Internet Engineering Task Force (IETF)                     T. Otani, Ed.
Request for Comments: 6205                                          KDDI
Updates: 3471                                                 D. Li, Ed.
Category: Standards Track                                         Huawei
ISSN: 2070-1721                                               March 2011
        
Internet Engineering Task Force (IETF)                     T. Otani, Ed.
Request for Comments: 6205                                          KDDI
Updates: 3471                                                 D. Li, Ed.
Category: Standards Track                                         Huawei
ISSN: 2070-1721                                               March 2011
        

Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers

Lambda交换机功能(LSC)标签交换路由器的通用标签

Abstract

摘要

Technology in the optical domain is constantly evolving, and, as a consequence, new equipment providing lambda switching capability has been developed and is currently being deployed.

光领域的技术不断发展,因此,提供lambda交换能力的新设备已经开发出来,目前正在部署中。

Generalized MPLS (GMPLS) is a family of protocols that can be used to operate networks built from a range of technologies including wavelength (or lambda) switching. For this purpose, GMPLS defined a wavelength label as only having significance between two neighbors. Global wavelength semantics are not considered.

广义MPLS(GMPLS)是一系列协议,可用于操作由一系列技术构建的网络,包括波长(或λ)交换。为此,GMPLS将波长标签定义为仅在两个相邻位置之间具有意义。不考虑全局波长语义。

In order to facilitate interoperability in a network composed of next generation lambda-switch-capable equipment, this document defines a standard lambda label format that is compliant with the Dense Wavelength Division Multiplexing (DWDM) and Coarse Wavelength Division Multiplexing (CWDM) grids defined by the International Telecommunication Union Telecommunication Standardization Sector. The label format defined in this document can be used in GMPLS signaling and routing protocols.

为了促进由下一代支持lambda交换机的设备组成的网络中的互操作性,本文档定义了符合密集波分复用(DWDM)和粗波分复用(CWDM)的标准lambda标签格式由国际电信联盟电信标准化部门定义的网格。本文件中定义的标签格式可用于GMPLS信令和路由协议。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6205.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6205.

Copyright Notice

版权公告

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2011 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

本文件可能包含2008年11月10日之前发布或公开的IETF文件或IETF贡献中的材料。控制某些材料版权的人员可能未授予IETF信托允许在IETF标准流程之外修改此类材料的权利。在未从控制此类材料版权的人员处获得充分许可的情况下,不得在IETF标准流程之外修改本文件,也不得在IETF标准流程之外创建其衍生作品,除了将其格式化以RFC形式发布或将其翻译成英语以外的其他语言。

1. Introduction
1. 介绍

As described in [RFC3945], GMPLS extends MPLS from supporting only Packet Switching Capable (PSC) interfaces and switching to also supporting four new classes of interfaces and switching:

如[RFC3945]所述,GMPLS将MPLS从仅支持分组交换功能(PSC)接口和交换扩展到还支持四类新的接口和交换:

o Layer-2 Switch Capable (L2SC)

o 支持第二层交换机(L2SC)

o Time-Division Multiplex (TDM) Capable

o 支持时分多路复用(TDM)

o Lambda Switch Capable (LSC)

o 支持Lambda交换机(LSC)

o Fiber Switch Capable (FSC)

o 支持光纤交换机(FSC)

A functional description of the extensions to MPLS signaling needed to support new classes of interfaces and switching is provided in [RFC3471].

[RFC3471]中提供了支持新型接口和交换所需的MPLS信令扩展的功能描述。

This document presents details that are specific to the use of GMPLS with LSC equipment. Technologies such as Reconfigurable Optical Add/Drop Multiplex (ROADM) and Wavelength Cross-Connect (WXC) operate

本文件提供了特定于LSC设备使用GMPLS的详细信息。可重构光分插复用(ROADM)和波长交叉连接(WXC)等技术正在运行

at the wavelength switching level. [RFC3471] states that wavelength labels "only have significance between two neighbors" (Section 3.2.1.1); global wavelength semantics are not considered. In order to facilitate interoperability in a network composed of LSC equipment, this document defines a standard lambda label format, which is compliant with both the Dense Wavelength Division Multiplexing (DWDM) grid [G.694.1] and the Coarse Wavelength Division Multiplexing (CWDM) grid [G.694.2].

