Internet Engineering Task Force (IETF)                         S. Turner
Request for Comments: 6160                                          IECA
Category: Standards Track                                     April 2011
ISSN: 2070-1721
        
Internet Engineering Task Force (IETF)                         S. Turner
Request for Comments: 6160                                          IECA
Category: Standards Track                                     April 2011
ISSN: 2070-1721
        

Algorithms for Cryptographic Message Syntax (CMS) Protection of Symmetric Key Package Content Types

对称密钥包内容类型的加密消息语法(CMS)保护算法

Abstract

摘要

This document describes the conventions for using several cryptographic algorithms with the Cryptographic Message Syntax (CMS) to protect the symmetric key package content type. Specifically, it includes conventions necessary to implement SignedData, EnvelopedData, EncryptedData, and AuthEnvelopedData.

本文档描述了使用具有加密消息语法(CMS)的几种加密算法来保护对称密钥包内容类型的约定。具体来说,它包括实现SignedData、EnvelopedData、EncryptedData和AuthEnvelopedData所需的约定。

Status of This Memo

关于下段备忘

This is an Internet Standards Track document.

这是一份互联网标准跟踪文件。

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

本文件是互联网工程任务组(IETF)的产品。它代表了IETF社区的共识。它已经接受了公众审查,并已被互联网工程指导小组(IESG)批准出版。有关互联网标准的更多信息,请参见RFC 5741第2节。

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6160.

有关本文件当前状态、任何勘误表以及如何提供反馈的信息,请访问http://www.rfc-editor.org/info/rfc6160.

Copyright Notice

版权公告

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

版权所有(c)2011 IETF信托基金和确定为文件作者的人员。版权所有。

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

本文件受BCP 78和IETF信托有关IETF文件的法律规定的约束(http://trustee.ietf.org/license-info)自本文件出版之日起生效。请仔细阅读这些文件,因为它们描述了您对本文件的权利和限制。从本文件中提取的代码组件必须包括信托法律条款第4.e节中所述的简化BSD许可证文本,并提供简化BSD许可证中所述的无担保。

1. Introduction
1. 介绍

This document describes the conventions for using several cryptographic algorithms with the Cryptographic Message Syntax (CMS) [RFC5652] to protect the symmetric key package content type defined in [RFC6031]. Specifically, it includes conventions necessary to implement the following CMS content types: SignedData [RFC5652], EnvelopedData [RFC5652], EncryptedData [RFC5652], and AuthEnvelopedData [RFC5083]. Familiarity with [RFC5083], [RFC5652], [RFC5753], and [RFC6031] is assumed.

本文档描述了使用具有加密消息语法(CMS)[RFC5652]的几种加密算法来保护[RFC6031]中定义的对称密钥包内容类型的约定。具体而言,它包括实现以下CMS内容类型所需的约定:SignedData[RFC5652]、EnvelopedData[RFC5652]、EncryptedData[RFC5652]和AuthEnvelopedData[RFC5083]。假设熟悉[RFC5083]、[RFC5652]、[RFC5753]和[RFC6031]。

This document does not define any new algorithms; instead, it refers to previously defined algorithms.

本文件未定义任何新算法;相反,它指的是以前定义的算法。

1.1. Terminology
1.1. 术语

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

本文件中的关键词“必须”、“不得”、“必需”、“应”、“不应”、“应”、“不应”、“建议”、“可”和“可选”应按照[RFC2119]中所述进行解释。

2. SignedData
2. 签名数据

If an implementation supports SignedData, then it MUST support the signature scheme RSA [RFC3370] and SHOULD support the signature schemes RSA Probabilistic Signature Scheme (RSASSA-PSS) [RFC4056] and Digital Signature Algorithm (DSA) [RFC3370]. Additionally, implementations MUST support the hash function SHA-256 [RFC5754] in concert with these signature schemes, and they SHOULD support the hash function SHA-1 [RFC3370]. If an implementation supports SignedData, then it MAY support Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC6090][RFC5753].

如果实现支持SignedData,则它必须支持签名方案RSA[RFC3370],并应支持签名方案RSA概率签名方案(RSASSA-PSS)[RFC4056]和数字签名算法(DSA)[RFC3370]。此外,实现必须支持哈希函数SHA-256[RFC5754]和这些签名方案,并且它们应该支持哈希函数SHA-1[RFC3370]。如果实现支持SignedData,那么它可能支持椭圆曲线数字签名算法(ECDSA)[RFC6090][RFC5753]。

3. EnvelopedData
3. 包络数据

If an implementation supports EnvelopedData, then it MUST implement key transport, and it MAY implement key agreement.

