU进行身份验证,因为RBridge间中继不存在这种威胁。例如,具有安全RBridge和RBridge间链路的TRILL园区被配置为中继,但具有通过IEEE 802.11无线接入链路连接的一些终端站,可能对这些终端站的连接使用802.11认证,但不一定对ESADI PDU进行认证。请注意,如果TRILL校园中的IS-IS LSP经过身份验证,可能是由于担心伪造数据包,ESADI PDU将按照第6.3节的规定默认进行身份验证。

MAC reachability learned from the data plane (the TRILL default) is overwritten by any future learning of the same type. ESADI advertisements are represented in the Data Label scoped link state database. Thus, ESADI makes visible any multiple attachments of the same MAC address within a Data Label to different RBridges (see Section 5.3). This may or may not be an error or misconfiguration, but ESADI at least makes it explicitly and persistently visible, which would not be the case with data plane learning.

从数据平面学习的MAC可达性(TRILL默认值)将被将来任何相同类型的学习覆盖。ESADI播发在数据标签范围的链路状态数据库中表示。因此,ESADI使数据标签内相同MAC地址的任何多个附件对不同RBridge可见(见第5.3节)。这可能是错误或错误配置,也可能不是,但ESADI至少使其明确且持久可见,这与数据平面学习不同。

For general TRILL security considerations, see [RFC6325].

有关一般TRILL安全注意事项,请参阅[RFC6325]。

8.1. Privacy Considerations
8.1. 隐私考虑

The address reachability information distributed by ESADI has substantial privacy considerations under many, but not all, circumstances.

ESADI发布的地址可达性信息在许多(但不是所有)情况下都有大量的隐私考虑。

For example, if ESADI were used in a TRILL campus with independent user end stations at the edge, the MAC addresses of such end stations could uniquely identify the users of those end stations. Their reachability would be sensitive information and, particularly if logged, could reveal such user information. On the other hand, if TRILL is being used to implement an Internet Exchange Point (IXP) to connect Internet Service Providers (ISPs), the MAC addresses being advertised in ESADI would typically be those of the ISP's directly connected IP router ports, since Layer 3 routers bound the TRILL campus, for which there would be few privacy concerns.

例如,如果ESADI在边缘有独立用户终端站的TRILL校园中使用,则此类终端站的MAC地址可以唯一标识这些终端站的用户。它们的可达性将是敏感信息,特别是如果被记录,可能会泄露此类用户信息。另一方面,如果TRILL用于实现互联网交换点(IXP)以连接互联网服务提供商(ISP),则在ESADI中公布的MAC地址通常是ISP直接连接的IP路由器端口的MAC地址,因为第3层路由器绑定TRILL园区,因此很少涉及隐私问题。

However, records of MAC attachment that include a modest amount of history, perhaps a few days' worth, can be useful in managing a network and troubleshooting network problems. It might, in some cases, also be legally required, or required for billing purposes or the like.

然而,MAC连接的记录,包括少量的历史记录,可能需要几天的时间,在管理网络和解决网络问题时会很有用。在某些情况下,它可能也是法律要求的,或用于计费目的或类似目的。

Network operators should seek a reasonable balance between these competing considerations, customized for the circumstances of their particular networks where ESADI is in use. They should not maintain logs of MAC reachability information for any longer than is clearly required.

网络运营商应在这些相互竞争的考虑因素之间寻求合理的平衡,这些考虑因素是针对其使用ESADI的特定网络的情况定制的。他们维护MAC可达性信息日志的时间不应超过明确要求的时间。

9. Acknowledgements
9. 致谢

The authors thank the following, listed in alphabetic order, for their suggestions and contributions:

作者感谢以下按字母顺序列出的作者的建议和贡献:

David Black, Somnath Chatterjee, Adrian Farrel, Stephen Farrell, Sujay Gupta, Russ Housley, Pearl Liang, Kathleen Moriarty, Thomas Narten, Erik Nordmark, and Mingui Zhang.