在波长切换级别。[RFC3471]规定波长标签“仅在两个相邻位置之间具有重要意义”(第3.2.1.1节);不考虑全局波长语义。为了促进由LSC设备组成的网络中的互操作性,本文件定义了标准lambda标签格式,该格式符合密集波分复用(DWDM)网格[G.694.1]和粗波分复用(CWDM)网格[G.694.2]。

1.1. Conventions Used in This Document
1.1. 本文件中使用的公约

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

2. Assumed Network Model and Related Problem Statement
2. 假设网络模型及相关问题陈述

Figure 1 depicts an all-optical switched network consisting of different vendors' optical network domains. Vendor A's network consists of ROADM or WXC, and Vendor B's network consists of a number of Photonic Cross-Connects (PXCs) and DWDM multiplexers and demultiplexers. Otherwise, both vendors' networks might be based on the same technology.

图1描述了由不同供应商的光网络域组成的全光交换网络。供应商A的网络由ROADM或WXC组成,供应商B的网络由许多光子交叉连接(PXC)和DWDM多路复用器和解复用器组成。否则,两家供应商的网络可能基于相同的技术。

In this case, the use of standardized wavelength label information is quite significant to establish a wavelength-based Label Switched Path (LSP). It is also an important constraint when calculating the Constrained Shortest Path First (CSPF) for use by Generalized Multi-Protocol Label Switching (GMPLS) Resource ReserVation Protocol - Traffic Engineering (RSVP-TE) signaling [RFC3473]. The way the CSPF is performed is outside the scope of this document.

在这种情况下,使用标准化的波长标签信息对于建立基于波长的标签交换路径(LSP)非常重要。在计算广义多协议标签交换(GMPLS)资源预留协议-流量工程(RSVP-TE)信令使用的约束最短路径优先(CSPF)时,这也是一个重要的约束条件[RFC3473]。CSPF的执行方式不在本文件范围内。

Needless to say, an LSP must be appropriately provisioned between a selected pair of ports not only within Domain A but also over multiple domains satisfying wavelength constraints.

不用说,LSP必须在选定的端口对之间进行适当的配置,不仅在域a内,而且在满足波长约束的多个域上。

Figure 2 illustrates the interconnection between Domain A and Domain B in detail.

图2详细说明了域A和域B之间的互连。

                                  |
      Domain A (or Vendor A)      |      Domain B (or Vendor B)
                                  |
     Node-1            Node-2     |         Node-6            Node-7
   +--------+        +--------+   |      +-------+ +-+     +-+ +-------+
   | ROADM  |        | ROADM  +---|------+  PXC  +-+D|     |D+-+  PXC  |
   | or WXC +========+ or WXC +---|------+       +-+W+=====+W+-+       |
   | (LSC)  |        | (LSC)  +---|------+ (LSC) +-+D|     |D+-+ (LSC) |
   +--------+        +--------+   |      |       +-|M|     |M+-+       |
       ||                ||       |      +++++++++ +-+     +-+ +++++++++
       ||     Node-3     ||       |       |||||||               |||||||
       ||   +--------+   ||       |      +++++++++             +++++++++
       ||===|  WXC   +===||       |      | DWDM  |             | DWDM  |
            | (LSC)  |            |      +--++---+             +--++---+
       ||===+        +===||       |         ||                    ||
       ||   +--------+   ||       |      +--++---+             +--++---+
       ||                ||       |      | DWDM  |             | DWDM  |
   +--------+        +--------+   |      +++++++++             +++++++++
   | ROADM  |        | ROADM  |   |       |||||||               |||||||
   | or WXC +========+ or WXC +=+ |  +-+ +++++++++ +-+     +-+ +++++++++
   | (LSC)  |        | (LSC)  | | |  |D|-|  PXC  +-+D|     |D+-+  PXC  |
   +--------+        +--------+ +=|==+W|-|       +-+W+=====+W+-+       |
     Node-4            Node-5     |  |D|-| (LSC) +-+D|     |D+-+ (LSC) |
                                  |  |M|-|       +-+M|     |M+-+       |
                                  |  +-+ +-------+ +-+     +-+ +-------+
                                  |        Node-8             Node-9
        