如果实现支持EnvelopedData,那么它必须实现密钥传输,并且可以实现密钥协议。

When key transport is used, RSA encryption [RFC3370] MUST be supported, and RSA Encryption Scheme - Optimal Asymmetric Encryption Padding (RSAES-OAEP) [RFC3560] SHOULD be supported.

使用密钥传输时,必须支持RSA加密[RFC3370],并且应支持RSA加密方案-最佳非对称加密填充(RSAES-OAEP)[RFC3560]。

When key agreement is used, Diffie-Hellman (DH) ephemeral-static [RFC3370] MUST be supported. When key agreement is used, Elliptic Curve Diffie-Hellman (ECDH) [RFC6090][RFC5753] MAY be supported.

使用密钥协议时,必须支持Diffie-Hellman(DH)瞬时静态[RFC3370]。使用密钥协商时,可能支持椭圆曲线Diffie-Hellman(ECDH)[RFC6090][RFC5753]。

Regardless of the key management technique choice, implementations MUST support AES-128 Key Wrap with Padding [RFC5649] as the content-encryption algorithm. Implementations SHOULD support AES-256 Key Wrap with Padding [RFC5649] as the content-encryption algorithm.

无论选择何种密钥管理技术,实现都必须支持AES-128密钥封装和填充[RFC5649]作为内容加密算法。实现应支持使用填充[RFC5649]作为内容加密算法的AES-256密钥换行。

When key agreement is used, the same key-wrap algorithm MUST be used for both key and content encryption. If the content-encryption algorithm is AES-128 Key Wrap with Padding, then the key-wrap algorithm MUST be AES-128 Key Wrap with Padding [RFC5649]. If the content-encryption algorithm is AES-256 Key Wrap with Padding, then the key-wrap algorithm MUST be AES-256 Key Wrap with Padding [RFC5649].

使用密钥协议时,密钥和内容加密必须使用相同的密钥包裹算法。如果内容加密算法是带填充的AES-128密钥包裹,则密钥包裹算法必须是带填充的AES-128密钥包裹[RFC5649]。如果内容加密算法是带填充的AES-256密钥包裹,则密钥包裹算法必须是带填充的AES-256密钥包裹[RFC5649]。

4. EncryptedData
4. 加密数据

If an implementation supports EncryptedData, then it MUST implement AES-128 Key Wrap with Padding [RFC5649] and SHOULD implement AES-256 Key Wrap with Padding [RFC5649].

如果实现支持EncryptedData,则必须实现带填充[RFC5649]的AES-128密钥换行,并应实现带填充[RFC5649]的AES-256密钥换行。

NOTE: EncryptedData requires that keys be managed by other means; therefore, the only algorithm specified is the content-encryption algorithm.

注:EncryptedData要求通过其他方式管理密钥;因此,指定的唯一算法是内容加密算法。

5. AuthEnvelopedData
5. AuthEnvelopedData

If an implementation supports AuthEnvelopedData, then it MUST implement the EnvelopedData recommendations except for the content-encryption algorithm, which, in this case, MUST be AES-GCM [RFC5084]; the 128-bit version MUST be implemented, and the 256-bit version SHOULD be implemented. Implementations MAY also support AES-CCM [RFC5084].

如果实现支持AuthEnvelopedData,则必须实现EnvelopedData建议,但内容加密算法除外,在本例中,该算法必须是AES-GCM[RFC5084];必须实现128位版本,并且应该实现256位版本。实现也可能支持AES-CCM[RFC5084]。

6. Public Key Sizes
6. 公钥大小

The easiest way to implement SignedData, EnvelopedData, and AuthEnvelopedData is with public key certificates [RFC5280]. If an implementation supports RSA, RSASSA-PSS, DSA, RSAES-OAEP, or Diffie-Hellman, then it MUST support key lengths from 1024-bit to 2048-bit, inclusive. If an implementation supports ECDSA or ECDH, then it MUST support keys on P-256.

实现SignedData、EnvelopedData和AuthEnvelopedData的最简单方法是使用公钥证书[RFC5280]。如果实现支持RSA、RSASSA-PSS、DSA、RSAES-OAEP或Diffie-Hellman,则它必须支持1024位到2048位(包括1024位)的密钥长度。如果实现支持ECDSA或ECDH,则必须支持P-256上的密钥。

7. Security Considerations
7. 安全考虑

The security considerations from [RFC3370], [RFC3560], [RFC4056], [RFC5083], [RFC5084], [RFC5649], [RFC5652], [RFC5753], [RFC5754], and [RFC6031] apply.

[RFC3370]、[RFC3560]、[RFC4056]、[RFC5083]、[RFC5084]、[RFC5649]、[RFC5652]、[RFC5753]、[RFC5754]和[RFC6031]中的安全注意事项适用。

The choice of content-encryption algorithms for this document was based on [RFC5649]:

本文档内容加密算法的选择基于[RFC5649]:

In the design of some high assurance cryptographic modules, it is desirable to segregate cryptographic keying material from other data. The use of a specific cryptographic mechanism solely for the protection of cryptographic keying material can assist in this goal.