David Black、Somnath Chatterjee、Adrian Farrell、Stephen Farrell、Sujay Gupta、Russ Housley、Pearl Liang、Kathleen Moriarty、Thomas Narten、Erik Nordmark和Mingui Zhang。

10. References
10. 工具书类
10.1. Normative References
10.1. 规范性引用文件

[ASCII] American National Standards Institute (formerly United States of America Standards Institute), "USA Code for Information Interchange", ANSI X3.4-1968, 1968.

[ASCII]美国国家标准协会(前美国标准协会),“美国信息交换代码”,ANSI X3.4-1968,1968年。

ANSI X3.4-1968 has been replaced by newer versions with slight modifications, but the 1968 version remains definitive for the Internet.

ANSI X3.4-1968已被稍作修改的较新版本所取代,但1968年版本仍然是互联网的最终版本。

[FIPS180] "Secure Hash Standard (SHS)", National Institute of Standards and Technology, Federal Information Processing Standard (FIPS) 180-4, March 2012, <http://csrc.nist.gov/ publications/fips/fips180-4/fips-180-4.pdf>.

[FIPS180]“安全哈希标准(SHS)”,国家标准与技术研究所,联邦信息处理标准(FIPS)180-42012年3月<http://csrc.nist.gov/ 出版物/fips/fips180-4/fips-180-4.pdf>。

[IS-IS] ISO/IEC 10589:2002, Second Edition, "Information technology -- Telecommunications and information exchange between systems -- Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)", 2002.

[IS-IS]ISO/IEC 10589:2002,第二版,“信息技术——系统间电信和信息交换——与提供无连接模式网络服务协议(ISO 8473)结合使用的中间系统到中间系统域内路由信息交换协议”,2002年。

[RFC1195] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, December 1990.

[RFC1195]Callon,R.,“OSI IS-IS在TCP/IP和双环境中的路由使用”,RFC 11951990年12月。

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4086]Eastlake 3rd,D.,Schiller,J.,和S.Crocker,“安全的随机性要求”,BCP 106,RFC 4086,2005年6月。

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

[RFC5226]Narten,T.和H.Alvestrand,“在RFCs中编写IANA注意事项部分的指南”,BCP 26,RFC 5226,2008年5月。

[RFC5310] Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R., and M. Fanto, "IS-IS Generic Cryptographic Authentication", RFC 5310, February 2009.

[RFC5310]Bhatia,M.,Manral,V.,Li,T.,Atkinson,R.,White,R.,和M.Fanto,“IS-IS通用密码认证”,RFC 53102009年2月。

[RFC6165] Banerjee, A. and D. Ward, "Extensions to IS-IS for Layer-2 Systems", RFC 6165, April 2011.

[RFC6165]Banerjee,A.和D.Ward,“第2层系统的IS-IS扩展”,RFC 61652011年4月。

[RFC6325] Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A. Ghanwani, "Routing Bridges (RBridges): Base Protocol Specification", RFC 6325, July 2011.

[RFC6325]帕尔曼,R.,伊斯特莱克第三,D.,杜特,D.,盖伊,S.,和A.加瓦尼,“路由桥(RBridges):基本协议规范”,RFC6325,2011年7月。

[RFC6361] Carlson, J. and D. Eastlake 3rd, "PPP Transparent Interconnection of Lots of Links (TRILL) Protocol Control Protocol", RFC 6361, August 2011.

[RFC6361]Carlson,J.和D.Eastlake 3rd,“大量链路的PPP透明互连(TRILL)协议控制协议”,RFC 63612011年8月。

[RFC6823] Ginsberg, L., Previdi, S., and M. Shand, "Advertising Generic Information in IS-IS", RFC 6823, December 2012.

[RFC6823]Ginsberg,L.,Previdi,S.,和M.Shand,“IS-IS中的广告通用信息”,RFC 68232012年12月。

[RFC7172] Eastlake 3rd, D., Zhang, M., Agarwal, P., Perlman, R., and D. Dutt, "Transparent Interconnection of Lots of Links (TRILL): Fine-Grained Labeling", RFC 7172, May 2014.

[RFC7172]Eastlake 3rd,D.,Zhang,M.,Agarwal,P.,Perlman,R.,和D.Dutt,“大量链路的透明互连(TRILL):细粒度标记”,RFC 7172,2014年5月。

[RFC7176] Eastlake 3rd, D., Senevirathne, T., Ghanwani, A., Dutt, D., and A. Banerjee, "Transparent Interconnection of Lots of Links (TRILL) Use of IS-IS", RFC 7176, May 2014.