                                  |
      Domain A (or Vendor A)      |      Domain B (or Vendor B)
                                  |
     Node-1            Node-2     |         Node-6            Node-7
   +--------+        +--------+   |      +-------+ +-+     +-+ +-------+
   | ROADM  |        | ROADM  +---|------+  PXC  +-+D|     |D+-+  PXC  |
   | or WXC +========+ or WXC +---|------+       +-+W+=====+W+-+       |
   | (LSC)  |        | (LSC)  +---|------+ (LSC) +-+D|     |D+-+ (LSC) |
   +--------+        +--------+   |      |       +-|M|     |M+-+       |
       ||                ||       |      +++++++++ +-+     +-+ +++++++++
       ||     Node-3     ||       |       |||||||               |||||||
       ||   +--------+   ||       |      +++++++++             +++++++++
       ||===|  WXC   +===||       |      | DWDM  |             | DWDM  |
            | (LSC)  |            |      +--++---+             +--++---+
       ||===+        +===||       |         ||                    ||
       ||   +--------+   ||       |      +--++---+             +--++---+
       ||                ||       |      | DWDM  |             | DWDM  |
   +--------+        +--------+   |      +++++++++             +++++++++
   | ROADM  |        | ROADM  |   |       |||||||               |||||||
   | or WXC +========+ or WXC +=+ |  +-+ +++++++++ +-+     +-+ +++++++++
   | (LSC)  |        | (LSC)  | | |  |D|-|  PXC  +-+D|     |D+-+  PXC  |
   +--------+        +--------+ +=|==+W|-|       +-+W+=====+W+-+       |
     Node-4            Node-5     |  |D|-| (LSC) +-+D|     |D+-+ (LSC) |
                                  |  |M|-|       +-+M|     |M+-+       |
                                  |  +-+ +-------+ +-+     +-+ +-------+
                                  |        Node-8             Node-9
        

Figure 1. Wavelength-Based Network Model

图1。基于波长的网络模型

   +-------------------------------------------------------------+
   |          Domain A             |        Domain B             |
   |                               |                             |
   |           +---+     lambda 1  |         +---+               |
   |           |   |---------------|---------|   |               |
   |       WDM | N |     lambda 2  |         | N | WDM           |
   |      =====| O |---------------|---------| O |=====          |
   |  O        | D |        .      |         | D |        O      |
   |  T    WDM | E |        .      |         | E | WDM    T      |
   |  H   =====| 2 |     lambda n  |         | 6 |=====   H      |
   |  E        |   |---------------|---------|   |        E      |
   |  R        +---+               |         +---+        R      |
   |                               |                             |
   |  N        +---+               |         +---+        N      |
   |  O        |   |               |         |   |        O      |
   |  D    WDM | N |               |         | N | WDM    D      |
   |  E   =====| O |      WDM      |         | O |=====   E      |
   |  S        | D |=========================| D |        S      |
   |       WDM | E |               |         | E | WDM           |
   |      =====| 5 |               |         | 8 |=====          |
   |           |   |               |         |   |               |
   |           +---+               |         +---+               |
   +-------------------------------------------------------------+
        
   +-------------------------------------------------------------+
   |          Domain A             |        Domain B             |
   |                               |                             |
   |           +---+     lambda 1  |         +---+               |
   |           |   |---------------|---------|   |               |
   |       WDM | N |     lambda 2  |         | N | WDM           |
   |      =====| O |---------------|---------| O |=====          |
   |  O        | D |        .      |         | D |        O      |
   |  T    WDM | E |        .      |         | E | WDM    T      |
   |  H   =====| 2 |     lambda n  |         | 6 |=====   H      |
   |  E        |   |---------------|---------|   |        E      |
   |  R        +---+               |         +---+        R      |
   |                               |                             |
   |  N        +---+               |         +---+        N      |
   |  O        |   |               |         |   |        O      |
   |  D    WDM | N |               |         | N | WDM    D      |
   |  E   =====| O |      WDM      |         | O |=====   E      |
   |  S        | D |=========================| D |        S      |
   |       WDM | E |               |         | E | WDM           |
   |      =====| 5 |               |         | 8 |=====          |
   |           |   |               |         |   |               |
   |           +---+               |         +---+               |
   +-------------------------------------------------------------+
        

Figure 2. Interconnecting Details between Two Domains

图2。两个域之间的互连细节

In the scenario of Figure 1, consider the setting up of a bidirectional LSP from ingress switch (Node-1) to egress switch (Node-9) using GMPLS RSVP-TE. In order to satisfy wavelength continuity constraints, a fixed wavelength (lambda 1) needs to be used in Domain A and Domain B. A Path message will be used for signaling. The Path message will contain an Upstream_Label object and a Label_Set object, both containing the same value. The Label_Set object shall contain a single sub-channel that must be the same as the Upstream_Label object. The Path setup will continue downstream to egress switch (Node-9) by configuring each lambda switch based on the wavelength label. If a node has a tunable wavelength transponder, the tuning wavelength is considered a part of the wavelength switching operation.

在图1的场景中,考虑使用GMPLS RSVP TE建立从入口交换机(NoDE-1)到出口交换机(NoDE-9)的双向LSP。为了满足波长连续性约束,需要在域a和域B中使用固定波长(λ1)。路径消息将用于信令。路径消息将包含上游标签对象和标签集对象,两者都包含相同的值。标签设置对象应包含一个子通道,该子通道必须与上游标签对象相同。通过基于波长标签配置每个lambda交换机,路径设置将继续下游至出口交换机(节点9)。如果节点具有可调谐波长应答器,则调谐波长被视为波长切换操作的一部分。

Not using a standardized label would add undue burden on the operator to enforce policy as each manufacturer may decide on a different representation; therefore, each domain may have its own label formats. Moreover, manual provisioning may lead to misconfiguration if domain-specific labels are used.