在一些高保证密码模块的设计中,需要将密码密钥材料与其他数据分离。仅为保护加密密钥材料而使用特定加密机制有助于实现这一目标。

Unfortunately, there is no AES-GCM or AES-CCM mode that provides the same properties. If an AES-GCM and AES-CCM mode that provides the same properties is defined, then this document will be updated to adopt that algorithm.

不幸的是,没有提供相同属性的AES-GCM或AES-CCM模式。如果定义了提供相同属性的AES-GCM和AES-CCM模式,则本文件将更新以采用该算法。

[SP800-57] provides comparable bits of security for some algorithms and key sizes. [SP800-57] also provides time frames during which certain numbers of bits of security are appropriate, and some environments may find these time frames useful.

[SP800-57]为某些算法和密钥大小提供了可比的安全性。[SP800-57]还提供了一定数量的安全位适当的时间框架,一些环境可能会发现这些时间框架很有用。

8. References
8. 工具书类
8.1. Normative References
8.1. 规范性引用文件

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2119]Bradner,S.,“RFC中用于表示需求水平的关键词”,BCP 14,RFC 2119,1997年3月。

[RFC3370] Housley, R., "Cryptographic Message Syntax (CMS) Algorithms", RFC 3370, August 2002.

[RFC3370]Housley,R.,“加密消息语法(CMS)算法”,RFC3370,2002年8月。

[RFC3560] Housley, R., "Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)", RFC 3560, July 2003.

[RFC3560]Housley,R.,“在加密消息语法(CMS)中使用RSAES-OAEP密钥传输算法”,RFC 3560,2003年7月。

[RFC4056] Schaad, J., "Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax (CMS)", RFC 4056, June 2005.

[RFC4056]Schaad,J.,“在加密消息语法(CMS)中使用RSASSA-PSS签名算法”,RFC 4056,2005年6月。

[RFC5083] Housley, R., "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type", RFC 5083, November 2007.

[RFC5083]Housley,R.,“加密消息语法(CMS)认证的信封数据内容类型”,RFC 5083,2007年11月。

[RFC5084] Housley, R., "Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syntax (CMS)", RFC 5084, November 2007.

[RFC5084]Housley,R.,“在加密消息语法(CMS)中使用AES-CCM和AES-GCM认证加密”,RFC 5084,2007年11月。

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008.

[RFC5280]Cooper,D.,Santesson,S.,Farrell,S.,Boeyen,S.,Housley,R.,和W.Polk,“Internet X.509公钥基础设施证书和证书撤销列表(CRL)配置文件”,RFC 52802008年5月。

[RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm", RFC 5649, September 2009.

[RFC5649]Housley,R.和M.Dworkin,“带填充算法的高级加密标准(AES)密钥封装”,RFC 5649,2009年9月。

[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, September 2009.

[RFC5652]Housley,R.,“加密消息语法(CMS)”,STD 70,RFC 56522009年9月。

[RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)", RFC 5753, January 2010.

[RFC5753]Turner,S.和D.Brown,“加密消息语法(CMS)中椭圆曲线加密(ECC)算法的使用”,RFC 5753,2010年1月。

[RFC5754] Turner, S., "Using SHA2 Algorithms with Cryptographic Message Syntax", RFC 5754, January 2010.

[RFC5754]Turner,S.,“将SHA2算法与加密消息语法结合使用”,RFC 5754,2010年1月。

[RFC6031] Turner, S. and R. Housley, "Cryptographic Message Syntax (CMS) Symmetric Key Package Content Type", RFC 6031, December 2010.

[RFC6031]Turner,S.和R.Housley,“加密消息语法(CMS)对称密钥包内容类型”,RFC 60312010年12月。

[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, February 2011.

[RFC6090]McGrew,D.,Igoe,K.,和M.Salter,“基本椭圆曲线密码算法”,RFC 60902011年2月。

8.2. Informative Reference
8.2. 资料性参考

[SP800-57] National Institute of Standards and Technology (NIST), Special Publication 800-57: Recommendation for Key Management - Part 1 (Revised), March 2007.

[SP800-57]国家标准与技术研究所(NIST),特别出版物800-57:关键管理建议-第1部分(修订版),2007年3月。

Author's Address

作者地址

Sean Turner IECA, Inc. 3057 Nutley Street, Suite 106 Fairfax, VA 22031 USA

Sean Turner IECA,Inc.美国弗吉尼亚州费尔法克斯市努特利街3057号106室,邮编22031

   EMail: turners@ieca.com
        
   EMail: turners@ieca.com