[RFC7176]Eastlake 3rd,D.,Senevirathne,T.,Ghanwani,A.,Dutt,D.,和A.Banerjee,“IS-IS大量链路的透明互连(TRILL)使用”,RFC 7176,2014年5月。

[RFC7177] Eastlake 3rd, D., Perlman, R., Ghanwani, A., Yang, H., and V. Manral, "Transparent Interconnection of Lots of Links (TRILL): Adjacency", RFC 7177, May 2014.

[RFC7177]Eastlake 3rd,D.,Perlman,R.,Ghanwani,A.,Yang,H.,和V.Manral,“大量链路的透明互连(TRILL):邻接”,RFC 7177,2014年5月。

[RFC7180] Eastlake 3rd, D., Zhang, M., Ghanwani, A., Manral, V., and A. Banerjee, "Transparent Interconnection of Lots of Links (TRILL): Clarifications, Corrections, and Updates", RFC 7180, May 2014.

[RFC7180]Eastlake 3rd,D.,Zhang,M.,Ghanwani,A.,Manral,V.,和A.Banerjee,“大量链路的透明互连(TRILL):澄清、更正和更新”,RFC 7180,2014年5月。

[RFC7356] Ginsberg, L., Previdi, S., and Y. Yang, "IS-IS Flooding Scope Link State PDUs (LSPs)", RFC 7356, September 2014.

[RFC7356]Ginsberg,L.,Previdi,S.,和Y.Yang,“IS-IS洪水范围链路状态PDU(LSPs)”,RFC 7356,2014年9月。

10.2. Informative References
10.2. 资料性引用

[802.1X] IEEE 802.1, "IEEE Standard for Local and metropolitan area networks--Port-Based Network Access Control", IEEE Standard 802.1X-2010, February 2010.

[802.1X]IEEE 802.1,“局域网和城域网的IEEE标准——基于端口的网络访问控制”,IEEE标准802.1X-2010,2010年2月。

[FNV] Fowler, G., Noll, L., Vo, K., and D. Eastlake 3rd, "The FNV Non-Cryptographic Hash Algorithm", Work in Progress, April 2014.

[FNV]Fowler,G.,Noll,L.,Vo,K.,和D.Eastlake 3rd,“FNV非加密哈希算法”,正在进行的工作,2014年4月。

[MultiLevel] Perlman, R., Eastlake 3rd, D., Ghanwani, A., and H. Zhai, "Flexible Multilevel TRILL (Transparent Interconnection of Lots of Links)", Work in Progress, June 2014.

[多层次]帕尔曼,R.,东湖第三,D.,加瓦尼,A.,和H.翟,“灵活多层次颤音(大量链接的透明互连)”,正在进行的工作,2014年6月。

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, Ed., "Extensible Authentication Protocol (EAP)", RFC 3748, June 2004.

[RFC3748]Aboba,B.,Blunk,L.,Vollbrecht,J.,Carlson,J.,和H.Levkowetz,Ed.,“可扩展认证协议(EAP)”,RFC 3748,2004年6月。

[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

[RFC6234]Eastlake 3rd,D.和T.Hansen,“美国安全哈希算法(基于SHA和SHA的HMAC和HKDF)”,RFC 6234,2011年5月。

[RFC6822] Previdi, S., Ed., Ginsberg, L., Shand, M., Roy, A., and D. Ward, "IS-IS Multi-Instance", RFC 6822, December 2012.

[RFC6822]Previdi,S.,Ed.,Ginsberg,L.,Shand,M.,Roy,A.,和D.Ward,“IS-IS多实例”,RFC 6822,2012年12月。

[VLANmapping] Perlman, R., Rijhsinghani, A., Eastlake 3rd, D., Banerjee, A., and D. Dutt, "TRILL: Campus Label and Priority Regions", Work in Progress, January 2014.