不使用标准化标签会增加运营商执行政策的不适当负担,因为每个制造商可能会决定不同的代表;因此,每个域可能有自己的标签格式。此外,如果使用特定于域的标签,手动设置可能会导致配置错误。

Therefore, a wavelength label should be standardized in order to allow interoperability between multiple domains; otherwise, appropriate existing labels are identified in support of wavelength availability. Containing identical wavelength information, the ITU-T DWDM frequency grid specified in [G.694.1] and the CWDM wavelength information in [G.694.2] are used by Label Switching Routers (LSRs) and should be followed for wavelength labels.

因此,波长标签应标准化,以允许多个域之间的互操作性;否则,将标识适当的现有标签以支持波长可用性。包含相同波长信息的标签交换路由器(LSR)使用[G.694.1]中规定的ITU-T DWDM频率网格和[G.694.2]中规定的CWDM波长信息,并应遵循波长标签。

3. Label-Related Formats
3. 标签相关格式

To deal with the widening scope of MPLS into the optical switching and time division multiplexing domains, several new forms of "label" have been defined in [RFC3471]. This section contains a definition of a wavelength label based on [G.694.1] or [G.694.2] for use by LSC LSRs.

为了应对MPLS向光交换和时分复用领域的扩展,在[RFC3471]中定义了几种新形式的“标签”。本节包含LSC LSR使用的基于[G.694.1]或[G.694.2]的波长标签定义。

3.1. Wavelength Labels
3.1. 波长标签

Section 3.2.1.1 of [RFC3471] defines wavelength labels: "values used in this field only have significance between two neighbors, and the receiver may need to convert the received value into a value that has local significance".

[RFC3471]第3.2.1.1节定义了波长标签:“此字段中使用的值仅在两个相邻值之间具有重要性,接收器可能需要将接收到的值转换为具有局部重要性的值”。

We do not need to define a new type as the information stored is either a port label or a wavelength label. Only the wavelength label needs to be defined.

我们不需要定义新类型,因为存储的信息是端口标签或波长标签。只需要定义波长标签。

LSC equipment uses multiple wavelengths controlled by a single control channel. In such a case, the label indicates the wavelength to be used for the LSP. This document defines a standardized wavelength label format. For examples of wavelength values, refer to [G.694.1], which lists the frequencies from the ITU-T DWDM frequency grid. For CWDM technology, refer to the wavelength values defined in [G.694.2].

LSC设备使用由单个控制信道控制的多个波长。在这种情况下,标签指示用于LSP的波长。本文件定义了标准化的波长标签格式。有关波长值的示例,请参阅[G.694.1],其中列出了来自ITU-T DWDM频率网格的频率。对于CWDM技术,请参考[G.694.2]中定义的波长值。

Since the ITU-T DWDM grid is based on nominal central frequencies, we need to indicate the appropriate table, the channel spacing in the grid, and a value n that allows the calculation of the frequency. That value can be positive or negative.

由于ITU-T DWDM网格基于标称中心频率,因此我们需要指出适当的表格、网格中的信道间距以及允许计算频率的值n。该值可以是正值或负值。

The frequency is calculated as such in [G.694.1]:

在[G.694.1]中计算频率:

        Frequency (THz) = 193.1 THz + n * channel spacing (THz)
        
        Frequency (THz) = 193.1 THz + n * channel spacing (THz)
        

Where "n" is a two's-complement integer (positive, negative, or 0) and "channel spacing" is defined to be 0.0125, 0.025, 0.05, or 0.1 THz. When wider channel spacing such as 0.2 THz is utilized, the combination of narrower channel spacing and the value "n" can provide

其中,“n”是一个二补整数(正、负或0),“通道间距”定义为0.0125、0.025、0.05或0.1太赫兹。当使用较宽的信道间隔(例如0.2太赫兹)时,较窄的信道间隔和值“n”的组合可以提供

proper frequency with that channel spacing. Channel spacing is not utilized to indicate the LSR capability but only to specify a frequency in signaling.

正确的频率与该通道间距。信道间隔不用于指示LSR能力,而仅用于指定信令中的频率。

For other cases that use the ITU-T CWDM grid, the spacing between different channels is defined as 20 nm, so we need to express the wavelength value in nanometers (nm). Examples of CWDM wavelengths in nm are 1471, 1491, etc.

对于使用ITU-T CWDM网格的其他情况,不同通道之间的间距定义为20 nm,因此我们需要以纳米(nm)表示波长值。CWDM波长以nm为单位的示例有1471、1491等。

The wavelength is calculated as follows:

波长计算如下:

        Wavelength (nm) = 1471 nm + n * 20 nm
        
        Wavelength (nm) = 1471 nm + n * 20 nm
        

Where "n" is a two's-complement integer (positive, negative, or 0). The grids listed in [G.694.1] and [G.694.2] are not numbered and change with the changing frequency spacing as technology advances, so an index is not appropriate in this case.

其中“n”是一个二补整数(正、负或0)。[G.694.1]和[G.694.2]中列出的网格没有编号,并且随着技术的进步,随着频率间隔的变化而变化,因此在这种情况下,索引不合适。

3.2. DWDM Wavelength Label
3.2. DWDM波长标签

For the case of lambda switching of DWDM, the information carried in a wavelength label is:

对于DWDM的lambda切换情况,波长标签中携带的信息为:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid | C.S.  |    Identifier   |              n                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid | C.S.  |    Identifier   |              n                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

(1) Grid: 3 bits

(1) 网格:3位

The value for Grid is set to 1 for the ITU-T DWDM grid as defined in [G.694.1].

对于[G.694.1]中定义的ITU-T DWDM网格,网格值设置为1。

   +----------+---------+
   |   Grid   |  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |ITU-T DWDM|    1    |
   +----------+---------+
   |ITU-T CWDM|    2    |
   +----------+---------+
   |Future use|  3 - 7  |
   +----------+---------+
        
   +----------+---------+
   |   Grid   |  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |ITU-T DWDM|    1    |
   +----------+---------+
   |ITU-T CWDM|    2    |
   +----------+---------+
   |Future use|  3 - 7  |
   +----------+---------+
        

(2) C.S. (channel spacing): 4 bits

(2) C.S.(通道间距):4位

DWDM channel spacing is defined as follows.

DWDM信道间隔定义如下。

   +----------+---------+
   |C.S. (GHz)|  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |    100   |    1    |
   +----------+---------+
   |    50    |    2    |
   +----------+---------+
   |    25    |    3    |
   +----------+---------+
   |    12.5  |    4    |
   +----------+---------+
   |Future use|  5 - 15 |
   +----------+---------+
        
   +----------+---------+
   |C.S. (GHz)|  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |    100   |    1    |
   +----------+---------+
   |    50    |    2    |
   +----------+---------+
   |    25    |    3    |
   +----------+---------+
   |    12.5  |    4    |
   +----------+---------+
   |Future use|  5 - 15 |
   +----------+---------+
        

(3) Identifier: 9 bits

(3) 标识符:9位

The Identifier field in lambda label format is used to distinguish different lasers (in one node) when they can transmit the same frequency lambda. The Identifier field is a per-node assigned and scoped value. This field MAY change on a per-hop basis. In all cases but one, a node MAY select any value, including zero (0), for this field. Once selected, the value MUST NOT change until the LSP is torn down, and the value MUST be used in all LSP-related messages, e.g., in Resv messages and label Record Route Object (RRO) subobjects. The sole special case occurs when this label format is used in a label Explicit Route Object (ERO) subobject. In this case, the special value of zero (0) means that the referenced node MAY assign any Identifier field value, including zero (0), when establishing the corresponding LSP. When a non-zero value is assigned to the Identifier field in a label ERO subobject, the referenced node MUST use the assigned value for the Identifier field in the corresponding LSP-related messages.

lambda标签格式的标识符字段用于在不同激光器(在一个节点中)可以传输相同频率的lambda时区分它们。标识符字段是一个按节点分配和作用域的值。此字段可能会按每跳进行更改。在除一个以外的所有情况下,节点可以为此字段选择任何值,包括零(0)。选择后,在LSP被拆除之前,该值不得更改,并且该值必须在所有与LSP相关的消息中使用,例如,在Resv消息和标签记录路由对象(RRO)子对象中。在标签显式管线对象(ERO)子对象中使用此标签格式时,会出现唯一的特殊情况。在这种情况下,零(0)的特殊值意味着当建立相应的LSP时,被引用节点可以分配任何标识符字段值,包括零(0)。将非零值分配给标签ERO子对象中的标识符字段时,被引用节点必须在相应的LSP相关消息中使用标识符字段的分配值。

(4) n: 16 bits

(4) n:16位

n is a two's-complement integer to take either a positive, negative, or zero value. This value is used to compute the frequency as shown above.

n是取正数、负值或零值的二补整数。该值用于计算如上所示的频率。

3.3. CWDM Wavelength Label
3.3. CWDM波长标签

For the case of lambda switching of CWDM, the information carried in a wavelength label is:

对于CWDM的lambda切换情况,波长标签中携带的信息为:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid | C.S.  |    Identifier   |                n              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid | C.S.  |    Identifier   |                n              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

The structure of the label in the case of CWDM is the same as that of the DWDM case.