[VLANmapping]Perlman,R.,Rijhsinghani,A.,Eastlake 3rd,D.,Banerjee,A.,和D.Dutt,“TRILL:校园标签和优先区域”,正在进行的工作,2014年1月。

Appendix A. Interoperability and Changes to RFC 6325
附录A.互操作性和对RFC 6325的更改

This appendix summarizes the significant changes this document makes to the TRILL base protocol specification [RFC6325]. Although simultaneous use of [RFC6325] ESADI and ESADI as specified in this document in a TRILL campus is very unlikely due to non-deployment of [RFC6325] ESADI, this appendix also discusses, for each change, the interoperability considerations should such simultaneous use occur.

本附录总结了本文件对TRILL基本协议规范[RFC6325]所做的重大更改。尽管由于未部署[RFC6325]ESADI,本文件中规定的[RFC6325]ESADI和ESADI在TRILL校园中同时使用的可能性很小,但本附录还讨论了每次变更时,如果同时使用,互操作性注意事项。

A.1. ESADI PDU Changes
A.1. ESADI PDU变更

The format of ESADI-LSP, ESADI-CSNP, and ESADI-PSNP PDU payloads is changed from the IS-IS Level 1 format [IS-IS] to the Extended Level 1 Circuit Scope format (E-L1CS) specified in [RFC7356]. This change is not backwards compatible with [RFC6325]. It is made in light of the information-carrying capacity of the E-L1CS format, which is 256 times greater than that of the base IS-IS format. It is anticipated that this greater information-carrying capacity will be needed, under some circumstances, to carry end station addressing information or other similar address and reachability information when it is added to ESADI in the future.

ESADI-LSP、ESADI-CSNP和ESADI-PSNP PDU有效载荷的格式从is-is 1级格式[is-is]更改为[RFC7356]中规定的扩展1级电路范围格式(E-L1CS)。此更改与[RFC6325]不向后兼容。它是根据E-L1CS格式的信息承载能力制定的,其信息承载能力是基本is-is格式的256倍。预计在某些情况下,在将来将端站寻址信息或其他类似地址和可达性信息添加到ESADI时,需要更大的信息承载能力来承载端站寻址信息或其他类似地址和可达性信息。

The PDU numbers used for the ESADI LSP, CSNP, and PSNP PDUs in [RFC6325] are 18, 24, and 26 [IS-IS]. With this document, the format changes, and the PDU numbers change to 10, 11, and 12 [RFC7356]. The use of different PDU numbers assures that a PDU will not be mis-parsed. Because of this, implementations of this document and implementations of [RFC6325] ESADI will discard each other's PDUs. Thus, address reachability or other information distributed through either type of ESADI implementation will only be communicated to other implementations of the same type, and the two communities will not communicate any information with each other.

[RFC6325]中用于ESADI LSP、CSNP和PSNP PDU的PDU编号分别为18、24和26[IS-IS]。在本文档中,格式更改,PDU编号更改为10、11和12[RFC7356]。使用不同的PDU编号可以确保PDU不会被错误解析。因此,本文档的实现和[RFC6325]ESADI的实现将丢弃彼此的PDU。因此,通过任一类型的ESADI实现分发的地址可达性或其他信息将仅与相同类型的其他实现进行通信,并且两个社区不会相互通信任何信息。

Note that RBridges can use the TRILL mandatory-to-implement, enabled-by-default data plane address learning in addition to ESADI. (Section 5 of this document and the material it references explain how to handle conflicts between different sources of address reachability information.) Simply leaving data plane address learning enabled would enable smooth incremental migration from [RFC6325] ESADI to the ESADI specification in this document, should that be necessary. The data plane address learning would fill in any gaps due to non-communication between the two types of ESADI implementations, although without the speed or security advantages of ESADI.

注意,RBridges可以使用TRILL强制实现,除了ESADI之外,默认情况下还启用了数据平面地址学习。(本文件第5节及其参考资料解释了如何处理不同地址可达性信息源之间的冲突。)如果有必要,只需启用数据平面地址学习,即可实现从[RFC6325]ESADI到本文件中ESADI规范的平滑增量迁移。尽管没有ESADI的速度或安全优势,但数据平面地址学习将填补由于两种ESADI实现之间不通信而造成的任何空白。

A.2. Unicasting Changes
A.2. 单播更改

Unicasting of ESADI PDUs is optionally supported, including replacing Section 4.6.2.2 of [RFC6325] with the new text given in Section 4.1 of this document. This unicast support is backwards compatible because it is only used when the recipient RBridge signals its support.