CWDM情况下的标签结构与DWDM情况下的标签结构相同。

(1) Grid: 3 bits

(1) 网格:3位

The value for Grid is set to 2 for the ITU-T CWDM grid as defined in [G.694.2].

对于[G.694.2]中定义的ITU-T CWDM网格,网格值设置为2。

   +----------+---------+
   |   Grid   |  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |ITU-T DWDM|    1    |
   +----------+---------+
   |ITU-T CWDM|    2    |
   +----------+---------+
   |Future use|  3 - 7  |
   +----------+---------+
        
   +----------+---------+
   |   Grid   |  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |ITU-T DWDM|    1    |
   +----------+---------+
   |ITU-T CWDM|    2    |
   +----------+---------+
   |Future use|  3 - 7  |
   +----------+---------+
        

(2) C.S. (channel spacing): 4 bits

(2) C.S.(通道间距):4位

CWDM channel spacing is defined as follows.

CWDM信道间隔定义如下。

   +----------+---------+
   |C.S. (nm) |  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |    20    |    1    |
   +----------+---------+
   |Future use|  2 - 15 |
   +----------+---------+
        
   +----------+---------+
   |C.S. (nm) |  Value  |
   +----------+---------+
   | Reserved |    0    |
   +----------+---------+
   |    20    |    1    |
   +----------+---------+
   |Future use|  2 - 15 |
   +----------+---------+
        

(3) Identifier: 9 bits

(3) 标识符:9位

The Identifier field in lambda label format is used to distinguish different lasers (in one node) when they can transmit the same frequency lambda. The Identifier field is a per-node assigned and scoped value. This field MAY change on a per-hop basis. In all cases but one, a node MAY select any value, including zero (0), for this field. Once selected, the value MUST NOT change until the LSP

lambda标签格式的标识符字段用于在不同激光器(在一个节点中)可以传输相同频率的lambda时区分它们。标识符字段是一个按节点分配和作用域的值。此字段可能会按每跳进行更改。在除一个以外的所有情况下,节点可以为此字段选择任何值,包括零(0)。一旦选择,该值在LSP之前不得更改

is torn down, and the value MUST be used in all LSP-related messages, e.g., in Resv messages and label RRO subobjects. The sole special case occurs when this label format is used in a label ERO subobject. In this case, the special value of zero (0) means that the referenced node MAY assign any Identifier field value, including zero (0), when establishing the corresponding LSP. When a non-zero value is assigned to the Identifier field in a label ERO subobject, the referenced node MUST use the assigned value for the Identifier field in the corresponding LSP-related messages.

该值必须在所有与LSP相关的消息中使用,例如,在Resv消息和标签RRO子对象中。在标签子对象中使用此标签格式时,会出现唯一的特殊情况。在这种情况下,零(0)的特殊值意味着当建立相应的LSP时,被引用节点可以分配任何标识符字段值,包括零(0)。将非零值分配给标签ERO子对象中的标识符字段时,被引用节点必须在相应的LSP相关消息中使用标识符字段的分配值。

(4) n: 16 bits

(4) n:16位

n is a two's-complement integer. This value is used to compute the wavelength as shown above.

n是一个二补整数。该值用于计算如上所示的波长。

4. Security Considerations
4. 安全考虑

This document introduces no new security considerations to [RFC3471] and [RFC3473]. For a general discussion on MPLS and GMPLS-related security issues, see the MPLS/GMPLS security framework [RFC5920].

本文档未对[RFC3471]和[RFC3473]引入新的安全注意事项。有关MPLS和GMPLS相关安全问题的一般性讨论,请参阅MPLS/GMPLS安全框架[RFC5920]。

5. IANA Considerations
5. IANA考虑

IANA maintains the "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Parameters" registry. IANA has added three new subregistries to track the codepoints (Grid and C.S.) used in the DWDM and CWDM wavelength labels, which are described in the following sections.

IANA维护“通用多协议标签交换(GMPLS)信令参数”注册表。IANA增加了三个新的分区,以跟踪DWDM和CWDM波长标签中使用的码点(网格和C.S.),这些将在以下章节中介绍。

5.1. Grid Subregistry
5.1. 网格分区

Initial entries in this subregistry are as follows:

本次区域的初始条目如下:

   Value   Grid                         Reference
   -----   -------------------------    ----------
     0     Reserved                     [RFC6205]
     1     ITU-T DWDM                   [RFC6205]
     2     ITU-T CWDM                   [RFC6205]
    3-7    Unassigned                   [RFC6205]
        
   Value   Grid                         Reference
   -----   -------------------------    ----------
     0     Reserved                     [RFC6205]
     1     ITU-T DWDM                   [RFC6205]
     2     ITU-T CWDM                   [RFC6205]
    3-7    Unassigned                   [RFC6205]
        

New values are assigned according to Standards Action.

根据标准操作分配新值。

5.2. DWDM Channel Spacing Subregistry
5.2. DWDM信道间隔分区

Initial entries in this subregistry are as follows:

本次区域的初始条目如下:

   Value   Channel Spacing (GHz)        Reference
   -----   -------------------------    ----------
     0     Reserved                     [RFC6205]
     1     100                          [RFC6205]
     2     50                           [RFC6205]
     3     25                           [RFC6205]
     4     12.5                         [RFC6205]
    5-15   Unassigned                   [RFC6205]
        
   Value   Channel Spacing (GHz)        Reference
   -----   -------------------------    ----------
     0     Reserved                     [RFC6205]
     1     100                          [RFC6205]
     2     50                           [RFC6205]
     3     25                           [RFC6205]
     4     12.5                         [RFC6205]
    5-15   Unassigned                   [RFC6205]
        

New values are assigned according to Standards Action.

根据标准操作分配新值。

5.3. CWDM Channel Spacing Subregistry
5.3. CWDM信道间隔分区

Initial entries in this subregistry are as follows:

本次区域的初始条目如下:

   Value   Channel Spacing (nm)         Reference
   -----   -------------------------    ----------
   0       Reserved                     [RFC6205]
   1       20                           [RFC6205]
   2-15    Unassigned                   [RFC6205]
        
   Value   Channel Spacing (nm)         Reference
   -----   -------------------------    ----------
   0       Reserved                     [RFC6205]
   1       20                           [RFC6205]
   2-15    Unassigned                   [RFC6205]
        

New values are assigned according to Standards Action.

根据标准操作分配新值。

6. Acknowledgments
6. 致谢

The authors would like to thank Adrian Farrel, Lou Berger, Lawrence Mao, Zafar Ali, and Daniele Ceccarelli for the discussion and their comments.

作者感谢Adrian Farrel、Lou Berger、Lawrence Mao、Zafar Ali和Daniele Ceccarelli的讨论和评论。

7. References
7. 工具书类
7.1. Normative References
7.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003.

[RFC3471]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令功能描述”,RFC 3471,2003年1月。

[RFC3473] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.

[RFC3473]Berger,L.,Ed.“通用多协议标签交换(GMPLS)信令资源预留协议流量工程(RSVP-TE)扩展”,RFC 3473,2003年1月。

[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3945, October 2004.

[RFC3945]Mannie,E.,Ed.“通用多协议标签交换(GMPLS)体系结构”,RFC 39452004年10月。

7.2. Informative References
7.2. 资料性引用

[G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM applications: DWDM frequency grid", June 2002.

[G.694.1]ITU-T建议G.694.1,“WDM应用的频谱网格:DWDM频率网格”,2002年6月。

[G.694.2] ITU-T Recommendation G.694.2, "Spectral grids for WDM applications: CWDM wavelength grid", December 2003.

[G.694.2]ITU-T建议G.694.2,“WDM应用的光谱网格:CWDM波长网格”,2003年12月。

[RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010.

[RFC5920]方,L.,编辑,“MPLS和GMPLS网络的安全框架”,RFC 5920,2010年7月。

Appendix A. DWDM Example
附录A.DWDM示例

Considering the network displayed in Figure 1, it is possible to show an example of LSP setup using the lambda labels.

考虑到图1中显示的网络,可以显示使用lambda标签的LSP设置示例。

Node 1 receives the request for establishing an LSP from itself to Node 9. The ITU-T grid to be used is the DWDM one, the channel spacing is 50 Ghz, and the wavelength to be used is 193,35 THz.