可选支持ESADI PDU的单播,包括用本文件第4.1节中给出的新文本替换[RFC6325]的第4.6.2.2节。这种单播支持是向后兼容的,因为它仅在接收方RBridge发出支持信号时使用。

A.3. Message Timing Changes and Suggestions
A.3. 消息时间更改和建议

The following timing-related ESADI message changes and suggestions are included in this document:

本文件包含以下与时间相关的ESADI消息更改和建议:

1. Provide for staggered delay for non-originators of ESADI-LSP fragments in response to requests for such fragments by CSNP and PSNP messages.

1. 为ESADI-LSP片段的非发起者提供交错延迟,以响应CSNP和PSNP消息对此类片段的请求。

2. Suggest staggered timing of unicast ESADI-LSPs when a new ESADI RBridge appears on the ESADI virtual link.

2. 当新的ESADI RBridge出现在ESADI虚拟链路上时,建议单播ESADI LSP的交错定时。

These relate only to the timing of messages for congestion minimization. Should a message be lost, due to congestion or otherwise, it will be later retransmitted as a normal part of the robust flooding mechanism used by ESADI.

这些仅与拥塞最小化的消息定时有关。如果消息因拥塞或其他原因丢失,它将在以后作为ESADI使用的健壮泛洪机制的正常部分重新传输。

A.4. Duplicate Address Reachability
A.4. 重复地址可达性

The handling of persistent reachability of the same MAC within the same Data Label from two or more RBridges is substantially modified, including the explicit replacement of some text in Section 4.2.6 of [RFC6325] (see Section 5.3 of this document). There is no problem with a mixture of ESADI implementations in a TRILL campus, some conforming to [RFC6325] and some conforming to this document, for handling this condition. The more implementations conform to the improved behavior specified in this document for this condition, the better the traffic-spreading will be, and the less likely address flip-flopping problems will be.

对来自两个或多个RBridge的相同数据标签内相同MAC的持久可达性的处理进行了实质性修改,包括明确替换[RFC6325]第4.2.6节中的某些文本(参见本文件第5.3节)。在TRILL校园中混合使用ESADI实施没有问题,一些符合[RFC6325],一些符合本文件,用于处理这种情况。在这种情况下,越多的实现符合本文档中指定的改进行为,流量传播就越好,解决触发器问题的可能性就越小。

Authors' Addresses

作者地址

Hongjun Zhai ZTE Corporation 68 Zijinghua Road Nanjing 200012 China Phone: +86-25-52877345 EMail: zhai.hongjun@zte.com.cn

翟鸿钧中兴通讯股份有限公司南京紫荆华路68号邮编:200012中国电话:+86-25-52877345电子邮件:翟。hongjun@zte.com.cn

Fangwei Hu ZTE Corporation 889 Bibo Road Shanghai 201203 China Phone: +86-21-68896273 EMail: hu.fangwei@zte.com.cn

胡方伟中兴通讯股份有限公司上海碧波路889号201203中国电话:+86-21-68896273电子邮件:胡。fangwei@zte.com.cn

Radia Perlman EMC 2010 256th Ave. NE, #200 Bellevue, WA 98007 USA EMail: Radia@alum.mit.edu

Radia Perlman EMC 2010美国华盛顿州贝尔维尤200号东北大街256号邮编:98007电子邮件:Radia@alum.mit.edu

Donald Eastlake 3rd Huawei Technologies 155 Beaver Street Milford, MA 01757 USA Phone: +1-508-333-2270 EMail: d3e3e3@gmail.com

Donald Eastlake 3rd华为技术有限公司美国马萨诸塞州米尔福德海狸街155号01757电话:+1-508-333-2270电子邮件:d3e3e3@gmail.com

Olen Stokes Extreme Networks 2121 RDU Center Drive, Suite 300 Morrisville, NC 27560 USA EMail: ostokes@extremenetworks.com

Olen Stokes Extreme Networks美国北卡罗来纳州莫里斯维尔RDU中心大道2121号300室27560电子邮件:ostokes@extremenetworks.com