节点1从自身向节点9接收建立LSP的请求。使用的ITU-T网格为DWDM网格,信道间距为50 Ghz,使用的波长为193,35太赫兹。

Node 1 signals the LSP via a Path message including a wavelength label structured as defined in Section 3.2:

节点1通过路径消息向LSP发送信号,路径消息包括第3.2节中定义的波长标签:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid |  C.S. |   Identifier    |              n                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid |  C.S. |   Identifier    |              n                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Where:

哪里:

Grid = 1 : ITU-T DWDM grid

网格=1:ITU-T DWDM网格

C.S. = 2 : 50 GHz channel spacing

C.S.=2:50 GHz信道间隔

n = 5 :

n=5:

        Frequency (THz) = 193.1 THz + n * channel spacing (THz)
        
        Frequency (THz) = 193.1 THz + n * channel spacing (THz)
        
        193.35 (THz) = 193.1 (THz) + n* 0.05 (THz)
        
        193.35 (THz) = 193.1 (THz) + n* 0.05 (THz)
        
        n = (193.35-193.1)/0.05 = 5
        
        n = (193.35-193.1)/0.05 = 5
        
Appendix B. CWDM Example
附录B.CWDM示例

The network displayed in Figure 1 can also be used to display an example of signaling using the wavelength label in a CWDM environment.

图1中显示的网络还可用于显示CWDM环境中使用波长标签的信令示例。

This time, the signaling of an LSP from Node 4 to Node 7 is considered. Such LSP exploits the CWDM ITU-T grid with a 20 nm channel spacing and is established using a wavelength equal to 1331 nm.

此时,考虑从节点4到节点7的LSP的信令。这种LSP利用CWDM ITU-T网格,信道间距为20 nm,并使用等于1331 nm的波长建立。

Node 4 signals the LSP via a Path message including a wavelength label structured as defined in Section 3.3:

节点4通过路径消息向LSP发送信号,路径消息包括第3.3节中定义的波长标签:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid |  C.S. |   Identifier    |              n                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Grid |  C.S. |   Identifier    |              n                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        

Where:

哪里:

Grid = 2 : ITU-T CWDM grid

网格=2:ITU-T CWDM网格

C.S. = 1 : 20 nm channel spacing

C.S.=1:20 nm通道间距

n = -7 :

n=-7:

        Wavelength (nm) = 1471 nm + n * 20 nm
        
        Wavelength (nm) = 1471 nm + n * 20 nm
        
        1331 (nm) = 1471 (nm) + n * 20 nm
        
        1331 (nm) = 1471 (nm) + n * 20 nm
        
        n = (1331-1471)/20 = -7
        
        n = (1331-1471)/20 = -7
        

Authors' Addresses

作者地址

Richard Rabbat Google, Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043 USA EMail: rabbat@alum.mit.edu

Richard Rabbat Google,Inc.1600美国加利福尼亚州山景公园圆形剧场94043电子邮件:rabbat@alum.mit.edu

Sidney Shiba EMail: sidney.shiba@att.net

Sidney Shiba电子邮件:Sidney。shiba@att.net

Hongxiang Guo EMail: hongxiang.guo@gmail.com

郭洪翔电邮:洪翔。guo@gmail.com

Keiji Miyazaki Fujitsu Laboratories Ltd 4-1-1 Kotanaka Nakahara-ku, Kawasaki Kanagawa, 211-8588 Japan Phone: +81-44-754-2765 EMail: miyazaki.keiji@jp.fujitsu.com

宫崎敬二富士通实验室有限公司4-1-1小田中,川崎神奈川,211-8588日本电话:+81-44-754-2765电子邮件:宫崎骏。keiji@jp.fujitsu.com

Diego Caviglia Ericsson 16153 Genova Cornigliano Italy Phone: +390106003736 EMail: diego.caviglia@ericsson.com

Diego Caviglia Ericsson 16153 Genova Cornigliano意大利电话:+390106003736电子邮件:Diego。caviglia@ericsson.com

Takehiro Tsuritani KDDI R&D Laboratories Inc. 2-1-15 Ohara Fujimino-shi Saitama, 356-8502 Japan Phone: +81-49-278-7806 EMail: tsuri@kddilabs.jp

Takehiro Turitani KDDI研发实验室有限公司2-1-15 Ohara Fujimino shi Saitama,356-8502日本电话:+81-49-278-7806电子邮件:tsuri@kddilabs.jp

Editors' Addresses

编辑地址

Tomohiro Otani (editor) KDDI Corporation 2-3-2 Nishishinjuku Shinjuku-ku Tokyo, 163-8003 Japan Phone: +81-3-3347-6006 EMail: tm-otani@kddi.com

大谷智博(编辑)KDDI公司2-3-2日本新宿东京,163-8003电话:+81-3-3347-6006电子邮件:tm-otani@kddi.com

Dan Li (editor) Huawei Technologies F3-5-B R&D Center, Huawei Base, Shenzhen 518129 China Phone: +86 755-289-70230 EMail: danli@huawei.com

李丹(编辑)深圳华为基地华为技术F3-5-B研发中心518129中国电话:+86 755-289-70230电子邮件:danli@huawei.com